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Abstract: The Timed Up and Go (TUG) test is a widely used tool for assessing the risk of falls in
older adults. However, to increase the test’s predictive value, the instrumented Timed Up and Go
(iTUG) test has been developed, incorporating different technological approaches. This systematic
review aims to explore the evidence of the technological proposal for the segmentation and analysis
of iTUG in elderlies with or without pathologies. A search was conducted in five major databases,
following PRISMA guidelines. The review included 40 studies that met the eligibility criteria. The
most used technology was inertial sensors (75% of the studies), with healthy elderlies (35%) and
elderlies with Parkinson’s disease (32.5%) being the most analyzed participants. In total, 97.5% of
the studies applied automatic segmentation using rule-based algorithms. The iTUG test offers an
economical and accessible alternative to increase the predictive value of TUG, identifying different
variables, and can be used in clinical, community, and home settings.

Keywords: instrumented timed up and go; risk of falls; elderly

1. Introduction

Falls are accidental events in which people lose control of their center of gravity,
where the effort to regain balance is insufficient [1]. In total, 25% of the elderly population
suffer at least one fall per year [2], increasing to two falls when the age is greater than
70 years [3]. For this reason, the risk of falls (RoF) is a public health issue [4,5], being
considered one of the main causes of serious injuries in elderlies and the third cause of
death due to unintentional injury [3–5], causing a sedentary life, loss of functional capacity
and a decrease in the quality of life [6]. Thus, the clinical guidelines of “The American and
British Geriatric Societies” recommend asking elderlies over 65 years if they have suffered
two or more falls, if they have been injured during a fall or if they perceive any difficulty
walking or maintaining balance [3]. Therefore, it is important to detect risk factors of falls
and balance early, to implement effective and specific preventive clinical strategies [7].

The main causes of falls are multi-factorial, including extrinsic factors related to the
environment, intrinsic factors related to the person, and behavioral factors related to the
activity [8]. The most common intrinsic factors are muscle weakness, balance deficits,
and gait instability [7]. For this, proposals to identify people with RoF, and measure
balance and gait [8]. In clinical practice, different tests and observational scales are used
to measure static and dynamic balance, as well as gait in healthy subjects or with motor
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impairments [5]. One of the most widely used tests is the Timed Up and Go (TUG), which
measures dynamic balance and functional mobility [9–11].

The TUG test is a simple test that can be applied in several environments. It was
developed in 1991 by Podsiadlo et al. [12] as a timed modification of the ”Get up and Go”
test. It consists of a circuit in which the subject must get up from a chair, walk three meters,
turn around and walk back to the chair to sit on it again (Figure 1). The controlled variable
is the total test duration in seconds, which is then correlated with the RoF [8,12–14]. This
test presents a high inter-rater and intra-rater reliability, with values greater than 95% in the
prediction of RoF in elderlies, people with stroke [15,16] and Parkinson’s disease (PD) [17].
Other advantages of TUG are the simplicity and duration of its application. Additionally, it
requires minimal equipment and allows subjects with functional disabilities to perform
the evaluation. However, one of the limitations is that it cannot objectively determine the
risk in subjects with greater difficulty. Barry et al. [8] mentioned that a limitation in the
predictive value of the TUG test could be explained that it evaluates balance in a general
way, which could be improved with the addition of technological tools for movement
analysis [8,13].

Figure 1. Timed Up and Go test with the different sub-phases after the most complete segmentation.
(1) Standing. (2) Go Walking. (3) Three-meter turning. (4) Return Walking. (5) Pre-sitting turning.
(6) Sitting.

Nowadays, there are proposals in the literature that allow the instrumentation of
TUG through the use of sensors to capture and analyze movement. This variant of the
test is called Instrumented Timed Up and Go (iTUG) [13,18,19]. This instrumentation
makes it possible to identify the postural transitions performed during the test and to
segment TUG into different sub-phases for extraction of specific measures for each of the
identified sub-phases [20,21]. However, in the scientific literature, different technological
and algorithmic proposals have been presented for iTUG segmentation that differs in the
type of technology used, segmentation algorithms and extracted features for applications
of intervention, characterization and RoF prediction [13,18,19,22–24].

Current systematic reviews on the TUG test study the psychometric properties of
the test [25–27], incorporate information on RoF assessment instruments [5] or evaluate
it as an evaluation instrument for a specific intervention [28]. However, to the best of our
knowledge, there are no reviews where the applicability of iTUG in older adults is explored,
describing the technological elements of the different scientific proposals reported in the
literature and the segmentation and feature extraction strategies for its application.

Thus, we present a systematic review that explores the evidence of the technological
proposals for the segmentation and analysis of iTUG in elderlies with or without associated
pathologies, answering the following questions: What are the technological elements used,
the methodological variations, and the main variables extracted in the application of iTUG
in elderlies? What are the clinical applicability and predictive value of iTUG in elderlies?
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2. Methods

The present review follows the guidelines of the PRISMA guide for systematic re-
views [29]. The following databases were reviewed: National Library of Medicine, National
Center for Biotechnology Information (NIH), Pubmed.gov; IEEE Xplore Digital Library,
Scientific Electronic Library Online (SciELO), Elsevier, and Web of Science (WOS).

On 19 April 2022, a first search strategy was evaluated using the command:
(“itug” [All Fields] AND ((“accidental falls” [MeSH Terms] OR (“accidental” [All

Fields] AND “falls” [All Fields]) OR “accidental falls” [All Fields] OR “falling” [All Fields]
OR “falls” [All Fields] OR “fallings” [All Fields]) AND (“risk” [MeSH Terms] OR “risk”
[All Fields]))) AND (y_10[Filter]).

From this strategy, only 37 articles were obtained from the Pubmed database and no
results were obtained in the other databases. Thus, on 19 May 2022, the search command
was modified as follows:

((instrumented AND (y_10[Filter])) AND (((timed up and go AND (y_10[Filter])) OR
(Timed up & go AND (y_10[Filter]))) OR (TUG AND (y_10[Filter ])) AND (y_10[Filter])))
AND (elderly AND (y_10[Filter])) Filters: in the last 10 years.

This last command was used for the rest of the databases, obtaining the final search as
(instrumented) AND ((timed up and go) OR (Timed up & go) OR (TUG)) AND ( elderly),
including studies between the years 2012 and 2022. Three authors tested the last search
command in each database to determine the effectiveness of the search or any difference.

On 31 October 2022, a final search was performed to update the database and identify
new studies that could meet the eligibility criteria.

For the selection of the studies, a conceptual definition of iTUG was determined,
as well as the context in which the proposals were analyzed. Regarding the types of studies
included, no methodological limitations were applied to carry out the selection by level of
evidence. The target population of the studies consisted of elderlies with a mean age equal
to or greater than 65 years with or without associated pathologies. The description of the
eligibility criteria can be observed in detail in Tables 1 and 2.

Table 1. Eligibility criteria for study selection.

Criteria Description

iTUG Studies describe iTUG using technological support to enrich the
test (cameras, inertial sensors, environmental sensors, pressure
sensors, optoelectronic systems).

Index, parameters
or variables

Proposals that, in addition to the total duration traditionally
obtained in TUG, provide other variables or measurements that
allow the identification of motor alterations in the participants.

Context Proposals evaluated in community, clinical or academic settings.

Study methodology Descriptive, experimental, quasi-experimental and proof-of-
concept clinical studies were included that used validated com-
mercial technology or new technologies whose applications were
applied in the elderly population. No methodological limitations
were applied to carry out the screening by the level of evidence.

Participants Elderlies with a mean age equal or greater than 65 years, with or
without associated pathology.

Language Studies published in English or Spanish.

Study year Studies published between 2012 and 2022.
TUG = Timed Up and Go; iTUG = Instrumented Timed Up and Go.
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Table 2. Exclusion criteria for study selection.

Criteria Description

Index, parameters
or variables

Proposals that only provided the total value of TUG without
demonstrating any other characteristic extracted, independent of
declaring the use of any technology, were excluded.

Study methodology Other narratives, bibliographic, systematic or scoping reviews
were excluded, as well as “one-page” conference articles, abstracts,
posters, letters to the editor and studies of iTUG psychometric
properties validation.

TUG = Timed Up and Go; iTUG = Instrumented Timed Up and Go.

To avoid bias in the selection and analysis of the studies, the initial registration and
screening of the articles were carried out with COVIDENCE® (Melbourne, Australia). Initial
screening by title and abstract was performed by two authors using a blind methodology,
and differences were discussed in conjunction with a third author to resolve discrepan-
cies. During this selection, scientific studies were considered whose titles contained the
keywords: instrumented, timed up and go, falls or risk of falling elderly or older adults
and the conceptual definition of iTUG or that the description of the technology allowed
to identify an iTUG. If the studies are considered potentially eligible, even if they did not
meet the strategy described above, their extended reading was performed to corroborate
whether or not they met the eligibility criteria in Table 1.

The extended review was also conducted at COVIDENCE® (Melbourne, Australia) by
two authors, whose disagreements were resolved by a third author.

Finally, the information extraction of the final selected articles was performed by two
authors of the study, where the data were recorded and stored in a registration form made
with Excel (Microsoft 365®, Redmond, WA, USA), which considered the following data:

• Authors;
• Year/Country;
• Study methodology;
• Institutions;
• Inclusion criteria;
• Exclusion criteria;
• Participants;
• Age of participants;
• Number of participants;
• Number of analyzed participants;
• Gender distribution;
• Technology/Sensors used;
• iTUG implementation;
• TUG implementation;
• Raw data;
• Index, parameters, and variables extracted;
• Segmentation Algorithm;
• Main outcomes;
• Main results.

Any discrepancy was resolved with the participation of a third reviewer.

3. Results

From the initial search in the different databases, 497 studies were obtained, and
74 were removed because they corresponded to duplicates, leaving a total of 423 studies.
During the title and abstract screening stage, 344 articles were excluded, and 79 entered the
extended review stage to determine their eligibility, eliminating 34 studies. Finally, 5 studies
were excluded in the information extraction stage, and 40 were selected for analysis and
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discussion. The detail of the selection process can be seen in the PRISMA diagram from
Figure 2.

The presentation of results are presented according to five sections based on the
information extracted from the selected studies, which include characteristics of the partici-
pants and methodological design of the selected studies; types of technologies, procedures
and instrumentation used in the TUG test; algorithmic procedures for segmentation and
extraction of iTUG features; features extracted from iTUG; and main clinical results from
the selected studies (see Table 3).

Figure 2. Systematic review screening process performed in this studio. Flowchart template extracted
and modify from [30].
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Table 3. Extensive description of iTUG methodology of all the studies included in the review.

Author Methods iTUG Implementation Segmentation Features Main Results

Ayena et al.,
2022 [22]

Experimental clinical
study

Traditional 3-meter TUG procedure
in people with PD. Segmentation in
four phases: Standing, Go and Return
Walking and Sitting. Insole with 4 FSR,
one in the heel, the other in the medial
and lateral foot, one in the first and the
other in the fifth metatarsal. The tri-axial
accelerometer is in the instep of the foot.

Automatic segmentation
based on patterns of plan-
tar pressures and acceler-
ations. The research team
developed the algorithm.

Gait index variability. A reduced set of FSR al-
lows the measurement of
gait parameters for measur-
ing the RoF in young elderly
and PD.

Ayena et al.,
2020 [31]

Experimental clinical
study

Traditional 3-meter TUG procedure
in people with PD. Segmentation in
four phases: Standing, Go and Return
Walking and Sitting. Insole with 4 FSR,
one in the heel, the other in the medial
and lateral foot, one in the first and the
other in the fifth metatarsal. The tri-axial
accelerometer is in the instep of the foot.

Automatic segmentation
based on patterns of plan-
tar pressures and acceler-
ations. The research team
developed the algorithm.

12 spatiotemporal gait pa-
rameters.

The risk of falls index calcu-
lated with a minimum num-
ber of sensors is a promis-
ing tool for real-time analy-
sis, as it provides similar sta-
tistical information in risk
analysis with a larger num-
ber of sensors.

Bergquist et al.,
2020 [32]

Cross-sectional study Traditional procedure of the 3-meter
TUG procedure in communitary elder-
lies performing five repetitions. Segmen-
tation into five phases: Standing, Go
walking, 3-meter turning, Return walk-
ing and Sitting. Smartphone is located
on the lower back.

Segmentation using accel-
eration and angular veloc-
ity signals with the algo-
rithm by Weiss et al. [33]

78 features: Total iTUG du-
ration. iTUG sub-phase du-
ration. Spatial gait param-
eters in turning and walk-
ing sub-phases.

The iTUG model has a pre-
dictive ability similar to the
scores of the CBMS and the
battery of clinical tests with
a significantly lower predic-
tion error.

Campillay et al.,
2017 [34]

Descriptive study. Traditional procedure of the 3-meter
TUG procedure in elderlies, selecting
the best of three repetitions. Segmen-
tation into five phases: Standing, Go
walking, 3-meter turning, Return walk-
ing and Sitting. Smartphone is located
on the lower back.

Segmentation using
acceleration and an-
gular velocity signals
with the algorithm by
Mellone et al. [35]

Total iTUG duration. iTUG
sub-phase duration.

Duration of iTUG sub-
phases measured through
the smartphone IMU are
highly reproducible.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Coni et al.,
2015 [36]

Cohort study. Traditional procedure of the 3-meter
TUG procedure in communitary elder-
lies. Segmentation into five phases:
Standing, Go walking, 3-meter turning,
Return walking and Sitting. Smartphone
located on the waist.

Segmentation using accel-
eration and angular veloc-
ity signals with the algo-
rithm by Weiss et al. [33]

38 features: Total du-
ration of iTUG; iTUG
sub-phase duration. Sta-
tistical descriptors of
angular velocity in the
turning sub-phase: peak,
mean, Root Mean Square
Value (RMS). Spatial gait
parameters: number of
steps on walking and
turning sub-phases.

A significant number of fea-
tures can be derived from
the sensor signals, which
can be grouped into factors
with clear clinical value, al-
lowing the measurement of
many mobility skills from
one, and not just total time.

David et al.,
2017 [37]

Pilot study. Traditional procedure of the 3-meter
TUG procedure in people with stroke.
Segmentation into three phases: Stand-
ing, Walking and Sitting.

Segmentation using
the spatial position
of markers with Ma-
chine Learning (Neural
Networks) [38]

Spatiotemporal gait pa-
rameters.

The system has proven to
be capable of measuring
the level of walking and
TUG, providing details in
the analysis of the move-
ment and parameters com-
pared with the current data,
which is the total time mea-
sured manually.

Delbroek et al.,
2017 [39]

Randomized clinical
study.

Traditional procedure of the 3-meter
TUG procedure in elderlies with visual
tasks. IMU on ankles, wrists and chest.
Segmentation into six phases: Stand-
ing, Go walking, 3-meter turning, Return
walking, Pre-sitting turning, Sitting.

APDM Mobility Lab pro-
prietary algorithm.

Total duration of iTUG.
Spatiotemporal gait pa-
rameters. Statistical de-
scriptors of angular veloc-
ity and accelerations.

All iTUG measurements
improve with l-dopa, ex-
cept sit-to-stand transition
(duration and AP accelera-
tion) and stand-to-sit transi-
tion (all parameters).

Dibilio et al.,
2017 [40]

Does not specify. Traditional procedure of the 3-meter
TUG procedure in people with PD with
visual tasks. The sensor is on the lower
back at L4–L5. Segmentation into six
phases: Standing, Go walking, 3-meter
turning, Return walking, Pre-sitting turn-
ing, Sitting.

BTS G-Studio proprietary
algorithm.

Freezing of gait. Total
duration of iTUG. Du-
ration per sub-phase of
iTUG. Spatiotemporal
gait parameters.

Low but significant cor-
relations were found be-
tween motor scores (iTUG
parameters) and global cog-
nitive function.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Fastame et al.,
2022 [41]

Exploratory study. Traditional procedure of the 3-meter
TUG procedure in communitary elder-
lies with visual tasks. The sensor is on
the lower back at L5–S1. Segmentation
into six phases: Standing, Go walking,
3-meter turning, Return walking, Pre-
sitting turning, Sitting.

BTS G-Studio proprietary
algorithm.

Duration and average
speed of each sub-phase
of iTUG.

It is a robust, stable and sen-
sitive measurement tool for
“movement smoothness” in-
dependent of the speed
and duration of the move-
ment, capable of identify-
ing RoF independent of the
day’s speed.

Figuiredo et al.,
2020 [42]

case-control study. Traditional procedure of the 3-meter
TUG procedure in elderlies with visual
tasks. The sensor is on the lower back
at L5–S1. Segmentation into six phases:
Standing, Go walking, 3-meter turning,
Return walking, Pre-sitting turning, Sit-
ting.

BTS G-Studio proprietary
algorithm.

Total duration of iTUG.
Duration per sub-phase of
iTUG. Statistical descrip-
tors of angular velocity by
sub-phase. Statistical de-
scriptors of degrees of ori-
entation and inclination by
sub-phase.

It is possible to identify
significant differences in
the temporal variables
of the sub-phases and
their speed, mainly in the
elderly population.

Mangano et al.,
2020 [43]

Transversal study. Traditional procedure of the 3-meter
TUG procedure and an extended 7-meter
version in elderlies. The sensor is on the
lower back at L1. Segmentation into six
phases: Standing, Go walking, 3-meter
turning, Return walking, Pre-sitting turn-
ing, Sitting.

BTS G-Studio proprietary
algorithm.

Duration and average
speed of each sub-phase
of iTUG.

No differences were found
between Parkinson’s
patients with RoF and
without RoF in stride length
and speed parameters.
Conversely, there was a
difference in the time of
double support. In addition,
good correlations were
found between the ABC
Scale and iTUG scales.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Mancini et al.,
2012 [44]

Cross-sectional study. Extended 7-meter TUG in people with
PD. The sensor is on the lower back and
on the leg shank segment. Segmentation
into six phases: Standing, Go walking,
3-meter turning, Return walking, Pre-
sitting turning, Sitting.

APDM Mobility Lab pro-
prietary algorithm.

52 features: Spatiotempo-
ral gait parameters. Statis-
tical descriptors of acceler-
ation of the walking sub-
phase. Acceleration fre-
quency analysis of the gait
sub-phase.

An instrumented scale can
reveal deficits in the turns
of patients with Parkinson’s
(severe and mild), even
though they have a normal
score and walk correctly.

King et al.,
2012 [45]

Exploratory study. Extended 7-meter TUG in people with
PD. The sensor is on the lower back, leg
shank segment, arms and chest. Seg-
mentation into six phases: Standing, Go
walking, 3-meter turning, Return walk-
ing, Pre-sitting turning, Sitting.

APDM Mobility Lab pro-
prietary algorithm.

Total duration of iTUG;
Turning sub-phase dura-
tion. Spatial gait param-
eters: Step number dur-
ing turning. Statistical de-
scriptors of angular veloc-
ity during turning.

The system is useful for
analyzing the gait patterns
during TUG, applicable to
healthy subjects or with dif-
ferent gait disorders by ana-
lyzing the correlations of the
go and return signals.

Ishikawa et al.,
2019 [46]

Exploratory study. Traditional procedure of the 3-meter
TUG procedure in elderlies with iNPH.
Smartphone on the abdomen. Segmenta-
tion into six phases: Standing, Go walk-
ing, 3-meter turning, Return walking,
Pre-sitting turning, Sitting.

Segmentation using
acceleration and an-
gular velocity signals
with the algorithm by
Salarian et al. [47].

Spatiotemporal gait param-
eters: Gait speed, cadence,
stride time variability.

It could be correctly identi-
fied and with an error under
the test transition elements
in the predetermined order
and in any other sequence of
the movements or activities
measured during TUG.

Silva et al.,
2016 [48]

Exploratory study. Traditional procedure of the 3-meter
TUG procedure in elderlies. The sensor
is in a pocket or attached to the thigh.
Segmentation into three phases: Stand-
ing, Go walking, 3-meter turning.

Automatic segmentation
algorithm using the inte-
gral of the angular veloc-
ity signal developed by
the same research team.

Total duration of iTUG;
Duration per sub-phase of
iTUG; Spatial gait param-
eters: Step number dur-
ing walking. Statistical
descriptors of acceleration
by sub-phase. Acceler-
ation frequency analysis
by sub-phase.

A strategy implemented in
stages with and without
medication in patients with
Parkinson’s makes it possi-
ble to predict falls.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Hoskovcova et al.,
2015 [49]

Prospective study. Traditional 3-meter TUG and extended
7-meter TUG in people with PD. Use of
five inertial sensors located in the leg,
wrist and sternum areas.

Does not report segmenta-
tion strategy.

Spatiotemporal gait pa-
rameters: gait speed,
cadence and stride
time variability.

Using principal component
analysis, it was observed
that the characteristics that
contributed the most to the
discrimination with respect
to the control group were
in the phase of getting up,
the chest flexion, the maxi-
mum obliquity of the chest
and the maximum vertical
velocity of the chest.

Hellmers et al.,
2018 [50]

Exploratory study. Traditional 3-meter TUG in elderlies.
A belt with sensors in L4–L5 and an in-
strumented chair with four pressure sen-
sors and a laser are used. Segmentation
into six phases: Standing, Go walking,
3-meter turning, Return walking, Pre-
sitting turning, Sitting.

Segmentation with the al-
gorithm of Nguyen et al.,
2015 [11].

Total duration of iTUG;
Turning sub-phase du-
ration. Statistical de-
scriptors of acceleration
by sub-phase.

There are some differences
in the acceleration signals
between groups of frail
adults compared to non-
frail adults by means of
a smartphone placed on
the chest.

Gasparutto et al.,
2021 [23]

Prospective study. Traditional procedure of the 3-meter
TUG procedure in elderlies with hip
arthroplasty. In total, 35 reflective mark-
ers were used according to the conven-
tional gait model. Segmentation into five
phases: Standing, Go walking, 3-meter
turning, Return walking and Sitting.

Automatic segmentation
with the algorithm by
Bayea et al. [51].

33 features: joint mobility
range descriptors by iTUG
sub-phase: spine at thorax
level and c7. The base of
support by sub-phase. Spa-
tial gait parameters: num-
ber of steps during walk-
ing and turning. Statistical
descriptors of angular ve-
locity by sub-phase of the
thorax and pelvis.

This simple test could be
appropriate for quantifying
patient-specific deficits in
function, and hence, guid-
ing and monitoring post-
operative rehabilitation in
clinical settings.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Galán-Mercant
et al., 2015 [52]

Cross-sectional study. Extended 10-meter TUG in elderlies with
the frail syndrome. Smartphone on
thorax. Segmentation into five phases:
Standing, Go walking, 3-meter turning,
Return walking and Sitting.

Segmentation using
acceleration and an-
gular velocity signals
with algorithms from
Weiss et al. [33] and
Salarian et al. [47].

Duration per sub-phase of
iTUG. Statistical descrip-
tors of acceleration by sub-
phase. Statistical descrip-
tors of angular velocity by
sub-phase. Statistical de-
scriptors of degrees of ori-
entation and inclination by
sub-phase.

An inertial sensor from the
iPhone 4 can study and an-
alyze the kinematics of the
different sub-phases of the
Extended TUG test in frail
and non-frail elderly people.

Galán-Mercant
et al., 2013 [53]

Cross-sectional study. Extended 10-meter TUG in elderlies with
frail syndrome. Smartphone on thorax.
Segmentation into five phases: Stand-
ing, Go walking, 3-meter turning, Return
walking and Sitting.

Segmentation using
acceleration and an-
gular velocity signals
with algorithms from
Weiss et al. [33] and
Salarian et al. [47].

Statistical descriptors of
acceleration by sub-phase.
Statistical descriptors of
angular velocity by sub-
phase. Statistical descrip-
tors of degrees of orienta-
tion and inclination by sub-
phase. Total duration of
iTUG. Duration per sub-
phase of iTUG.

The inertial sensor found
in the iPhone 4 is able to
study and analyze the kine-
matics of the turning tran-
sitions in frail and physi-
cally active elderly persons.
The accelerometry values
for the frail elderly are lower
than the physically active
elderly, while variability in
the readings for the frail el-
derly is also lower than the
control group.

Galán-Mercant
et al., 2014 [54]

Cross-sectional study. Extended 10-meter TUG in elderlies with
frail syndrome. Smartphone on thorax.
Segmentation into five phases: Stand-
ing, Go walking, 3-meter turning, Return
walking and Sitting.

Segmentation using
acceleration and an-
gular velocity signals
with algorithms from
Weiss et al. [33] and
Salarian et al. [47].

Statistical descriptors of
acceleration by sub-phase.
Statistical descriptors of
angular velocity by sub-
phase. Total duration of
iTUG. Duration per sub-
phase of iTUG. Joint mobil-
ity ranges by sub-phase of
iTUG (Thorax).

For the Extended TUG test,
this device allows more
sensitive differentiation be-
tween population groups
than the traditionally used
variable, namely time.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Van Uem et al.,
2016 [55]

Cross-sectional study. Traditional 3-meter TUG in people with
PD. A belt with sensors in L4–L5. Seg-
mentation into six phases: Standing, Go
walking, 3-meter turning, Return walk-
ing, Pre-sitting turning, Sitting.

Segmentation using
angular velocity sig-
nals and accelerations
with the algorithm of
Walgaard et al. [56].

Statistical descriptors of
acceleration by sub-phase.
Statistical descriptors of
angular velocity by sub-
phase. Total duration of
iTUG. Duration per sub-
phase of iTUG. Joint mobil-
ity ranges by sub-phase of
iTUG (Lumbar).

Spontaneous physical ac-
tivity at home and instru-
mented assessments in the
clinic demonstrated strong
discriminatory power in de-
tecting impaired motor func-
tion in Parkinson’s disease.

Van Lum-
mel et al.,
2016 [18]

Exploratory study. Traditional 3-meter TUG in people with
PD. A belt with sensors in L4–L5. Seg-
mentation into six phases: Standing, Go
walking, 3-meter turning, Return walk-
ing, Pre-sitting turning, Sitting.

Segmentation using
angular velocity sig-
nals and accelerations
with the algorithm of
Walgaard et al. [56].

Total duration of iTUG.
Duration per sub-phase
of iTUG.

Intra-rater, inter-rater and
test-retest reliability of the
individual components of
iTUG was excellent to good
for total duration and turn-
ing durations and good to
poor for sitting durations
and kinematics.

Toosizadeh
et al., 2015 [53]

Cohort study. Traditional 3-meter TUG in people with
PD. Five units of measurement, one on
each leg, one on each thigh, and one on
the lower back. Segmentation into five
phases: Standing, Go walking, 3-meter
turning, Return walking, Sitting.

Segmentation using
acceleration and an-
gular velocity signals
with the algorithm by
Salarian et al. [47].

Statistical descriptors of
acceleration by sub-phase.
Statistical descriptors of
angular velocity by sub-
phase. Total duration of
iTUG. Duration per sub-
phase of iTUG. Joint mo-
bility ranges by sub-phase
of iTUG.

iTUG measurements ob-
tained from trunk angular
velocity during the turn-
ing and standing phases
are adequate measures
of dynamic balance in
Parkinson’s disease. These
measurements respond to
rehabilitation, being able
to detect improvement in
patients after treatment.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Tan et al.,
2018 [57]

Does not specify. Reduced version at 2-meter TUG in peo-
ple with PD. The Kinect camera is located
1.4 m from the test circuit.

Algorithm developed by
the same research team.

Spatial gait parameters:
Length of the first step. To-
tal duration of iTUG. Turn-
ing sub-phase duration.

The only Kinect-derived
variable significantly associ-
ated with the motor analysis
scale was first step length.

Sheehan et al.,
2014 [58]

Longitudinal study. Traditional 3-meter TUG in elderlies.
Sensors are located on each leg.

Does not specify a seg-
mentation algorithm.

Spatiotemporal gait pa-
rameters. Spatial gait pa-
rameters. Statistical de-
scriptors of angular veloc-
ity by sub-phase.

The quantitative values of
iTUG and linear regression
models allow us to iden-
tify decreases in the bal-
ance of highly functional
older adults.

Seo et al.,
2019 [59]

Transversal study. Traditional procedure of the 3-meter
TUG procedure in elderlies with visual
tasks. IMU on ankles, wrists, lower back
and chest. Segmentation into five phases:
Standing, Go walking, 3-meter turning,
Return walking, Sitting.

APDM Mobility Lab pro-
prietary algorithm.

36 features: Spatiotempo-
ral gait parameters. Sta-
tistical descriptors of angu-
lar velocity by sub-phase.
Total duration of iTUG.
Duration per sub-phase
of iTUG. Joint mobility
ranges by sub-phase of
iTUG (thorax).

It was possible to predict
the falls with 70.2% accu-
racy using the characteris-
tics of the total duration of
the test, standing character-
istics, the maximum speed
of the trunk in the sagit-
tal plane and its range of
movement in the horizon-
tal plane during walking
and the speed angular max-
ima during sitting.

Picardi et al.,
2020 [60]

Longitudinal study. Traditional 3-meter TUG in people with
PD. The sensor on the lower back. Seg-
mentation into five phases: Standing, Go
walking, 3-meter turning, Return walk-
ing and Sitting.

Segmentation using
the morphology of
the acceleration signal
with the algorithm of
Mellone et al. [35].

Spatiotemporal gait pa-
rameters. Statistical de-
scriptors of angular veloc-
ity by sub-phase. Total du-
ration of iTUG. Duration
per sub-phase of iTUG.

iTUG measurements ob-
tained from trunk angular
velocity during the turning
and standing phases are
adequate measures of
dynamic balance in Parkin-
son’s disease, and these
measurements respond to
rehabilitation, being able
to detect improvement in
patients after treatment.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Nguyen et al.,
2015 [61]

Exploratory study. Extended 5-meter TUG and 10-meter
TUG in elderlies. 17 IMUs in each
body segment. Segmentation into six
phases: Standing, Go walking, 3-meter
turning, Return walking, Pre-sitting
turning, Sitting.

Algorithm developed by
the same research team.

36 features: Spatiotempo-
ral gait parameters. Statis-
tical descriptors of angular
velocity by sub-phase. To-
tal duration of iTUG. Dura-
tion per sub-phase of iTUG.
Joint mobility ranges by
iTUG sub-phase.

The proposed algorithm al-
lows detecting and segment-
ing typical TUG activities
using inertial sensors.

Nguyen et al.,
2017 [11]

Exploratory study. Extended 5-meter TUG and 10-meter
TUG in eldelries. 17 IMUs in each
body segment. Segmentation into six
phases: Standing, Go walking, 3-meter
turning, Return walking, Pre-sitting
turning, Sitting.

Algorithm developed by
the same research team.

Spatial gait parameters:
number of steps during
walking and turning. Sta-
tistical descriptors of accel-
eration by sub-phase. Sta-
tistical descriptors of angu-
lar velocity by sub-phase.
Joint mobility ranges by
sub-phase of iTUG.

The transferability of the
segmentation methodology
to Parkinson’s patients
is demonstrated, using
only 4 of the 17 initially
predisposed sensors.

Najafi et al.,
2013 [62]

Exploratory study. Traditional procedure of the 3-meter
TUG procedure in elderlies with periph-
eral neuropathy and diabetes with vi-
sual tasks. Sensor on thorax. Segmen-
tation into five phases: Standing, Go
walking, 3-meter turning, Return walk-
ing and Sitting.

Evaluation of postural tran-
sitions through accelerom-
eter analysis. The algo-
rithm was developed by
the same research team.

Duration per sub-phase
of iTUG.

The proposed system can
identify and monitor pos-
tural transitions, accurately
identifying subjects with a
high RoF with potential use
in monitoring older adults
with diabetes.

Mirelman et al.,
2014 [63]

Cross-sectional study. Traditional 3-meter TUG in elderlies.
Sensor on the lower back. Segmentation
into five phases: Standing, Go walking,
3-meter turning, Return walking, Sitting.

Segmentation using the
morphology of the acceler-
ation and angular velocity
signal with the algorithm
of Weiss et al. [33].

Duration per sub-phase
of iTUG.

Using a single sensor on the
back during TUG can quan-
tify mobility, facilitating the
understanding of problems
related to cognitive decline.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Mariani et al.,
2013 [64]

Exploratory study. Traditional 3-meter TUG in people with
PD. IMU on the instep of the foot. Seg-
mentation into three phases: Go walking,
3-meter turning, Return walking.

Segmentation using angu-
lar velocity signals and
accelerations. The algo-
rithm was developed by
the same research team.

Duration per sub-phase of
iTUG. Spatiotemporal gait
parameters: step number
and gait velocity.

All the sub-phases of the
test could be detected in the
control groups, with medi-
cation and without medica-
tion. Variations of the mea-
sured gait characteristics are
observed, where the tempo-
ral variables are the most im-
portant within the TUG test.

Frenken et al.,
2013 [24]

Experimental study. Traditional 3-meter TUG in elderlies. No
sensors on the participants. aTUG (ambi-
ent TUG) chair integrated with environ-
mental sensors, four force sensors and
an optical laser. Segmentation into fivex
phases: Standing, Go walking, 3-meter
turning, Return walking, Sitting.

Algorithm developed by
the same research team.

Statistical descriptors of de-
grees of orientation and
inclination by sub-phase.
Duration per sub-phase
of iTUG.

The proposed method is
able to accurately compute
the duration of the TUG
components using only the
force sensors and the laser
range scanner.

Gerhardy et al.,
2019 [65]

Cross-sectional study. Traditional procedure of the 3-meter
TUG procedure in elderlies. The sensor
is on lower back. Segmentation into five
phases: Standing, Go walking, 3-meter
turning, Return walking, Sitting.

Segmentation using
the morphology of
the acceleration signal
with the algorithm of
Mellone et al. [35].

Total duration of iTUG.
Duration per sub-phase
of iTUG.

Total TUG time was strongly
associated with vestibular
and somatosensory system
performance.

Weiss et al., 2013
[33]

Cohort study. Traditional 3-meter TUG in elderlies.
Sensor on the lower back. Segmentation
into five phases: Standing, Go walking,
3-meter turning, Return walking, Sitting.

Segmentation using accel-
eration and angular ve-
locity signals with algo-
rithms developed by the
same team [66].

Spatio temporal gait pa-
rameters: Stride speed,
stride length, swing width,
stride length. Statistical
descriptors of degrees of
orientation and inclination
by sub-phase of rotation.
Duration per sub-phase
of iTUG.

People with mobility impair-
ments have problems in the
five sub-phases of TUG.
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Table 3. Cont.

Author Methods iTUG Implementation Segmentation Features Main Results

Weiss et al., 2016
[67]

Cohort study. Traditional 3-meter TUG in elderlies
with dementia. The sensor on the
lower back. Segmentation into six
phases: Standing, Go walking, 3-meter
turning, Return walking, Pre-sitting
turning, Sitting.

Segmentation using accel-
eration and angular ve-
locity signals with algo-
rithms developed by the
same team [66].

Total duration of iTUG.
Duration per sub-phase
of iTUG.

Longer separations between
the movements of the sub-
phases and a longer over-
lap between turning and
the stand-to-sit sub-phase
are related to poorer cogni-
tive and motor function and
greater disability.

Williams et al.,
2021 [21]

Cross-sectional study. Traditional 3-meter TUG in elderlies
with dementia. The sensor is on the
lower back. Do not specify level
of segmentation.

Segmentation using
angular velocity sig-
nals and accelerations
with the algorithm of
Walgaard et al. [56].

Statistical descriptors
of angular velocity
by sub-phase.

The sensor and its algo-
rithms were able to quantify
the sub-phases of iTUG and
demonstrate that age mod-
erates differences in the per-
formance of iTUG and its in-
formal caregivers.

Yu et al.,
2021 [68]

Descriptive study. Traditional procedure of the 3-meter
TUG procedure in communitary elder-
lies. Sensor on the lower back. Seg-
mentation into five phases: Standing,
Go walking, 3-meter turning, Return
walking, Sitting.

Segmentation using
acceleration and an-
gular velocity signals
with algorithms from
Weiss et al. [33].

Statistical descriptors of
acceleration by sub-phase.
Statistical descriptors of
angular velocity by sub-
phase. Statistical descrip-
tors of degrees of ori-
entation and inclination
by sub-phase.

The proposal is a reliable op-
tion for objective, unsuper-
vised and unobtrusive bal-
ance measurement in a clini-
cal or home setting.
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Author Methods iTUG Implementation Segmentation Features Main Results

Zarzeczny et al.,
2017 [69]

Cross-sectional study. Traditional procedure of the 3-meter
TUG procedure in elderlies with visual
tasks. Sensor on the lower back at L4–L5.
Segmentation into six phases: Stand-
ing, Go walking, 3-meter turning, Return
walking, Pre-sitting turning, Sitting.

BTS G-Studio proprietary
algorithm.

Statistical descriptors of
acceleration by sub-phase.
Statistical descriptors of
angular velocity by sub-
phase. Statistical descrip-
tors of degrees of ori-
entation and inclination
by sub-phase.

The performance of the
functional tests is more
dependent on the range
of force developed than
the maximum isometric
force of the muscles of the
lower extremities during
acceleration when sitting
is measured.

PD = Parkinson’s Disease; TUG = Timed Up and Go; FSR = Force Resistive Sensor; iTUG = Instrumented Timed Up and Go; CBMS = Community Balance and Mobility Scale;
IMU = Inertial Measurement Unit; PD = Parkinson’s Disease; RMS = Root Mean Square; AP = Antero-posterior; RoF = Risk of Falls; ABC Scale = Activities-specific Balance Confidence
Scale; iNPH = Idiopathic normal pressure hydrocephalus.
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3.1. Characteristics of the Participants

From the selected studies, it can be observed that most participants were elderlies
without health issues [24,33,34,39,42,43,48,50,58,59,61,63,65,67]. In only four studies, they
were described as community elderlies [32,36,41,68], and in only one of them, they were de-
scribed as residence elderlies [69]. Thirteen studies included participants with a diagnosis of
PD [11,18,31,40,44,45,49,55,57,60,64,70] and only one of them with a diagnosis of stroke [13].

In addition, seven studies included participants with other pathologies, such as hip
arthroplasty [23], possible “idiopathic normal pressure hydrocephalus (iNPH) [46], frailty
index greater than 3.9 according to the Fried scale [52–54], neuropathy peripheral [62]
and dementia [21]. Table 4 shows the studies according to the participant characteristics,
diagnosis and the total number of participants.

Table 4. Participants of the selected studies.

Subjects Studies Participants

Elderlies [24,33,34,39,42,43,48,50,58,59,61,63,65,67] 14 2448

Community elderlies [32,36,41,68] 4 521

Residence elderlies [69] 1 26

PD [11,18,31,40,44,45,49,55,57,60,64,70] 13 426

People with stroke [13] 1 35

Elderlies with other pathology [21,23,46,52–54,62] 7 376

Total 40 3822
PD = Parkinson’s disease.

According to the eligibility criteria, the age of the participants had to be greater than or
equal to 65 years (see Figure 3), and the distribution by gender mostly showed a tendency
to a greater number of women than men. Figure 4 illustrates these tendencies.

Figure 3. Distribution of the selected study participant’s ages, indicating the participant’s condition
and the predominant general age range. In the participant’s condition plot, the “Other” category
means elderlies with dementia, hip arthroplasty, diabetes and frail syndrome.

3.2. Methodological Design of the Selected Studies

The selected studies vary in the type of study design; although the level of evi-
dence declared no methodological limitations, it can be seen in Table 5 that the pre-
dominant methodological designs were cross-sectional [21,32,44,52–55,63,65,69] and ex-
ploratory studies [11,18,41,45,46,48,50,61,62,64], with ten articles each, followed by cohort
studies [33,36,67,70], with four articles. A smaller number of studies were experimen-
tal [22,24,31], with three articles, and descriptive [34,68], cross-sectional [43,59], prospec-
tive [23,49] and longitudinal [58,60], with two articles each. Finally, there were observed
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studies with case-control [42], clinical-randomized [39], and pilot [37] methodologies, with
one article each. Finally, two articles did not mention the type of study [40,57].

Figure 4. Proportion in percentages of the participants by sex from the studies selected.

Table 5. Type of studies reviewed.

Type of Study Studies

Cross-sectional [21,32,44,52–55,63,65,69] 10

Exploratory [11,18,41,45,46,48,50,61,62,64] 10

Cohort [33,36,67,70] 4

Clinical-Experimental [22,24,31] 3

Descriptive [34,68] 2

Transversal [43,59] 2

Prospective [23,49] 2

Longitudinal [58,60] 2

case-control [42] 1

Clinical-Randomized [39] 1

Pilot [37] 1

Not mentioned [40,57] 2

Total 40

3.3. Types of Technology, Procedure and Instrumentation Used in the Timed Up and Go Tests

The iTUG test has been defined as the use of inertial sensors to achieve the segmenta-
tion of the test and extract characteristics from the identified sub-phases [20,45]. However,
in this review, different technological proposals were found. Table 6 shows the number of
studies by type of technology used to implement the TUG.



Sensors 2023, 23, 3426 20 of 31

Table 6. Technologies and sensors used for iTUG.

Technology Studies

Insoles [22,31,37] 3

Smartphone [32,34,36,46,48,52–54,65] 9

Inertial Sensors [11,18,21,33,39–45,49,55,58–64,67–70] 24

Opto–electronic System [23,55] 2

Xbox Kinect [57] 1

Instrumented Chair [24,50] 2

Several proposals use inertial sensors for the instrumentation of the test [11,18,21,
33,39–45,49,55,58–64,67–70]. Most of the studies use commercial sensors such as the G-
Sensor, BTS G Walk® (BTS Bioengineering, Lombardia, Italy) [39–43,69], whose inertial
unit consists of a sensor with a tri-axial accelerometer and a tri-axial gyroscope, with a
maximum sampling frequency of 1000 Hz. Other commercial sensors used include the Opal
Sensor (APDM wearable technologies, Portland, OR, USA) [39,59], MTX XSens sensors
(49A33G15, Xsens, Enschede, the Netherlands) [44,45,49], Dynaport sensor (McRoberts
technologies, the Hague, the Netherlands) [18,33,55,63,67], which integrates a tri-axial
accelerometer and gyroscope with a sampling frequency of 100 Hz, Shimmer inertial
sensor (Shimmer technologies, Dublin, Ireland) [58], LEGSys and BalanSens (BioSensics,
Boston, MA, USA) [70], mHT (mHealth Technologies, Bologna, Italy) [60,65], PAMSys
inertial sensor (Biosensics, Newton, MA, USA) [62] and the tri-axial inertial sensor (Balance
THETAmetrix, Portsmouth, UK) [21].

On the other hand, some studies mention the use of up to 17 measurement units [11,61],
being able to acquire data from each body segment during iTUG. Other studies propose
the use of six sensors, one in the sternum, one in L3, two in both hips and two in both
thighs [59], or located in L5, two in the front part of the leg below the knee, two in the
lateral part of the arm and one in the sternum [45]. However, most studies propose the
use of a single sensor that is generally located between the lower back between L4 and S1,
depending on the protocol used by the investigators [18,21,33,40–43,55,63,67–69].

Regarding the use of smartphone inertial sensors as technology for iTUG, four studies
mention the use of the iPhone 4 smartphone (Apple Inc., Cupertino, CA, USA), located at
the lower back [34] and on the sternum [52–54]. Two studies used Samsung Galaxy smart-
phones [46,48] located on the lower back. Another study used a Huawei P8 smartphone
(Huawei, Shenzhen, China) positioned on the lower back [32].

On the other hand, three studies included the use of insoles, two of which considered
an insole with 4 FSR (force-sensing resistors), which were positioned to measure the
distribution of force in the foot. Two FSRs were positioned on the heel, one medial and
one lateral, and the other two were located on the first and fifth metatarsals approximately,
in conjunction with a 3D accelerometer attached to the foot [22,31]. A single study included
the eSHOE insole system, which consists of a pair of orthopedic insoles that includes
tri-axial accelerometers, tri-axial magnetometers, and a tri-axial gyroscope, as well as a
pressure sensor on the greater toe, first and fifth metatarsal heads [37]. Two studies have
incorporated the use of a sensorized chair called aTUG (ambiental Timed Up and Go),
which considers an integrated chair with environmental sensors, four force sensors and a
laser bar [24,50].

As mentioned above, the iTUG allows the segmentation of the TUG test into different
sub-phases related to the activities that the participants must perform when executing
the test. In the included literature, differences have been found regarding the number of
sub-phases described in the segmentation. Some proposals have included the segmentation
into three sub-phases, which consider the activities sit to stand, walk and stand to sit [31]
or standing, forward walking and turning [39]. On the other hand, segmentation proposals
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have been found in four sub-phases that, in general, analyze the phases sit to stand, walk,
180º turn, and stand to sit [23,33,34,41,63,64,70]. However, segmentation proposals differ at
the moment when a transition or transfer is initiated, for example, sub-phases have been
described as sit-to-walk, walk, first turn [32,36] and turn to sit [32,33,36], or considering the
last sub-phase directly from walking to sitting [55]. Likewise, five sub-phase segmentation
proposals have been found, which describe sit-to-stand, walk-to-stand, turn, walk-to-sit
and sit [24,52–54,68]. In the other five sub-phase proposals, differences have been found
in the last phase of TUG, also describing the turn-to-sit phase [34,62,65]. On the other
hand, the segmentation into six sub-phases of TUG considers sit-to-stand, forward gait,
180° turn, backward gait, turn, and stand-to-sit [11,18,40,43,46,50,61,69]. A single study
proposes segmentation into the following phases: sit-to-stand, gait, turn, stand-to-sit,
the full duration of the last turn to sit, the interval between the end of the last turn and the
start of the stand-to-sit sub-phase [67].

Podsiadlo et al. [12] indicated that the standard procedure of TUG is that the user
must stay sit in a chair without armrests, stand up from the chair, walk forward a dis-
tance of 3 m, turn around a mark or cone in the three meters, walk back and sit down
on the chair. Most of the studies used the conventional procedure described previ-
ously [18,21–24,31–33,36,37,40,41,44,46,48,50,55,58,59,62–65,67–70]. However, some pro-
posals used the extended versions of TUG with a distance of 5 m [11,61], 7 m [43–45,49] and
10 m [11,52–54,61], maintaining the same activities requested in the 3-meter TUG. In addi-
tion, proposals include traditional TUG plus dual tasks during its execution [39,42]. Lastly,
only one study used a 2-meter TUG proposal [57].

3.4. Algorithmic Procedures for Segmentation and Extraction of iTUG Features

One objective of the instrumentation of clinical trials is to obtain augmented informa-
tion that allows automating the evaluation, complementing the evaluation results with
quantifiable information. In general, the iTUG allows to extract information from different
sub-phases or postural transfers, through a process called segmentation.

In this review, different segmentation proposals have been found using rule based
algorithms—that used the patterns of the acceleration and angular velocity signals—and,
in some cases, machine learning tools for the identification of postural transitions. Table 7
presents a summary of the algorithms used in the included studies and their characteristics.

A large number of algorithms have been proposed for the analysis of iTUG, corre-
sponding to 27 studies that use rule-based algorithms for the automatic segmentation of
iTUG, 1 algorithm that is based on Machine Learning, 9 that use segmentation strategies
developed by companies such as BTS G-Studio and APDM Mobility Lab and two stud-
ies that did not propose segmentation strategies. This could be explained byanalyzing
pre-established movement patterns for the iTUG sub-phases, where rule-based algorithms
perform well. All these algorithms implement the segmentation after the execution of the
test and not in real-time.

Seven studies used the algorithm of Weiss et al. [33], being the most applied algorithm
for the segmentation of iTUG using inertial sensors on the lower back. Five studies used
the BTS G-Studio platform, which also uses a segmentation strategy with a single sensor
located in the lower back. Four studies use the APDM Mobility Lab system. It is unclear
from the studies which segmentation strategy is used, since inertial sensors can be located
in up to six different body segments in combination to perform the segmentation process.
Three studies used the Mellone et al. algorithm [35], being the preferred algorithm for
iTUG segmentation when the technological base consists of inertial sensors of smartphones
located on the upper thorax. Three studies used the algorithm of Walgaard et al. [56], which,
in addition to using the information on the acceleration and angular velocity of the back,
uses spatial orientation data (inclination and rotation) to determine postural transitions.
Three studies used the Salarian et al. algorithm [47] to determine postural transitions from
waist accelerometry and waist angular velocity.
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Table 7. Algorithms for iTUG segmentation identified from the selected studies.

Author Proposal Inputs Transitions Studies

Ayena et al. [31] Rule-based. Tri-axial foot accelerations.
Plantar pressures.

S2W, W2S. 2

Weiss et al. [33] Rule-based. Tri-axial lower back accelerations and tri-axial lower back angular velocities St, S2W, W2T, T2W, W2T, T2S, Si. 7

Mellone et al. [35] Rule-based. Tri-axial chest accelerations. St, S2W, W2T, T2W, W2T, Si. 3

Holzreiter et al. [38] Machine Learning. On-body reflective infrared marker’s coordinates. St, S2W, W2T, T2W, W2T, Si. 1

APDM Mobility Lab. Propietary. Tri-axial accelerations and tri-axial angular velocities from both wrists,
shanks, lower back and/or chest.

St, S2W, W2T, T2W, W2T, T2S, Si. 4

BTS G-Studio. Propietary. Tri-axial lower back accelerations and tri-axial lower back angular velocities. St, S2W, W2T, T2W, W2T, T2S, Si. 5

Silva et al. [48] Rule-based. Tri-axial thigh angular velocities. St, S2W, W2T. 1

Salarian et al. [19] Rule-based. Tri-axial waist accelerations and tri-axial waist angular velocities. St, S2W, W2T, T2W, W2T, T2S, Si. 3

Nguyen et al. [11] Rule-based. Tri-axial lower back accelerations and tri-axial lower back angular velocities. St, S2W, W2T, T2W, W2T, T2S, Si. 3

Bayea et al. [51] Rule-based. Tri-axial upper body accelerations.
Tri-axial upper body angular velocities.

St, S2W, W2T, T2W, W2T, T2S, Si. 1

Walgaard et al. [56] Rule-based. Tri-axial lower back accelerations.
Tri-axial lower back angular velocities.
Displacements and angles of lower back and feet.

St, S2W, W2T, T2W, W2T, T2S, Si. 3

Tan et al. [57] Rule-based. Kinect video. St, S2W, W2T, T2W, W2T, T2S, Si. 1

Najafi et al. [62] Rule-based. Tri-axial chest accelerations.
Tri-axial chest angular velocities.

St, S2W, W2T, T2W, W2T, T2S, Si. 1

Mariani et al. [64] Rule-based. Tri-axial foot accelerations.
Tri-axial foot angular velocities.

W2T, T2W. 1

Frenken et al. [24] Rule-based. Pressure sensors on chair.
Light laser distance.

St, S2W, W2T, T2W, W2T, Si. 1

St = Standing, S2W = Sit-to-Walk, W2T = Walk-to-Turn, T2W = Turn-to-Walk, W2T = Walk-to-Turn, T2S = Turn-to-Sit, and Si = Sitting.
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Other studies that use information from inertial sensors to automatically identify
postural transitions differ from previous proposals with respect to the sensor’s location—
see Silva et al. for the thigh [48], Beyea et al. for the upper body [51], Najafi et al. for the
chest [62] and Mariani et al. for the foot [64].

Regarding studies that use other technologies for the instrumentation of TUG, they
use algorithms created by the same authors, such as Ayena et al. [31] for acceleration and
foot pressure sensors, Tan et al. [57] for Kinect video, Frenken et al. [24] for environmental
sensors (chair with pressure sensors and laser) and Holzreiter et al. [38] for coordinates
of infrared markers for motion capture, the latter being the only one that uses Machine
Learning strategies for the automatic identification of postural transitions.

Finally, it can be observed that nine segmentation strategies automatically identify
seven postural transitions, which allowed twenty-eight studies to segment iTUG into the
six main sub-phases (standing, go walking, first turn, return walking, pre-sitting turn
and sitting). Three segmentation strategies only identified six postural transitions, which
allowed five studies to segment iTUG into five sub-phases, combining the pre-sitting turn
and sitting stage in a single sub-phase. Ayena et al. [31] segmented TUG into two postural
transitions, allowing the identification of the sub-phases of standing, walking and sitting of
the TUG test. Silva et al. [48] only used their segmentation strategy to identify the postural
transitions of the first half of the test (before the return march), which, however, can be
replicated for the return stage. Mariani et al. [64] only identified the turning sub-phases of
the TUG.

3.5. Features Extracted from iTUG

Although the first stage of the iTUG analysis begins with the segmentation of the
sub-phases or identification of the postural transitions, different methodologies can then
extract characteristics, indices or parameters that characterize them quantitatively and
objectively. Table 8 summarizes the characteristics used in the reviewed articles.

Table 8. Main features extracted from the selected studies.

Feature Relevant Parameters Studies

Total iTUG duration. Clinical Score. 19

Duration per sub-phase of
iTUG.

Standing, walking (go and return), turning
(3-meter and pre-sitting), sitting.

23

Spatiotemporal gait parameters. Cadence, stride time, step time, stride
length, step length, gait velocity, number
of steps, double support time, stride time
variability, gait index variability.

20

Statistical descriptors in the
acceleration time domain
by sub-phase.

Maximum value, minimum value, mean,
standard deviation, kurtosis, root mean
square value, entropy.

9

Statistical descriptors in the
time domain of angular velocity
by sub-phase.

Maximum value, minimum value, mean,
standard deviation, kurtosis, root mean
square value, entropy.

17

Statistical descriptors in time do-
main of mobility ranges in de-
grees per sub-phase.

Main joints measured: thorax (chest or ster-
num), cervical (C7), lumbar (L4–L5), pelvis.

14

Acceleration frequency domain
descriptors per sub-phase.

Fast Fourier transform. 2

iTUG = Instrumented Timed Up and Go.
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As indicated in Table 8, 23 studies use the duration parameters of each sub-phase of
the segmented TUG, being the most used characteristic in studies for the characterization
of elderly populations, intervention strategies and application of risk prediction tools.
The gait sub-phase is the most analyzed, with 20 studies that extract and use gait cycle
spatiotemporal parameters. Moreover, 19 studies used the total time of the test as a
predictor of the risk of falls, 17 studies used statistical characteristics in the time domain
of the angular velocity and 9 studies used statistical characteristics in the time domain
of the acceleration, since the latter is more used to establish the patterns of postural
transitions in segmentation algorithms and estimation of spatiotemporal gait parameters.
Fourteen studies used statistical descriptors of mobility ranges or spatial orientation of
body segments, where the thoracic, cervical, lumbar and pelvic segments were the most
used. Two studies used statistical properties of acceleration from its Fourier transform,
being the least used.

3.6. Main Clinical Results from the Selected Studies

In this section, the main results provided by the articles included in this review will
be presented; the information will be organized by the type of participant included in the
study, described in Table 4.

In elderlies without associated pathologies, it has been shown that iTUG, through
the different technological proposals, allows extracting characteristics automatically, pro-
viding significant information on the temporal and velocity variables of each sub-phase,
allowing the identification of groups with big or low RoF [34,43,48]. In addition, it al-
lows to evaluate responses to the different treatments for improving balance, cognition
and performance in dual tasks [39]. Furthermore, it can be combined with rating scales and
allows to identification sub-clinical gait impairments [33,42]. On the other hand, it allows
objectively and quickly identifying postural transitions during iTUG, analyzing sensory
deficits and assessing the performance of the vestibular and somatosensory system [50,65].

iTUG and its segmentation allow characterizing the main sub-phases, identifying
alterations in its execution in elderlies, such as the specific performance of people in the
pre-sitting turning and sitting sub-phases, and relating it to other variables, such as cog-
nitive and motor function [21,63,67]. Furthermore, iTUG combined machine learning
algorithms, such as linear regression models [58,59] and other algorithms [24,61], identify-
ing the decrease in the balance of highly functional elderlies, with a precision of 70% and a
relationship of 80% for the identification of poor balance in tests performed one year later
using one or more arrays of inertial sensors [58,59,61].

In community elderlies, it was shown that iTUG has adequate precision when com-
pared with tests and community clinical assessment scales, suggesting that iTUG is a fast,
economical tool, easy to administer in person or remotely [32], allowing it to be a reliable
option for objective, unsupervised and unobtrusive measurement of balance in the clinical
setting or at home [68]. In addition, it has been used to determine the functional decline as-
sociated with aging and determine specific differences in sub-phases related to gender [36],
in the relationship between motor functioning and global cognitive function [41] and in
residence contexts, where a study was able to correlate features of some sub-phases with
the age of the participants [69].

In elderlies with PD, some studies have shown that an instrumented insole with FRS
located on the heel and toes with a reduced number of sensors may be sufficient to estimate
the risk index for falls during walking, being able to calculate the variation in gait and
balance parameters [22,31]. Furthermore, it has been shown that it is possible to reduce the
number of inertial sensors from 17 to 4 to achieve test segmentation [11]. On the other hand,
in elderlies with stroke, the use of instrumented insoles in rehabilitation was evaluated,
being capable of measuring the level of gait and TUG, providing details in the movement
analysis [37].
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The iTUG test can also be used in clinical practice to assess the effects of pharmacology
and physical therapy in people with PD, such as the effects that L-Dopa may have on gait
parameters and freezing on gait (FOG), as well as quantify and measure FOG [40,44].

On the other hand, studies indicated that iTUG could be correlated with scores from
different balance and gait scales, demonstrating that an instrumented scale can reveal
deficits in turnings of people with PD (severe and mild), as well as instrumentation in
stages with or without medication making it possible to predict falls [45,49].

Another study determined the intra-rater, inter-rater, and test-retest reliability of
iTUG in people with PD, proving excellent to good for the total duration and turning
durations [18].

Regarding variables identified for people with PD through the instrumentation of
TUG, studies explored gait speed in the clinic and home and the execution of iTUG at a
fast speed, demonstrating that the related parameters during walking and turning showed
strong correlations with the stage of the disease and that the application of the iTUG
procedure at a fast speed allows the identification of movement deficits in mild to moderate
stages, while the correlation in the parameters of the standing and sitting phases could
determine the level of automation of the movements and the kinematic parameters of iTUG
can have the potential to reflect functioning in movement execution [55,70].

On the other hand, iTUG measurements obtained from trunk angular velocity during
the turning and standing phases adequately reflect dynamic balance in people with PD [60].
In the study carried out with the mTUG through the Kinectic system for Xbox One, it was
possible to determine that the length of the first step can be significantly associated with
the motor analysis scale implemented [57].

In addition, another study detected four phases of the test in groups of people with PD
with and without medication through the use of sensors in the shoe during the execution
of iTUG, where temporal variables proved to be the most relevant ones [64].

Finally, it has been found that iTUG is useful to analyze the gait patterns during
the execution of the test applicable to healthy elderlies or with different gait disorders
analyzing the correlations of the go and return sub-phases [23,46]. In elderlies with a frailty
index greater than 3.95 according to the Fried scale, it was possible to observe that there
are differences in acceleration signals and angular velocities of the trunk, allowing a more
sensitive differentiation between frail and non-frail groups than only the TUG duration
variable, which is traditionally used [52–54]. In elderlies with peripheral neuropathy and
diabetes, the iTUG test allows them to identify and monitor postural transitions [62].

4. Discussion

The TUG test is a common tool for assessing mobility and fall risk in older adults
that uses the time to identify from a global perspective the RoF; however, it is not able,
in general, to incorporate the information of each sub-task performed in the evaluation,
such as standing, walking, turning and sitting. The iTUG is a modified version of TUG
that incorporates wearable sensors to capture additional objective data about gait, balance
and other factors that may contribute to RoF.

This systematic review aimed to examine the currently existing evidence on the
segmentation and analysis proposals of iTUG, the type of technologies used, the variables
acquired and how these measures allow the specific detection of impairments in older
adults with or without associated pathologies.

Previous systematic reviews related to the traditional TUG have been found that
account for the different uses of the test alone. On the one hand, there are reviews in
which TUG has been included as an assessment tool to identify changes in therapeutic
interventions [28] and as an instrument to measure RoF [2,5], showing the applicability
of the test in different clinical contexts. On the other hand, reviews were found that were
related to different psychometric properties of the traditional TUG in different populations
and with good reliability and validity values [25–27], showing that TUG has stable relative
sensitivity when applied to older people in community settings [5], excellent intra-rater
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and inter-rater reliability and good construct validity, and is sufficiently sensitive to detect
small changes in basic functional mobility after stroke [16] and adequate reliability and
validity in people with PD [25].

However, it has been shown to have limited ability to predict falls in older people at
high risk [8], as well as inconclusive results in its ability to predict falls after stroke [16].
It has been recommended that its application with other RoF measurement tools could
increase its predictive value [5]. It has also been mentioned that its predictive value
increases when instrumented (iTUG) [8,25]. In addition, we found a systematic review
that addresses the instrumentation through the use of inertial sensors of different scales
used to measure the risk of falls, including TUG, whose results account for the different
characteristics extracted, the positioning of the sensors and the predictive value of each of
them on the risk of falls [71]. However, to our knowledge, no similar systematic reviews
have been found addressing the specific outcomes described in the present review using
iTUG. These results are consistent with what was found in the present review, pointing
out the high number of characteristics and parameters that can be obtained through the
use of technologies. It is important to highlight that although TUG has shown different
conclusions regarding its psychometric properties [4,16,25] both in older people and in
people with stroke and PD, it is a tool that is still considered in clinical guidelines, and is
commonly used, probably because of its easy implementation and because it requires little
equipment [4,8].

The results of this review show the wide variety of devices used for TUG instrumenta-
tion, the type of procedure used, the characteristics of the population and the parameters
that can be obtained from it. It demonstrates that all iTUG proposals, to a greater or lesser
extent, allow the extraction of characteristics and variables of the subject’s performance
during the procedure, increasing the test’s objectivity and providing additional values to
the total time.

During the review, several technological proposals for TUG instrumentation were iden-
tified. However, the largest number of proposals include the use of inertial
sensors [11,18,21,32,33,37,39,46,52–55,59–61,63–65,67–70]. Most proposals used a single
sensor on the lower back, which has been shown to identify specific spatiotemporal charac-
teristics, biomechanical elements of the pelvis and gait events during the execution of TUG,
since it is close to the center of gravity [72–74]. This is important since the reduced use of
sensors simplifies the implementation of iTUG in clinical settings.

On the other hand, it is important to highlight that extended versions of TUG were
found at 5 [11,61], 7 [43–45,49], and 10 meters [11,52–54,61], delivering more information
about gait characteristics together with the features extracted from the different transitions.
It has been reported that iTUG using inertial sensors in its extended 7-meter version for
people with stroke has shown excellent test-retest reliability [75]. However, it is important
to consider new RoF labels for different populations, since most studies have analyzed the
psychometric properties of the 3-meter version.

The different segmentation proposals allow researchers and clinicians to select TUG
sub-phases according to their desired measurement objectives, which have provided a
better analysis of TUG performance, increasing its predictive value. It is interesting to note
that the segmentation of six sub-phases allows the identification of the last turn and the
final stand phase before sitting. With this number of phases, it is possible to identify specific
problems in elderlies with balance or sensory impairments, or the use of compensatory
strategies [11,18,40,43,46,50,61,67,69].

The variables obtained by iTUG can be analyzed from a clinical point of view and
how this information contributes to therapeutic decisions within the rehabilitation process.
For example, in people with PD, it has been shown that they present alterations in the
turning sub-phases, mainly associated with freezing [44]. The analysis of turning during
iTUG segmentation allows healthy subjects to be differentiated from people with different
pathologies so that the variables that can be analyzed during the turn not only provide
information on the effects of aging [13]. This is of great clinical relevance, since iTUG could
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diagnose certain impairments or dysfunctions that lead to a loss of functional capacity
and early implementation of rehabilitation strategies. Furthermore, people with advanced
Parkinson’s disease have longer performance times in the non-instrumented TUG [76].
Still, the use of iTUG has made it possible to identify at different stages of the disease the
variables in each of the sub-phases that are most altered, thus increasing its sensitivity
in early stages [19]. Even the turning variables during iTUG execution are much more
important in the case of pathologies that consider asymmetry during gait, as in people with
stroke and PD [13].

The variables obtained with iTUG related to trunk movement could be clinically
important for people with stroke since, in people with hemiparesis, it has been reported
that those subjects who have experienced one or more falls present a greater sway of the
center of mass in mediolateral and anteroposterior directions than those subjects who have
not experienced falls. In addition, they present a longer duration in performing the sitting
sub-phase when standing during the non-instrumented TUG. This time has been reported
as an indicator of RoF [77].

The instrumentation of TUG not only allows observing more variables than just the
total time of execution of the test, but also allows identifying the existing problems in each
sub-task, thus optimizing the planning of rehabilitation plans and their follow-up, both in
clinical and community contexts.

However, due to a large number of studies and their variability in designs, as well
as the diverse implementation strategies of iTUG used and the varied segmentation or
sub-stages identified, it is difficult to compare studies and extrapolate their findings to
clinical scenarios. In future studies, it may be considered to standardize an implementation
strategy based on the original protocol described by Podsiadlo for iTUG [12], as well as
analyzing the highest amount of segmentation (see Table 7). This would allow for identify-
ing more specific characteristics of the phases of sitting to standing, turning and standing
to sitting, or an extended version of iTUG that allows for more gait characteristics to
be extracted [43–45,52–54]. On the other hand, this review did not identify any studies
on the predictive validity of iTUG, which should be considered, since one of the major
problems presented by the traditional TUG is its low capacity to predict falls in some
populations [8,16]. Studies comparing and correlating iTUG with other clinical scales with
greater predictive value should also be conducted.

On the other hand, some methodological limitations of the articles included in this
systematic review are the diversity of study designs. However, differences are found
between analyzed populations, not only in terms of their features, but also in terms of
sample sizes, which could interfere with the extrapolation or generalization of the results.
The reviewed studies focus on the RoF analysis with iTUG in populations between 65 and
75 years old (see Figure 3). Future studies should include balanced samples of older adults
above 75, recognizing that mobility and static and dynamic balance change with aging.

This systematic review has some limitations. In the first place, only five databases
were searched (Pubmed, SciELO, IEEE, WOS and Elsevier), so we do not know if there is
evidence in other databases. Furthermore, the search only considered articles in English
and Spanish, and did not include other languages. Moreover, this review considers iTUG
in subjects over 65 years of age; therefore, evidence of the application of this test in other
age ranges or with other clinical tests that measure RoF was omitted. Furthermore, from a
methodological point of view, the wide variety of study designs included did not allow a
meta-analysis process to be performed; however, it was possible to incorporate the greatest
number of technological proposals used for TUG instrumentation, which allows us to meet
the aims of this review.

Finally, the results of this review show the possibility of increasing the predictive value
of TUG through instrumentation by providing a more significant number of characteristics
and parameters related to the subjects’ performance, allowing for objectively identifying
alterations associated with static and dynamic balance disorders. Furthermore, this instru-
mentation allows for the increased applicability of the test not only as a measurement tool,
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but also as a possible diagnostic or predictive tool for RoF, as well as continuous moni-
toring of users during the rehabilitation process and their reintegration into community
settings. The incorporation of technology or instrumentation could not only be applied to
TUG, but could also be incorporated into other assessment scales or tests, which, along
with the development of mobile applications and telemonitoring, could expand access
for users residing in remote areas and therapeutic teams that do not have all the tools
for implementing rehabilitation processes. This opens up the possibility of future lines of
research in the clinical validation processes of technological proposals in different contexts
and populations, the description of their psychometric properties and lines of technological
development and data processing.

5. Conclusions

The iTUG test provides objective evaluations and guides treatment, making it a
valuable tool for assessing the risk of falls in older adults. In this systematic review, the most
used technology was inertial sensors, and healthy elderlies and elderlies with Parkinson’s
disease were the most analyzed participants. The algorithm proposed by Weiss et al.
was the most used for automatic segmentation. The iTUG test offers an economical and
accessible alternative to increase the predictive value of the TUG test, identifying different
variables, and can be used in clinical, community and home settings. The review’s findings
highlight the potential benefits of incorporating technological approaches to increase the
predictive value of TUG and improve RoF assessments.
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