
Citation: Pérez, R.; Rivera, M.;

Salgueiro, Y.; Baier, C.R.; Wheeler, P.

Moving Microgrid Hierarchical

Control to an SDN-Based Kubernetes

Cluster: A Framework for Reliable

and Flexible Energy Distribution.

Sensors 2023, 23, 3395. https://

doi.org/10.3390/s23073395

Academic Editor: Chun Sing Lai

Received: 13 February 2023

Revised: 13 March 2023

Accepted: 18 March 2023

Published: 23 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Moving Microgrid Hierarchical Control to an SDN-Based
Kubernetes Cluster: A Framework for Reliable and Flexible
Energy Distribution
Ricardo Pérez 1 , Marco Rivera 2,3,* , Yamisleydi Salgueiro 4 , Carlos R. Baier 2 and Patrick Wheeler 3

1 Department of Computer Science, Faculty of Engineering, Universidad de Talca, Curicó 3341717, Chile;
riperez@utalca.cl

2 Department of Electrical Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3341717, Chile
3 Department of Electrical and Electronic Engineering, Faculty of Engineering, University of Nottingham,

Nottingham, NG7 2GT, UK
4 Department of Industrial Engineering, Faculty of Engineering, Universidad de Talca, Curicó 3341717, Chile
* Correspondence: marcoriv@utalca.cl or marco.rivera@nottingham.ac.uk

Abstract: Software Defined Networking (SDN) is a communication alternative to increase the scala-
bility and resilience of microgrid hierarchical control. The common architecture has a centralized and
monolithic topology, where the controller is highly susceptible to latency problems, resiliency, and
scalability issues. This paper proposes a novel and intelligent control network to improve the perfor-
mance of microgrid communications, solving the typical drawback of monolithic SDN controllers.
The SDN controller’s functionalities are segregated into microservices groups and distributed through
a bare-metal Kubernetes cluster. Results are presented from PLECS hardware in the loop simulation
to validate the seamless transition between standard hierarchical control to the SDN networked
microgrid. The microservices significantly impact the performance of the SDN controller, decreasing
the latency by 10.76% compared with a monolithic architecture. Furthermore, the proposed approach
demonstrates a 42.23% decrease in packet loss versus monolithic topologies and a 53.41% reduction
in recovery time during failures. Combining Kubernetes with SDN microservices can eliminate
the single point of failure in hierarchical control, improve application recovery time, and enhance
containerization benefits, including security and portability. This proposal represents a reference
framework for future edge computing and intelligent control approaches in networked microgrids.

Keywords: kubernetes; hierarchical control; microgrids; microservices; software defined networking

1. Introduction

Microgrid hierarchical control aims to regulate the network frequency and voltage
through collaborative work between distributed energy sources. This strategy has changed
the impact of distributed generation. However, it has imposed several challenges in power
control systems, especially those related to integrating power electronics, telecommu-
nications, fault monitoring, and security issues [1]. The trend of this strategy is to use
three levels of hierarchical control to standardize the microgrid’s operation and increase
its resilience.

The primary level regulates the network’s frequency and voltage, ensuring power-
sharing between the distributed generators (DGs) [2]. The most important approach is the
droop control [3], which is based on the droop features of a conventional generator. Droop
control ensures stability between frequency or active power (f − P) and voltage or reactive
power (V −Q). The secondary level stabilizes the voltage and frequency deviations due to
the output impedance decoupling, failures in power-sharing or the presence of circulating
currents [4]. At this level, sharing information in real time between the DGs and supporting
the stability of the most critical control variables within their nominal values is essential.

Sensors 2023, 23, 3395. https://doi.org/10.3390/s23073395 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23073395
https://doi.org/10.3390/s23073395
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9149-5074
https://orcid.org/0000-0002-4353-2088
https://orcid.org/0000-0002-1946-0053
https://orcid.org/0000-0002-1752-1625
https://orcid.org/0000-0003-0307-581X
https://doi.org/10.3390/s23073395
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23073395?type=check_update&version=3

Sensors 2023, 23, 3395 2 of 26

The literature provides evidence that integrates the power system with communica-
tions architectures in networked microgrids (NMG). For example, refs. [5–8] proposes a
two-level hierarchical control capable of regulating the active and reactive power sharing.
However, despite using a low-bandwidth communication system, the topology needed
to be more scalable due to the recent development of complex control algorithms. Previ-
ously reported research modified the communications architecture and control approach to
add new facility units and control algorithms [9]. Furthermore, conventional communi-
cations and routing protocols cannot handle multiple topology events and lack sufficient
intelligence to make appropriate control decisions [10].

Software Defined Networking (SDN) is a modern approach to networking that allows
for controlling and managing network resources and traffic flow through software abstrac-
tions [11]. SDN provides greater flexibility and scalability by decoupling the control and
data planes and enabling network administrators to configure and manage the topology
behavior. This leads to faster deployment times, improved network visibility, and easier
troubleshooting [12]. Additionally, it provides new opportunities for network automation,
real-time analytics, and increased security through granular policy enforcement. SDN
also promotes an open and interoperable network environment, enabling organizations to
utilize various vendor offerings and technology advancements.

The main limitation of SDN technology is the use of a centralized control plane and the
inconveniences associated with a single point of failure of this critical node. The centralized
control plane can potentially lead to network downtime if not properly managed. In [13–15],
the authors propose a set of systems that aim to solve the drawbacks of conventional SDN
technology. However, using a reliable communications strategy is still necessary to improve
the heterogeneous communication between different DGs according to the restrictions
defined by the architecture and control algorithms. On the other hand, the complexity
associated with multiple programming APIs within a monolithic controller requires a high
level of technical expertise and represents a significant challenge to network operations.
Despite these limitations, different researchers and organizations are allocating resources
toward modernizing their power systems and communication networks.

One promising approach is to distribute the functions of the SDN controller into
multiple microservices [16,17]. The goal is to implement these functions as distributed
units with a replication factor for redundancy. By doing so, the workload and resources
of the SDN controller are spread among different worker nodes. In the event of a fail-
ure, the data remains accessible through the microservice controller without requiring
manual intervention.

There is a wide variety of SDN controllers developed using different programming
languages [18,19], among which Ryu [20], Opendaylight [21], and ONOS [22] being the
most significant due to their capabilities, ease of deployment, and reliability. A study
in [17] explored the development of a microservices-based system for the Ryu controller
within the OpenStack virtualized network infrastructure [23]. However, despite dividing
the main functionalities of the Ryu controller into Docker containers, these microservices
cannot automatically scale in case of failure. In the case of a worker node failure, there
is no automatic method to restore the functions assigned to that element, impacting the
communication system and the microgrid’s performance. Although this approach offers
a fresh perspective on deploying SDN controllers, it must be noted that Ryu was not
originally designed to support microservices [24]. The previous drawback requires careful
testing of the architecture, services, and communication interfaces before implementation
in real-world environments.

µONOS is an SDN controller that uses microservices in large-scale communication
networks [25]. The ONOS Project presents µONOS as a solution for disaggregating the
functionalities of the SDN controller into microservices. This project aims to enhance the
versatility of the SDN architecture by targeting cloud computing platforms, data centers,
and bare-metal deployments. A bare-metal cluster removes the hypervisor overhead and
puts the Kubernetes installation directly on the host server’s operating system.

Sensors 2023, 23, 3395 3 of 26

An orchestrator that automates network management, load balancing, and new in-
stances provides an intelligent topology that uses microgrid resources efficiently. Com-
bining SDN with Kubernetes provides an intelligent system that analyzes traffic and
application requirements in real-time to adjust network configuration and application de-
ployment. Recent literature [26,27] suggests that although there are differences between this
proposal and artificial intelligence (AI), the communication alternative can also be classified
as intelligent because of SDN’s programmability and the system’s capacity to optimize
network performance. Kubernetes manages containerized applications’ orchestration and
deployment, while SDN manages the network infrastructure supporting those applications.
Together, they can dynamically respond to changes in traffic, adjust network policies, and
optimize network performance. For instance, when traffic surges, SDN can automatically
increase network resources by adding nodes or expanding bandwidth. Likewise, if an
application needs to be migrated, SDN can adapt the network routing to reduce recovery
time. Compared to traditional networking, which can be time-consuming and error-prone,
our proposal offers automated configuration and management that is not restricted to
specific conditions [28].

According to literature [29,30], the restrictions in the communications systems imposed
by the penetration of more distributed generation sources force the use of distributed,
autonomous and efficient communications strategies to control the power system efficiently.
Microgrids need bare-metal Kubernetes to ensure high reliability, low latency, and optimal
resource utilization [31], which are critical requirements for a microgrid’s efficient and safe
operation. Standby servers may provide low reliability and performance than a Kubernetes-
based infrastructure, especially in dynamic and changing load conditions. There are several
reasons to propose bare-metal Kubernetes for microgrids:

• Reliability [32]: Bare-metal Kubernetes provides a highly reliable infrastructure for
microgrids by distributing the workloads across multiple nodes and ensuring the high
availability of resources.

• Computational cost [33]: Low costs because virtualization software is no longer
necessary. Cluster automation and microservices deployment are straightforward
because there is no hypervisor.

• Low latency [34]: Microgrids require low latency and high-speed communication
between the devices to ensure safe and efficient operations. Bare-metal Kubernetes
provides low-latency network connectivity and efficient data communication.

• Optimal resource utilization [33,35]: Microgrids require optimal resource utilization
to ensure energy efficiency and reduce operational costs. Bare-metal Kubernetes
provides efficient resource allocation and utilization, which can help optimize energy
consumption and reduce costs.

• Scalability [36]: Network configuration is more straightforward on the bare-metal
cluster and troubleshooting. Microgrids require the ability to scale up or down de-
pending on the demand. Bare-metal Kubernetes provides automatic scaling and load
balancing, which can help ensure optimal performance under varying load conditions.

Despite the previous comments and the benefits of Kubernetes, there is no evidence of
SDN microservices being used to solve the disadvantages of microgrid hierarchical control.
Decoupling the applications from the monolithic controller into a series of sub-functions
enables the deployment of a highly flexible SDN architecture. The most critical impact of
this research is the ability to coordinate different applications as microservices and provide
the guidelines for programming APIs in microgrid hierarchical control.

This paper proposes a novel hierarchical control architecture based on microservices
to address the limitations of SDN controllers in networked microgrids. Implementing a
set of controllers as a distributed system in the Kubernetes bare-metal cluster increases the
redundancy and resilience of the communication system. The load is distributed among
various devices based on communication and power system restrictions. Rather than using
a monolithic controller, the controller functions are divided into a group of microservices.
The key contributions of this research are presented as follows.

Sensors 2023, 23, 3395 4 of 26

• A new architecture, based on microservices, as a solution to the centralized SDN con-
troller problem regarding load balancing, scalability, and low latency. The proposed
methods improve the global resilience of the system and allow the integration of
SDN controllers as pod services in distributed Kubernetes platforms. The proposed
approach allows the deployment of bare-metal Kubernetes cluster parameters and can
be applied to multiple configurations of AC/DC microgrids.

• A new SDN communication architecture has been developed for hardware-in-the-
loop platforms connected to Raspberry pi, serving as both a Kubernetes worker and
an OpenFlow communication device. Furthermore, this paper analyzes the most
significant drawbacks of the SDN control plane in networked microgrids.

• Provides a proof of concept to apply µONOS for segregating and orchestrating services
in bare-metal Kubernetes cluster. The proposed method decreases the data flow traffic
through the SDN infrastructure, setting the most appropriate route between the DGs.
The distributed communication system is capable of managing real-time energy data.

This implementation can be replicated and modified through our project’s GitHub
repository. Furthermore, it designs a monitoring tool integration that allows visualization
of logs and measures metrics to carry out a complete analysis of the networked microgrid.

The rest of this paper is organized as follows. Section 2 reviews the main limitations
of SDN controllers according to physical architecture, interfaces, reliability, and scalability.
Section 3 describes the development of hierarchical control of microgrids and the control
method applied. Section 4 provides the microservices benefits of SDN controller function-
alities disaggregation and our methodology. The implementation of the SDN controller
as a group of microservices is presented in detail in Section 5. The results and discussion
of the significance of our proposal are given in Section 6, according to different metrics.
On the other hand, Section 7 presents different communication failures and compares the
performance of the communication systems. Section 8 concludes the work and provides an
overview of future research topics.

2. Main Disadvantage of an SDN Controller

This section includes the fundamental disadvantages of SDN controllers, comparing
monolithic and centralized architectures versus microservices-based architectures. The
contrasted elements allow determining the most relevant metrics that mark the performance
of the SDN protocol. The scalability of the communications system proposed by SDN
integrated with Kubernetes allows the deployment of an intelligent DG architecture at a
reduced cost and increases the overall security through SDN controller functions.

Although Software Defined Networking has several benefits, it has certain limitations
that must be considered. Additionally, the security elements of SDN solutions are still
a concern, as the centralized control plane can be a target for cyberattacks. The most
significant drawbacks of SDN technology are summarized below.

2.1. Centralized Controller

The most widely used architecture for microgrid control uses a centralized SDN
controller as an intelligent element within the topology. However, critical aspects such as
latency, network convergence (less than 100 ms), reliability (close to 99%), and packet losses
must be managed carefully [37,38]. Achieving these properties is difficult in a centralized
control scheme, especially for a large topology, due to communication devices’ propagation
latency and processing time. In this way, centralized SDN controllers have significant
challenges, especially regarding scalability and reliability. Consequently, the controller
node becomes a key target for cyberattacks. If the information stored in the controller is
compromised, there is no way to recover it, resulting in a negative impact on the network
and economic losses. A possible alternative is to use distributed SDN controllers as stated
in [39,40].

Sensors 2023, 23, 3395 5 of 26

2.2. Monolithic Controller

Multiple SDN implementations adopt a centralized controller that relies on a mono-
lithic control plane architecture. All the possible functionalities are included in an extensive
control program, which needs to be flexible for changing topology conditions [17]. Con-
trollers often use a set of services from a pool, which can result in some services being
unused or restricted by the controller. This feature forces the replication of the entire control
implementation in the distributed architecture, which limits controller portability. As a
result, developers must carefully prepare the functionalities and ensure integration between
the modules. This behavior poses a significant challenge for users who need to implement
new services and require fast controller deployment.

Monolithic and microservice architectures are two approaches to building Software-
Defined Networking (SDN) solutions. Table 1 compares monolithic centralized SDN con-
troller with microservices controller. A monolithic SDN is simple to implement and deploy
but has scalability, flexibility, and fault tolerance limitations. In contrast, microservice
SDN is designed to decompose the control plane into smaller, independent services that
communicate with each other through APIs. Each service is responsible for a specific
control function and can be developed, deployed, and scaled independently.

Table 1. Comparison of monolithic centralized SDN controller vs. microservices controller.

Metric Monolithic Microservices

Resiliency

The whole system can be
affected by a bug,

communication or device
failure, or security issues.

Other services are not affected
by a failure in a particular

microservice.

Deployment Simple and fast deployment
architecture.

Orchestrating the deployment
becomes complex due to

communication and hardware.
restrictions.

Scalability

Redeploying the entire system
to manage new changes make

it difficult to manage and
maintain.

You can scale each element
independently without

experiencing any downtime.

Compatibility

Adopting new technology
languages or frameworks is
impossible due to the lack of

flexibility.

Multiple integration and
standardization.

Security
Communication within a

single unit secure data
processing.

The use of APIs to
communicate different
services produces some

security threats.

Development
The huge indivisible database
makes distributing the team’s

efforts impossible.

Each component can be
independently operated by a

team of developers.

2.3. Variability in Programming Interfaces

Some of the most popular SDN controllers (such as OpendayLight, Ryu, or ONOS [18,41])
use REST API interfaces as a communication mechanism. The RESTful API is a device
communication interface to secure information exchange over the hypertext transfer proto-
col. However, each controller exposes its APIs in a different way, forcing users to modify
the request syntax or the programming language according to the specific conditions [16].
This lack of standardization turns the applications into systems that depend on a particular
SDN controller.

Sensors 2023, 23, 3395 6 of 26

2.4. Dependencies between Applications and Controllers

The close relationship between control applications and the controller type presents
a challenge that restricts the ability to reuse applications and module configurations. In
several situations, modifying the programming language and readjusting critical plugins
becomes necessary due to the interdependence between the modules and the controller’s
central component.

2.5. Lack of Reliability and Scalability of SDN Controller

The principal reason for the lack of reliability and scalability is the high dependency
between the SDN controller and the communication events handled by the control plane.
Furthermore, a monolithic architecture is complex to scale into a standalone system due
to the relationship between the application of the SDN controller and the communication
device. Any failure in one component will result in a cascade failure of the entire system.

3. Hierarchical Control Approach

Hierarchical control is a practical approach to managing power sharing in a Microgrid.
The primary control level determines the amount of power to be generated by each DG
based on factors such as power demand, availability of energy, and system constraints,
as Figure 1 shows. The secondary control level manages the power-sharing between the
Microgrid and the utility grid, ensuring that the Microgrid operates within acceptable
limits. System optimization and long-term planning are carried out at the tertiary control
level to ensure optimal power sharing among the energy sources, energy storage systems,
and loads.

Tertiary level
• Economic dispatch
• Energy/fault/congestion management
• Energy optimization and control consumption

Secondary
level

• Voltage/frequency restoration
• Active and reactive power sharing
• Grid synchronization

Primary level
• Voltage/frequency stability
• Inner control loop
• Preliminary power–sharing
• Allow plug and play features

Bandwidth Latency

Low

Medium

High

20–300 [s]

2–10 [s]

0.2–1 [s]

Figure 1. Hierarchical control levels and communication restrictions for networked microgrids.

Power sharing between DGs is usually carried out by parallel inverters connected
to a common AC bus with multiple loads [42]. The proposed controller in this paper
considers the microgrid as three Voltage Source Inverters (VSI) feeding an RL load at the
point of common coupling. An RL load was chosen to study the microgrid’s active and
reactive power sharing. Each DG represents a power source implemented in The Simulation
Platform for Power Electronic Systems (PLECS) [43,44]. Droop control in parallel inverters
is a widely used strategy to regulate MG power sharing. The main goal of primary droop
control is to set a proportional load sharing among DGs, based on the well-known (P-Q)
droop method [5]. Each inverter has an external droop control loop to improve performance
and provide a decentralized control method. Figure 2 shows the strategy applied to regulate
frequency and voltage for one VSI. The details of hierarchical control can be found in
Appendixes A and B.

Sensors 2023, 23, 3395 7 of 26

υdc

R fL f

+
−

C f

iabc

udre f = ure f − nq(Q−Qre f)

abc→ dq

+

−

−

− −

+

+

++
+

−

ωC

ωC

θ
θ

ω = ωre f −mp(P− Pre f)

υabc

idre f
υdre f

iqre f υqre f

V V V

Load

Power

calculation
SC

Droop control

kp+ki
s

+

ωL

ωLdq→ abc

PWM

υa
υb

υc

kp+ki
s

kp+ki
s

kp+ki
s

+
+

+

+
+

+

+−

iq υq

iq Outer loop

id υd

id , iq
υd , υq

id

υq Inner loop

υd

Figure 2. General structure and hierarchical control of one VSI. The acronym SC represents secondary
control.

The control strategy is evaluated according to different events within the microgrid.
The droop control is activated during the first second until it reaches the steady state
condition. As shown in Figures 3 and 4, there is a deviation in voltage and frequency that
needs to be solved by the secondary control. For that reason, it is necessary to perform
secondary control to reach the stability of the MG. The secondary control is activated after
10 seconds and remains until the end of the simulation.

0 1 5 10 15 20

3340

3360

3380

3400

V
o

lt
a

g
e

(p
u

)

Inv1

Inv2

Inv3

10 10.5

3392

3394

3396

1 5 10 15 20

59.94

59.96

59.98

60
F

re
q

u
en

cy
 (

H
z)

Inv1

Inv2

Inv3
1 2 3

59.995

60

Figure 3. Voltage end frequency regulation with SDN microservice controller of this proposal.

Figure 4. Line to the neutral voltage and phase current for SDN microservice proposal.

Research studies have used a hierarchical control approach with an SDN-based com-
munication architecture to enhance overall system intelligence [13,37,45]. However, while
this approach addresses some aspects of power sharing in networked microgrids, the
communication system remains a critical factor that impacts the power system and hin-
ders overall recovery. The monolithic architecture of the SDN controller, the integration
of new control functionalities, and the excessive workload can be improved through a
microservices-based architecture and automatic orchestration.

4. Disaggregating Functionalities and Migrating SDN as Microservices

SDN controllers implement different modules to handle the most relevant aspect of
the communication devices. These modules afford key functionalities, such as selecting
the best route for message forwarding, monitoring topology changes, and enhancing
security [46,47], as outlined in Figure 5. The process starts with discovering and managing
the nodes, finding the active communication links, and updating functions accordingly.
Next, optimal packet flow and routing management are established by creating new flows

Sensors 2023, 23, 3395 8 of 26

and forwarding packets. The controller must activate the functions to monitor the traffic
and guarantee the quality of service (QoS) according to predefined metrics. Finally, several
options are applied to ensure network management and security, avoid latency issues, and
improve restrictions imposed by the power system.

Node
identi-

fication

Link
discovery

Routing
manage-

ment
QoS Apply re-

strictions

Figure 5. Main functionalities of the SDN controller.

Previous functionalities are the components that support segmentation in microser-
vices.

Components and Interfaces as Microservices

In this proposal, the SDN controller deploys a set of microservices in several Docker
containers, as shown in Figure 6. The upper layer corresponds to the SDN controller, the
middle layer represents the communication topology, and the bottom layer is the electrical
system. The container’s functionality includes traffic routing, topology management, and
event handling. The ability to segregate the controller functions as microservices allows
a distributed system to scale according to topology demand. If the number of containers
increases, a platform for orchestrating multiple pods is required.

MICROSERVICES
 MICROSERVICES
 MICROSERVICES

onos-cli

atomix-controller

onos-config
onos-operator

atomix-raft-storage

onos-consensus
onos topoonos-gui

SECONDARY CONTROL
PI

POWER
CALCULATION

DROOP
CONTROL

INNER CONTROL

& MODULATION

LOW PASS

FILTER

PI

SPI

SDN
µONOS Controller

υci f ZLi

LoL f C f

io

υdc

∑N
i=1 ωDGi

N
∑N

i=1 υDGi
N

Eicos(ωit)

Data plane layer

Power system layer

Control plane layer

Figure 6. Communication framework for microservices implementation.

Sensors 2023, 23, 3395 9 of 26

Figure 6 presents the proposed topology and considers the aggregation of microser-
vices deployed in three Raspberry pi 4 (with ARM architecture). Given the increased
computational capacity of the latest versions of Raspberry and its lower cost compared to
other computing devices, this platform is selected to operate as a worker in the Kubernetes
cluster and an OpenFlow communication device. OpenFlow is a communication protocol
SDN uses to standardize the interfaces between the control and data planes [48]. This
research uses OpenFlow because it is a standard supported by multiple communication
devices, adding great flexibility and programmability to the network. The flexibility of
OpenFlow minimizes the effort and resources necessary to manage complex networks,
including those in microgrid hierarchical control.

The Kubernetes cluster is deployed in K3s [49] to obtain the SDN controller’s global
functionality. K3s is a lightweight Kubernetes distribution built for IoT and Edge comput-
ing. The three Raspberrys are physically independent and configured as a high-availability
cluster to improve the controller operation and provide good resilience through microser-
vices. The synchronization of each container and the global administration of the SDN
controller is orchestrated by Rancher [50]. Rancher is a Kubernetes-based orchestration
software integrating container monitoring and management tools through a simple graphi-
cal interface.

The northbound interface (NB) allows the interaction between the SDN controller and
external applications. On the other hand, the southbound interface (SB) standardizes the
operation of the communication protocols, as in the case of OpenFlow [51]. REST APIs are
communication channels that use the HTTP protocol to carry out operations such as GET,
POST, or DELETE on data. It has high scalability, good performance, and the ability to
decouple its functions, making it an ideal candidate for developing microservices.

5. Implementation of µONOS SDN Controller

Microgrids are changing into more complex and extensive networks in which appli-
cations, service virtualization, and edge computing are highly related to control strate-
gies [29,52]. Micro ONOS (µONOS) is a new version of the SDN controller, developed by
the Open Network Foundation (ONF [53]), which uses microservices to deploy a scalable
infrastructure with excellent throughput and low latency. It is based on Docker containers
deployed in a cloud-based infrastructure or local data centers. Unlike monolithic controllers
that integrate multiple APIs, it comprises a few interfaces such as Google Remote Procedure
Call (gRPC), gRPC Network Management Interface (gNMI) and P4Runtime [25].

The µONOS infrastructure, network functions and monitoring services only support
Kubernetes applications through Helmcharts implementation [54]. To install, manage and
delete the device configurations and their performance, µONOS configures the gNMI as an
open-source data management protocol for network devices. The functionalities provided
by gNMI can be modeled using YANG (Yet Another Next Generation data modeling
language) [25]. The network manager interacts with the SDN controller through the gRPC
interface, accessing both the onos-cli and onos-gui services for network management,
network modifications and reverting changes. According to ONF [53], the onos-config
service offers a gNMI endpoint for various functions, including reading states, configuring
settings, and subscribing to specific features. This interface can also prevent invalid values
and enable the operational state.

The µONOS identification component facilitates the controller’s management from
external applications, as depicted in the top layer of Figure 7. A proposed middleware
enables information exchange between external applications (power-sharing information
from networked MG) and the SDN control plane. As shown in Figure 7, the core of the
SDN controller is separated from the event handler within the middleware, allowing
communication between the REST API and the controller microservices. This service,
named onos-config, is responsible for linking the module’s functionality to the specific
microservices that are executed in a distributed manner.

Sensors 2023, 23, 3395 10 of 26

onos-config
µONOS mananger

onos (Client)

admin-cmdadmin-cmd

gNMI

Openflow Switches
(Raspberry pi)

app

Admin gNMI

gNMI client

St
or

e

k/v

Figure 7. High-level design of the proposed µONOS controller (modified from [25]).

The essential microservice of Figure 7 is the block onos-config, as it manages the
configuration of devices through gNMI interfaces and registers all events to send them to
the Atomix driver. The Atomix driver implements an API to scale the µONOS Kubernetes
resources. This property of scaling resources adds greater redundancy to the controller. It
provides a system with distributed additional resources and is responsible for maintaining
and managing the ONOS service. Atomix controller details can be found in the GitHub
repo of the Open Networking Foundation [55].

5.1. Functionalities of onos-config Module

The onos-config module strives to handle network and device alterations by invoking
the NetworkChange and DeviceChange services, respectively. These services keep records
of all change logs and pass them to the Atomix drivers via the gRPC interface.

For connecting devices through the southbound interface, onos-config only supports
it through gNMI. Furthermore, the YANG models set the configuration and topology archi-
tecture into onos-config service. The deployment of this module requires a Kubernetes
cluster capable of running Helmcharts as detailed in its deployment page [56]. The inter-
action between onos-config and onos-cli allows the user to define rules or route paths
through the gNMI interface. To execute it, access the onos-cli pod and run the plugins
from there (you can view the list of plugins by running onos-config get plugins).

Figure 8 shows the deployment of the pods during the execution of the µONOS in
the topology. Five pods of the onos-config service are deployed, and six pods of Atomix
increase the availability and distribute the services across the nodes. All steps to deploy
this proposal are available in the GitHub repository [57].

5.2. Network Interface Cluster Implementation

This paper implements two network interfaces for each Raspberry, as shown in
Figure 9. The eth0 is the default ethernet interface of the Raspberry pi 4. It serves as
the Linux bridge and is used for configuring Kubernetes clusters, exchanging pods control
information, accessing Rancher and the load balancer, and connecting to the Internet gate-
way. It means that eth0 acts as an overlay interface for external communications. On the
other hand, eth1 is used by the OpenFlow protocol to communicate between SDN service
pods. Conversely, the eth1 interface, connected via a USB to Ethernet adapter, enables the
substitution of the veth interfaces of the pods with kbr-int-ex. Each pod in the cluster
will use the kbr interface instead of its veth to avoid routing and forwarding issues.

Sensors 2023, 23, 3395 11 of 26

Figure 8. Number of pods of the SDN controller distributed in the worker’s nodes.

e tcda p i

Calico K3S Master

K3sNode K3sNetworking API ETCD

C
al

ic
o-

C
N

I

C
al

ic
o-

C
N

I

br0 br0

veth1 veth2 veth3

kbr-int-ex

eth0eth1 eth1eth0

phy-kbr-ex phy-kbr-ex
kbr-ex kbr-ex

kbr-int-ex VXLAN/GRE/GENEVEVXLAN/GRE/GENEVE

br0 br0 br0

veth1 veth2 veth3

br0

kbr-int kbr-int

OVSDB
REST API

gRPC

Figure 9. Kubernetes management and overlay tunneling networking with Calico-CNI.

Calico CNI (Kubernetes Container Network Interface (CNI)) deploys a Daemonset on
each node, ensuring communication between gRPC and the µONOS controller. In other
words, this plugin provides networking for the containers and pods within the Kubernetes
cluster. The cluster formed by the Raspberry nodes can operate as conventional Ethernet
devices (via TCP and Unix domain socket) or as an OpenFlow switch to handle SDN traffic.

5.3. Create the Kubernetes Cluster on Raspberry

K3s distribution [49] allows deploying of the bare-metal cluster and is an excellent
choice for IoT devices, particularly Raspberry pi. From Rancher’s official documenta-
tion [58], a high-availability cluster with an embedded database is implemented. However,
using a single load balancer as implemented in the default configuration brings back the
drawbacks of the centralized system. Integrating the K3s cluster with Keepalived and
HAproxy as described in [59], solves the previous disadvantages in a distributed way. To
set up an HA Kubernetes cluster using Keepalived and HAproxy, you need to install and

Sensors 2023, 23, 3395 12 of 26

configure Keepalived and HAproxy on each node in the cluster. Keepalived is used to
manage the virtual IP address that clients use to access the Kubernetes API. In contrast,
HAproxy is used to load balance incoming traffic across the Kubernetes API server nodes.
This alternative is superior to the external database implementation because the storage
is distributed in each etcd node’s services [58], increasing the system’s availability and
removing the single point of failure through distributed storage.

Ansible automates node creation, storage configuration, network interfaces, services,
and deployment processes. This tool allows (in a simple way) the cluster to be deployed
through the execution of a series of scripts developed in Ansible. All the manifest and
Ansible inventory files are in the shared GitHub repo.

5.4. Connection to PLECS RT Box

Possible communication alternatives between Raspberry and PLECS are SPI, I2C, and
CAN protocols. However, the PLECS RT Box only has two SPI communication modules
(SPI1 and SPI2), leaving one of our worker nodes unconnected. In [60], the average data
rates of the three technologies are compared. According to the PLECS manual, SPI has the
best data rate, followed by the CAN bus and I2C. We decided to connect the third node
of the cluster to the same SPI port of node 2’s PLECS server for these reasons. Although
this is not the best communication alternative, as the frequency and voltage values on
each Raspberry are averaged, this will not affect the overall performance of the MG. For
more complex microgrid implementations, it is recommended to use the SFP transceiver
modules, available from PLECS, to achieve speeds of up to 10Gbps.

Each Raspberry will serve as an OpenFlow communication device that ensures the
exchange of secondary control information. Figure 10 shows the practical implementa-
tion of this proposal. There are three Raspberrys connected through Ethernet and USB.
The first connection allows external access, and the second provides SDN functionali-
ties. Additionally, the PLECS platform is wired to the cluster through the SPI bus of the
Launchpad F28069M.

d

a

bi

c

e
h f

g

Figure 10. Experimental setup for Kubernetes cluster with Raspberry pi: (a) PLECS output, (b) ONOS
command line interface, (c) SDN flows during communication, (d) Raspberry pi Kubernetes cluster,
(e) USB network adapter, (f) overlay interface, (g) Cisco router and 52switch, (h) SPI connection,
(i) MG output current.

According to the price of this proposal, Table 2 shows that it is possible to create a
bare-metal cluster with less than 1300 USD. The Cisco router can be replaced by other
cheaper alternatives, such as the ZodiacFX [61].

Sensors 2023, 23, 3395 13 of 26

Table 2. Total cost of bare-metal cluster.

Item Quantity Unit Price in USD

Raspberry pi 4B 8 GB 3 170
SanDisk Micro SD card 32 GB 3 5

Adapter USB to Ethernet 4 10
0.5 m CAT6 Ethernet cables 4 4.5

Router Cisco 891F (not necessary) 1 670

Total cost 1248

5.5. Monitoring Platform

Different factors, such as hardware resources, load, or communication architecture,
limit the number of pods executed on each device. However, with Rancher, these pods can
be scaled automatically without compromising the cluster’s overall structure. To configure
automatic scaling in Rancher is necessary to select the deployment. From there, the “Scaling”
tab specifies the minimum, maximum, and desired number of replicas for the deployment
and also sets the scaling policy based on CPU or memory usage. This proposal shows the
number of replicas for each service in Figure 8, with the boundary for scaling new pods set
at 80% of CPU usage. It’s important to note that automatic scaling requires a monitoring
and metrics system to track your deployment’s resource utilization. Rancher integrates
with Prometheus and Grafana to trigger alerts according to the threshold values configured.
Finally, the Grafana graphical user interface allows monitoring the deployment’s status
and the number of replicas scaled.

The solution to monitoring the communication devices’ status and the tools’ interac-
tion is presented in Figure 11. Our proposal uses a Rancher Helmchart to develop a Java
application (Prometheus Exporter) to obtain information about network metrics. Further-
more, it exports the data to Prometheus, which is responsible for monitoring events and
triggering alerts according to standard conditions.

MICRO - ONOS

µONOS

API REST

PROMETHEUS
EXPORTER

ALERTMANAGER

Hierarchical Control
Networked Microgrid

Logs and information
about Microservices

Multiple SDN Controllers
as Microservices

µONOS LOGS
FILE

PROMETHEUS

STORAGE PVC

KUBERNETES
API

PROMETHEUS

CONFIG

ELECTRICAL
SYSTEM

RETRIEVAL TSDB

HTTP SERVER

GRAFANA

Service Discovery

Push alertsMonitoring
Pull metrics

Figure 11. Proposed architecture for monitoring and integration of the electrical system, SDN topology,
and Cloud Computing environment.

Prometheus sends the information to the local storage to collect operating system
metrics. We use the µONOS interface to obtain information and network metrics. Different
notifications can be triggered through the Prometheus configuration file to perform fast
reactions without downtime.

Sensors 2023, 23, 3395 14 of 26

Finally, Grafana allows importing a series of dashboards with information on the DG
flows. This tool obtains the knowledge of the packet flows that pass through the USB
ethernet adapter to the SDN controller. Figure 12 demonstrate the correct integration of
Prometheus and Grafana within the Kubernetes cluster. Using Rancher in this proposal
simplifies the deployment and configuration of the services.

Figure 12. Types of events in Grafana tool. Packets out to PLECS with destination microservices in
K3S cluster. Grafana registers data.

An essential element to consider when implementing a high-availability Kubernetes
cluster on Raspberry is the performance of the computational resources. As the cluster
scales, the computational resources become more limited. Increasing the number of pods
in Kubernetes can be done to minimize the impact on service performance as follows.

• Ensure that the nodes in your cluster have enough resources (CPU, memory, storage)
to support the increased number of pods. The notification system and the alerts
configured in Grafana allow the monitoring of resource usage and global capacity.

• Using horizontal pod autoscaling (HPA) automatically adjusts the number of pods
based on resource usage and demand. HPA can be configured based on CPU usage,
memory usage, or custom metrics.

• To prevent resource contention and performance issues, pod anti-affinity rules ensure
that pods are not placed on the same node. This method avoids the scheduling of
pods on the same node.

• Optimize pod resource requests and limits to function correctly.
• Use pod disruption budgets (PDB) to ensure that a minimum number of pods are

available during node maintenance or failures. By setting a PDB, you can guarantee
that the service is unaffected by removing pods from the cluster.

Monitoring the service’s performance following the previous points and adjusting the
settings as necessary to optimize resource utilization and performance is crucial.

6. Experimental Scenarios and Results

To analyze the results of this proposal, a series of critical elements were tested, which
imposed restrictions on the communications and power systems. Figure 13 present the
topology used to test the microservice (left side) and monolithic/OSPF (to the right side).
OSPF and monolithic only differ in the setup of Raspberry configuration. Each Raspberry

Sensors 2023, 23, 3395 15 of 26

was configured as a router for OSPF, while the monolithic was configured as an OpenFlow
switch. Table 3 shows the main parameter settings of the experiments. The first scenario
tested is latency, introduced by decoupling the controller functionalities into distributed
microservices.

OSPFor

Secondary control
communication

Management
and monitoring

Openflow
& OSPF

Secondary control
communication

Management
and monitoring

Load
balancer

Rasp. 2
µonos Rasp. 1

µonos

Rasp. 3
µonos

Openflow
& OSPF

Openflow
& OSPF

Network service Network service

Microservices topology
for testing

OSPF and Monolithic topology
for testing

Figure 13. Proposed architecture for testing the metric performance.

Table 3. Electrical and control parameters of the MG.

Item Value

Microgrid parameter

Rated frequency 60 [Hz]
Rated voltage 4160

√
2/3 [V]

Load power rating RES1 1 [MVA]
Load power rating RES2 500 [kVA]
Load power rating RES3 200 [kVA]

HLine1 0.4 [mH]
HLine2 0.65 [mH]
HLine3 0.9 [mH]

Filter (L,C) 1.8 [mH], [25 µF]
Ro, Lo, Co 80 [Ω], 12.5 [mH], 5 [mF]

Sample time (Ts) 10 [kHz]

Primary control parameters

P - ω Droop Coeff. (mp) 1 [rad
W·s]

Q - V Droop Coeff. (nq) 25 [V
Var]

Frequency proportional term kp f 0.01
Frequency integral term ki f 3 s−1

Voltage proportional term kpυ 0.01
Voltage integral term kiυ 2 s−1

Secondary control parameters

Frequency proportional term kp f 0.001
Frequency integral term ki f 4 s−1

Voltage proportional term kpυ 0.001
Voltage integral term kiυ 6 s−1

6.1. Latency

The evaluation tests of this proposal consider the measurement of two types of la-
tency. The first column in Figure 14 considers the response time when sending the first
message from the MG architecture. This latency gives us a measure of the initial cost of the
distributed controller as microservices and the time it takes to obtain a valid route. Once
the entry in the flow table is updated, the rest of the packets do not need to go through the

Sensors 2023, 23, 3395 16 of 26

SDN controller, so the rest of the flows are expected to have lower latency. The columns
update1 and update2 in Figure 14 represent this type of test.

first1 update1 first2 update2

100

150

200

250

105.4
94.1

192.1

162.4

132.3

112.1

235

189

141.3

95.3

244.7

173.4

La
te

nc
y

[m
s]

OSPF Monolithic Microservices

Figure 14. Comparison of latency between OSPF, SDN with a monolithic controller and SDN with
the microservice controller. “First” columns represent the latency for the first message and “update”
columns represent the latency when the route is established.

The second experiment considers the average latency for the rest of the packets using
OSPF routing and SDN technology. As shown in Figure 14, the performance of the OSPF-
based strategy is slightly better. This is due to the additional processing overhead added by
the distribution of microservices in three different Raspberry nodes to the processing time
of the applications. The complexity of the network topology, as determined by the number
of OpenFlow switches, notably impacts the number of controller connections and the
processing capacity of Docker containers. The connections between two DGs are denoted
by first1 and update1, while the connections between DG1 and the SDN controller are
represented by first2 and update2. In OSPF, the connection is established between the
two nearest DGs. As can be seen, the highest latency is originated when the first flow is
sent between two nodes. Power data (frequency and voltage) shared by hierarchical control
in PLECS are shipped using the SPI and CAN protocol, and the results are summarized as
average round trip time.

However, even though OSPF and SDN with centralized control have slightly higher
performance, the need to use a load balancer is evident, especially in the topology with a
monolithic SDN controller and multiple DGs. Furthermore, when the traffic increases, its
performance starts to degrade. For the OSPF routing strategy, it can be seen that the sending
of the first packet of the topology is slightly higher than its competitors. This is mainly
due to the neighbor discovery algorithm and the SPF algorithm needing to know the entire
topology for proper performance. To avoid a single point of failure, the proposal of this
paper incorporates a distributed load balancer, following the recommendation in [59].

The researchers performed three communication tests to evaluate the response of
the proposed alternatives as a solution to the hierarchical control problem in electrical
microgrids. Figure 15 illustrates the percentages of packets successfully delivered on the
first transmission, those requiring single retransmission, those requiring multiple retrans-
missions, and those experiencing packet loss for each scenario. Furthermore, Figure 15
presents a trade-off between monolithic and microservices architectures regarding latency
and throughput. Ten simulations were conducted for each of the three tests, and the result-
ing averages were analyzed to investigate the aforementioned relationship across different
data rates. Specifically, low data rates (0 < Throughput ≤ 299 Mbps), medium data rates
(300 < Throughput ≤ 599 Mbps), and high data rates (Throughput ≤ 600 Mbps) were

Sensors 2023, 23, 3395 17 of 26

covered in the analysis. The message throughput is modified from the Plecs simulation,
increasing the sample period of secondary control. This graph shows the average loss rate
for the centralized communication strategies is similar (with a difference of about 5%).
In comparison, the distributed systems improve these results by 25 to 60% for the tests
performed. The average latency was 287 ms for the global test. The latency increases as the
throughput increase due to the closeness to the speed limit supported by the Raspberries.

A
ve

ra
ge

T
hr

ou
gh

pu
t[

m
s]

0

150

300

450

600

700

µS Ml O µS Ml O µS Ml O
0

20

40

60

80

100

Low Medium High data rate

Fr
ac

ti
on

of
tr

an
sm

is
si

on
s

(%
)

No retransmits Single retransmits Multiple retransmits Losses

µS Ml O µS Ml O µS Ml O
0

20

40

60

80

100
Latency

Throughput

Figure 15. The trade-off between latency and throughput varies across different test scenarios.
Columns µS refers to this proposal, Ml means Monilithics architecture and OSPF is O.

The findings reveal that monolithic architectures can offer lower latency since all
the system components are closely integrated and communicate directly, reducing net-
work communication overhead. However, this close coupling can also limit the system’s
horizontal scalability and ability to handle high throughput requirements. On the other
hand, microservices architectures can provide higher throughput as the system can be
scaled horizontally by adding more instances of individual services as needed. However,
the added network communication between services can increase latency and reduce the
system’s response time. Typically, the Raspberry Pi 4 (ARM64) can achieve consistent
transfer rates of 600–700 Mbps with appropriate network configuration and optimization.
Therefore, the choice between monolithic and microservices architectures depends on the
system’s requirements. A monolithic architecture may be the better choice if low latency is
critical and high throughput requirements are manageable with a tightly-coupled system.
A microservices architecture may be more appropriate if high throughput is critical and
latency can be tolerated with loosely-coupled services. Our proposal handles the surge in
demand by increasing the transmitted packets. In contrast, the monolithic architecture and
OSPF demonstrate reduced resilience, scalability, and multiple retransmissions.

In this way, it is evident that the three strategies have an acceptable behavior according
to Table 4. However, OSPF and SDN microservices are two different approaches to network
management, and they have distinct characteristics and features. The results of Table 4 can
be summarized as follows.

Sensors 2023, 23, 3395 18 of 26

Table 4. Summary of communication results for test scenarios.

Microservices vs. OSPF
Paired Differences

Mean Std. Deviation Std. Error Improvements

Latency of first package −17.41 13.12 2.39 −29.74%
Overall Latency −20.66 32.41 6.01 −4.75%

Throughput 14.28 5.24 0.95 −4.15%
Recovery time 214.82 39.95 7.29 53.41%

Packet loss-link failure 19.75 2.06 0.37 55.98%
Packet loss-device failure 11.83 2.30 0.42 38.66%

Packet loss-controller failure 86.00 1.38 0.25 100%

Microservices vs. Monolithic Paired Differences
Mean Std. Deviation Std. Error

Improvements

Latency of first package 8.46 14.02 2.56 −5.09%
Overall Latency 32.91 38.79 7.20 10.76%

Throughput −50.47 5.96 1.08 7.05%
Recovery time 257.50 36.23 6.61 36.58%

Packet loss-link failure 13.01 2.21 0.40 42.23%
Packet loss-device failure −1.13 2.41 0.44 −1.42%

Packet loss-controller failure 85.83 1.38 0.25 100%

• Latency: Regarding latency, OSPF is a distributed protocol that relies on exchanging
routing information between devices. It’s designed to find the shortest path between
two points, which can help to minimize latency. In general, monolithic architectures
can offer lower latency since all the system components are closely integrated and
communicate directly, reducing network communication overhead. However, this
close coupling can also limit the system’s horizontal scalability and ability to handle
high throughput requirements. On the other hand, SDN microservices rely on a
central controller that manages the network, and the latency can be affected by the
communication between the controller and the devices.

• Throughput: OSPF is a protocol that supports link-state routing and can quickly
adapt to network topology changes. As a result, it can provide high throughput in
a stable network environment. In contrast, SDN microservices can provide higher
throughput as the system can be scaled horizontally by adding more instances of
individual services as needed.

• Recovery time: OSPF is designed to support fast convergence and can quickly recover
from a link or device failure. However, the convergence time can depend on the size
and complexity of the network. SDN microservices can also provide fast recovery
times, but it depends on the specific implementation and configuration.

• Link failure: OSPF can detect a link failure and reroute traffic along an alternate path,
which helps to maintain connectivity. SDN microservices can also detect link failures
and potentially provide more granular control over how traffic is rerouted.

• Device failure: In OSPF, if a device fails, the routing tables are recalculated, and the
network can continue to operate. In SDN microservices, the central controller can
detect a device failure and reconfigure the network accordingly.

• Controller failure: In SDN microservices, the central controller is a single point of fail-
ure. If the controller fails, the network may not be able to operate correctly. However,
many SDN solutions provide redundancy and failover mechanisms to minimize the
impact of controller failure.

Overall, OSPF and SDN microservices have different strengths and weaknesses, and
the choice of which one to use depends on the specific network requirements and goals.
All of these values are within the ranges defined by the IEEE 61850 standard [37] for
safe microgrid operation. Nevertheless, this microservice implementation has the best

Sensors 2023, 23, 3395 19 of 26

portability (by using a Docker container), resiliency (provided by Rancher orchestrator),
and scalability results (demonstrated by the recovery time presented in Table 5).

Table 5. Recovery time of different protocols when a failure occurs.

Communication Protocols Recovery Time

OSPF 637.8 ms
Monolithic controller 468.5 ms

Microservices controller 297.1 ms

6.2. Throughput

Throughput is generally used to determine how well SDN routers and controllers
can handle traffic and how efficient they are at this task. This test measures the number
of packets sent per second in the case of OSPF, while SDN measures the number of flows
installed on the devices. Equation (1) presents a simple way to calculate the throughput.

Throughput = maximum_receiver_bandwidth/round− trip_time (1)

The iperf3 tool obtains the maximum receiver bandwidth, while a simple ping returns
the round-trip time. Figure 15 shows the results of this test. As is evident, the results show
a better performance in the case of conventional strategies. However, this advantage may
be compromised in more extensive networks where the OSPF protocol needs to describe all
router neighbors.

7. Communication Failure and Recovery Test

Combining Kubernetes with a set of SDN microservices can improve application re-
covery time by eliminating the single point of failure in hierarchical control. In a traditional
network architecture, the control plane and the data plane are tightly coupled, which
means that a failure in the control plane can lead to significant disruptions in the network’s
operation. This hierarchical control model has a single point of failure, which can be a
bottleneck for recovery time.

However, with Kubernetes and SDN microservices, the control plane is decoupled
from the data plane, and the control functions are distributed across the network. If a
failure occurs in one part of the network, the rest can continue normally, and recovery
time can be significantly reduced. Moreover, the combination of Kubernetes and SDN
microservices offers a significantly automated and customizable network setting that en-
ables quick and flexible network topology adjustments in response to any modifications in
the infrastructure or application. This attribute further reduces the network reconfigura-
tion time, hence enhancing the recovery period, which would otherwise require manual
intervention. Combining Kubernetes with SDN microservices can improve application
recovery time by eliminating the hierarchical control’s single point of failure and providing
a highly automated and programmable network environment. This can help ensure that
applications and services are always available and performing optimally, even during
network failures.

A communication system failure (closer to the distributed generation sources) is
simulated in this scenario. The objective is to verify which strategy has better performance
from the point of view of communications without degrading the power-sharing between
the local controllers of the MG.

The failure is generated, for instance, containing the SDN monolithic, and they are
compared with the losses produced in one of the instances that include the microservices.
The orchestrator is expected to be able to instantiate a new subsystem instance without
degrading the performance of the MG. Kubernetes has been configured to be scaled auto-
matically according to the research shown in [62]. Furthermore, in Figure 16, the packet
loss percentage shows that microservices perform well due to distributed services above
the nodes.

Sensors 2023, 23, 3395 20 of 26

Link-failure Device-failure Controller-failure
0

20

40

60

80

100

36.24 32.41

100

27.61
19.6

100

15.95 19.88
12.55

Pa
ck

et
lo

ss
[%

]

OSPF Monolithic Microservices

Figure 16. Number of packet loss during convergence time.

Figures 17 and 18 show the results obtained during power-sharing with and without
hierarchical control, respectively. At one second, the droop control is started to distribute
the active and reactive power-sharing. At 10 s, the hierarchical control is enabled to regulate
voltage and frequency deviations. Since there is no message loss between controllers (minor
glitches only in the average message delay), it proves the system’s robustness. However,
the secondary control with a monolithic controller is highly susceptible to small latencies,
CPU burden, and propagation delay. In this scenario, one of the OpenFlow switches was
removed to determine the effects of the monolithic control strategy. This experiment should
be understood as a way to highlight the robustness achieved by the SDN system in its
deployment based on microservices.

Figure 17. Active and reactive power sharing with SDN distributed controller in this proposal.

0 1 5 10 15 20

0.4

0.6

0.8

1

A
ct

iv
e

P
o

w
er

 [
p

u
]

Inv1

Inv2

Inv3

10 10.05

0.4

0.5

0.6

0 1 5 10 15 20

-0.15

-0.1

-0.05

R
ea

ct
iv

e
P

o
w

er
 [

p
u

]

Inv1

Inv2

Inv3

10 10.05

-0.08

-0.07

Figure 18. Active and reactive power sharing with SDN monolithic controller.

Our proposal uses a proactive approach to latency testing and a reactive approach to
manage topology changes. The architecture will react immediately if a new distributed
generation source is added, allowing proper power sharing, as Figure 3 shows. On the
other hand, the orchestrator can add intelligence to the topology according to its appro-
priate programming. For example, our monitoring system architecture can detect latency
increasing or node congestion and take the necessary actions to reduce the impact and

Sensors 2023, 23, 3395 21 of 26

the consequences. For example, it can scale a more significant number of instances as
microservices and thus simultaneously serve more communication requests.

8. Conclusions

Monolithic controllers have several drawbacks concerning scalability and reliability.
In most cases, these architectures do not meet the requirements of fault tolerance and
rapid adaptability, which are imposed by networked microgrids. This proposal’s most
significant contribution was the property to dynamically reconfigure control flows based
on a microservices architecture and the automatic deployment of microservices instances.

Using a bare-metal Kubernetes cluster on a Raspberry pi and deploying distributed
microservices allowed us to improve the reality of a distributed energy control system.
Microservices testbeds demonstrated the SDN controllers’ rapid deployment, portability,
high availability and resiliency to application failures.

The Kubernetes orchestrator provided good scalability of the communication system,
as well as improved the fault tolerance and replication capacity. This is due to the high fault
tolerance, capable of managing and distributing the load between microservices. From a
comparative perspective, this proposal significantly improves failure recovery time and
resilience concerning communications devices.

The API REST microservice topology allowed the splitting of the SDN controller’s
core functionalities into small, well-defined functions. In all test case scenarios, reliability
showed excellent behavior. Furthermore, the portability of all the nodes in the topology is
possible due to the Docker containers. The ability to exchange control information between
DGs over an SDN network allows them to regulate the system’s response and reach a
steady state more quickly. The results show that to increase the resilience of the network,
more sophisticated control strategies and highly available programmable communications
networks are required. Finally, the monitoring architecture allows the export of logs in
real-time and detects failures through notification software.

Author Contributions: Conceptualization, R.P.; Investigation, R.P., M.R. and Y.S.; Methodology,
C.R.B. and P.W.; Project administration, M.R.; Software, R.P., M.R. and Y.S.; Supervision, C.R.B. and
P.W.; Validation, R.P., M.R., C.R.B. and P.W.; visualization, R.P. and Y.S.; Writing—original draft, R.P.,
M.R. and C.R.B. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Doctorate Scholarship CONICYT 2019; ANID/
ATE220023 Project; FONDECYT Regular Research Project 1220556; CLIMAT AMSUD 21001 and
FONDAP SERC Chile 15110019.

Data Availability Statement: Not applicable.

Acknowledgments: The authors express their gratitude to the University of Talca and the University
of Nottingham for their support during this research period. Furthermore, we would like to thank
the µOnos Team for the guidelines provided to complete this manuscript.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Nomenclature
The following abbreviations are used in this manuscript:

API Application Programming Interface
SDN Software-defined networking
DGs Distributed generators
NMG Networked microgrids
PLECS The Simulation Platform for Power Electronic Systems
µONOS Microservices Open Network Operating System

Sensors 2023, 23, 3395 22 of 26

Bare-metal Physical device designed to run dedicated services
AC/DC Alternating current/direct current
REST API Representational state transfer for application programming interface
VSI Voltage source inverter
RL Resistive-inductive load
P, Q Active and reactive power
MG Microgrid
ω Frequency
ωre f , υre f Nominal frequency and voltage
∆P, ∆Q Power input error for droop control
mp, nq Constant to handle maximum deviation of the microgrid
Pre f , Qre f Nominal frequency and voltage
υdre f Droop control voltage
υabc Voltage across the filter
α, β α, β constant frame
i f , io Filter and output currents
δωDGk Frequency obtained by secondary control
δυDGk Voltage obtained by secondary control
kpω , kiω Controller parameters of PI
ωDGk , υDGk Average frequency and voltage broadcasted by each DG
QoS Quality of service
K3s Lightweight Kubernetes
ONF Open Network Foundation
gRPC Remote Procedure Calls
gNMI gRPC Network Management Interface
gNOI gRPC Network Operations Interface
NB, SB North bound and south bound interfaces
P4Runtime Control plane specification for controlling the data plane elements
YANG model Yet another next-generation data modeling language
CNI Kubernetes container network interface
CAN Controller area network protocol
SPI Serial peripheral interface
I2C Inter-Integrated Circuit communication protocol
OSPF Open shortest path first communication protocol

Appendix A

Primary Control

The primary control includes outer control loops (for voltage regulation), inner control
loops (for current regulation), and droop control loops to share the power between inverters.
Grid-forming (comprised of the inner and outer loops) includes a proportional-integral
PI controller to regulate the output voltage and frequency of the MG. Furthermore, the
frequency and voltage amplitude can be addressed by droop control as shown in the
Equations (A1) and (A2), [1]:

ω = ωre f −mp(P− Pre f) = ωre f −mp∆P (A1)

υdre f = υre f − nq(Q−Qre f) = υre f − nq∆Q (A2)

where ωre f and υre f are the nominal frequency and voltage, P and Q are the measured active
and reactive power injection, and ∆P and ∆Q are the corresponding power input errors for
the droop controller. Coefficients mp and nq regulate maximum deviations allowed in the
MG [42,63].

Different lengths of transmission lines make the VSI output impedance different,
causing unequal power sharing in droop control. Virtual impedance is an essential con-

Sensors 2023, 23, 3395 23 of 26

cept [64] to fix the output impedance value and decouple the control of active and reactive
powers. The virtual impedance can help to keep the voltage within certain limits and
is used for applications such as harmonic voltage compensation and improved stability.
Refs. [37,65] show the implementation of virtual impedance. However, it is out of the scope
of this research.

The voltage across the capacitor υabc can be calculated using Equation (A3):

υabc(t) = υre f sin(ωre f t)︸ ︷︷ ︸
υ∗α(t)

+ jυre f cos(ωre f t)︸ ︷︷ ︸
υ∗β(t)

(A3)

where υre f and ωre f are the voltage amplitude and angular frequency ωre f = 2π fre f of the
reference signal in time t. The voltage derivative reference is obtained from Equation (A4):

dυabc(t)
dt

= ωre f υre f cos(ωre f t)︸ ︷︷ ︸
ωre f υ∗β(t)

+ jωre f υre f sin(ωre f t)︸ ︷︷ ︸
ωre f υ∗α(t)

(A4)

To track υre f it is necessary to expand the last results to α, β frame. The predicted
currents i f and measured currents io are calculated as [64], to predict the capacitor derivative
voltage as follows:

dυabc(t)
dt

=
i f α(t)− ioα(t)

C f︸ ︷︷ ︸
dυabcα(t)

dt

+ j
i f β(t)− ioβ(t)

C f︸ ︷︷ ︸
dυabc β(t)

dt

(A5)

From Equation (A5), it can be seen that the derivative path of the voltage can be
tracked if the error between the first term and the second (A4) and (A5) is minimized.

Appendix B

Secondary Control

Secondary control allows the regulation of voltage and frequency, which are not
adjusted by the primary control loop. Implementing a local secondary controller at each
distributed generator (DG) results in improved output quality and offers a significant
advantage compared to centralized controller approaches [10].

Each DG measures its frequency at each sampling time, averaging the received infor-
mation from other units and then broadcasting its average version (ωDG) to the other DGs.
Then, the consensus data is compared with the nominal frequency of the MG (ωre f) and
sent to the secondary controller of DGi to restore the frequency using:

δωDGk = kpω (ωre f −ωDGk) + kiω

∫
(ωre f −ωDGk)dt (A6)

ω̄DGk =
∑N

i=1 ωDGi

N
(A7)

where kpω and kiω are the controller parameters of PI and δωDGk is the compensator signal
for primary control (refer to Secondary Control block shown in Figure 6). ωDGk and ωre f
are the averages of frequency for all DGs and reference frequency of the MG, respectively.

After calculating the average voltage received from the communication network (υMG),
the local controller determines the error between this value and the voltage reference υre f
as shown in Equation (A8). Finally, δυDGk is sent to the primary control to compensate for
the voltage deviation. The strategy is shown in the Power System layer of Figure 6.

δυDGk = kpv(υabc − υDGk) + kiv

∫
(υabc − υDGk)dt (A8)

Sensors 2023, 23, 3395 24 of 26

υDGk =
∑N

i=1 υDGi

N
(A9)

where vDGk refers to average voltages broadcasted from each DG at the sampling time.
Small signal representations of the frequency and voltage for secondary control are detailed
in [63].

References
1. Tinajero, G.D.A.; Nasir, M.; Vasquez, J.C.; Guerrero, J.M. Comprehensive power flow modelling of hierarchically controlled

AC/DC hybrid islanded microgrids. Int. J. Electr. Power Energy Syst. 2021, 127, 106629. [CrossRef]
2. Han, Y.; Li, H.; Shen, P.; Coelho, E.A.A.; Guerrero, J.M. Review of active and reactive power sharing strategies in hierarchical

controlled microgrids. IEEE Trans. Power Electron. 2016, 32, 2427–2451. [CrossRef]
3. Kulkarni, S.V.; Gaonkar, D.N. Improved droop control strategy for parallel connected power electronic converter based distributed

generation sources in an Islanded Microgrid. Electr. Power Syst. Res. 2021, 201, 107531. [CrossRef]
4. Pérez-Guzmán, R.E.; Salgueiro-Sicilia, Y.; Rivera, M. Communications in smart grids. In Proceedings of the 2017 CHILEAN

Conference on Electrical, Electronics Engineering, Information and Communication Technologies (CHILECON), Pucon, Chile,
18–20 October 2017; pp. 1–7.

5. Simpson-Porco, J.W.; Shafiee, Q.; Dörfler, F.; Vasquez, J.C.; Guerrero, J.M.; Bullo, F. Secondary frequency and voltage control of
islanded microgrids via distributed averaging. IEEE Trans. Ind. Electron. 2015, 62, 7025–7038. [CrossRef]

6. Khayat, Y.; Shafiee, Q.; Heydari, R.; Naderi, M.; Dragičević, T.; Simpson-Porco, J.W.; Dörfler, F.; Fathi, M.; Blaabjerg, F.; Guerrero,
J.M.; et al. On the secondary control architectures of AC microgrids: An overview. IEEE Trans. Power Electron. 2019, 35, 6482–6500.
[CrossRef]

7. Ferreira, D.; Silva, S.; Silva, W.; Brandao, D.; Bergna, G.; Tedeschi, E. Overview of Consensus Protocol and Its Application to
Microgrid Control. Energies 2022, 15, 8536. [CrossRef]

8. Shan, Y.; Pan, A.; Liu, H. A switching event-triggered resilient control scheme for primary and secondary levels in AC microgrids.
ISA Trans. 2022, 127, 216–228. [CrossRef]

9. Shafiee, Q.; Dragičević, T.; Vasquez, J.C.; Guerrero, J.M. Hierarchical control for multiple DC-microgrids clusters. IEEE Trans.
Energy Convers. 2014, 29, 922–933. [CrossRef]

10. Zhou, Q.; Shahidehpour, M.; Paaso, A.; Bahramirad, S.; Alabdulwahab, A.; Abusorrah, A. Distributed control and communication
strategies in networked microgrids. IEEE Commun. Surv. Tutor. 2020, 22, 2586–2633. [CrossRef]

11. Yang, L.; Ng, B.; Seah, W.K.; Groves, L.; Singh, D. A survey on network forwarding in Software-Defined Networking. J. Netw.
Comput. Appl. 2021, 176, 102947. [CrossRef]

12. Ndiaye, M.; Hancke, G.P.; Abu-Mahfouz, A.M.; Zhang, H. Software-defined power grids: A survey on opportunities and
taxonomy for microgrids. IEEE Access 2021, 9, 98973–98991. [CrossRef]

13. Ren, L.; Qin, Y.; Li, Y.; Zhang, P.; Wang, B.; Luh, P.B.; Han, S.; Orekan, T.; Gong, T. Enabling resilient distributed power sharing in
networked microgrids through software defined networking. Appl. Energy 2018, 210, 1251–1265. [CrossRef]

14. Ren, L.; Qin, Y.; Wang, B.; Zhang, P.; Luh, P.B.; Jin, R. Enabling Resilient Microgrid Through Programmable Network. IEEE Trans.
Smart Grid 2017, 8, 2826–2836. [CrossRef]

15. Danzi, P.; Angjelichinoski, M.; Stefanovic, C.; Dragicevic, T.; Popovski, P. Software-Defined Microgrid Control for Resilience
Against Denial-of-Service Attacks. IEEE Trans. Smart Grid 2019, 10, 5258–5268. [CrossRef]

16. Comer, D.; Rastegarnia, A. Toward disaggregating the SDN control plane. IEEE Commun. Mag. 2019, 57, 70–75. [CrossRef]
17. Arzo, S.T.; Scotece, D.; Bassoli, R.; Barattini, D.; Granelli, F.; Foschini, L.; Fitzek, F.H. MSN: A Playground Framework for Design

and Evaluation of MicroServices-Based sdN Controller. J. Netw. Syst. Manag. 2022, 30, 1–31. [CrossRef]
18. Siddiqui, S.; Hameed, S.; Shah, S.A.; Ahmad, I.; Aneiba, A.; Draheim, D.; Dustdar, S. Towards Software-Defined Networking-

based IoT Frameworks: A Systematic Literature Review, Taxonomy, Open Challenges and Prospects. IEEE Access 2022, 10,
70850–70901. [CrossRef]

19. Isong, B.; Molose, R.R.S.; Abu-Mahfouz, A.M.; Dladlu, N. Comprehensive review of SDN controller placement strategies. IEEE
Access 2020, 8, 170070–170092. [CrossRef]

20. Nippon Telegraph and Telephone Corporation (NTT). Ryu SDN Controller. Available online: https://ryu-sdn.org/ (accessed on
22 December 2022).

21. OpenDaylight (ODL) Controller. Available online: https://www.opendaylight.org/ (accessed on 3 June 2022).
22. ONOS Project Community. Open Network Operating System (ONOS). Available online: https://opennetworking.org/onos/

(accessed on 18 January 2023).
23. Markelov, A. OpenStack Networking. In Certified OpenStack Administrator Study Guide; Springer: Berlin/Heidelberg, Germany,

2022; pp. 77–121.
24. Hölscher, A.; Asplund, M.; Boeira, F. Evaluation of an SDN-based Microservice Architecture. In Proceedings of the 2022 IEEE 8th

International Conference on Network Softwarization (NetSoft), Milan, Italy, 27 June–1 July 2022; pp. 151–156.

http://doi.org/10.1016/j.ijepes.2020.106629
http://doi.org/10.1109/TPEL.2016.2569597
http://doi.org/10.1016/j.epsr.2021.107531
http://doi.org/10.1109/TIE.2015.2436879
http://doi.org/10.1109/TPEL.2019.2951694
http://doi.org/10.3390/en15228536
http://doi.org/10.1016/j.isatra.2022.02.039
http://doi.org/10.1109/TEC.2014.2362191
http://doi.org/10.1109/COMST.2020.3023963
http://doi.org/10.1016/j.jnca.2020.102947
http://doi.org/10.1109/ACCESS.2021.3095317
http://doi.org/10.1016/j.apenergy.2017.06.006
http://doi.org/10.1109/TSG.2016.2589903
http://doi.org/10.1109/TSG.2018.2879727
http://doi.org/10.1109/MCOM.001.1900063
http://doi.org/10.1007/s10922-021-09631-7
http://doi.org/10.1109/ACCESS.2022.3188311
http://doi.org/10.1109/ACCESS.2020.3023974
https://ryu-sdn.org/
https://www.opendaylight.org/
https://opennetworking.org/onos/

Sensors 2023, 23, 3395 25 of 26

25. Open Network Foundation. Open Network Operating System (ONOS). Available online: https://docs.onosproject.org/ (accessed
on 22 October 2022).

26. Ray, P.P.; Kumar, N. SDN/NFV architectures for edge-cloud oriented IoT: A systematic review. Comput. Commun. 2021, 169,
129–153. [CrossRef]

27. Okwuibe, J.; Haavisto, J.; Harjula, E.; Ahmad, I.; Ylianttila, M. SDN enhanced resource orchestration of containerized edge
applications for industrial IoT. IEEE Access 2020, 8, 229117–229131. [CrossRef]

28. Nsafoa-Yeboah, K.; Tchao, E.T.; Yeboah-Akowuah, B.; Kommey, B.; Agbemenu, A.S.; Keelson, E.; Monirujjaman Khan, M.
Software-Defined Networks for Optical Networks Using Flexible Orchestration: Advances, Challenges, and Opportunities. J.
Comput. Netw. Commun. 2022, 2022, 5037702. [CrossRef]

29. Marzal, S.; Salas, R.; González-Medina, R.; Garcerá, G.; Figueres, E. Current challenges and future trends in the field of
communication architectures for microgrids. Renew. Sustain. Energy Rev. 2018, 82, 3610–3622. [CrossRef]

30. Abbasi, M.; Abbasi, E.; Li, L.; Aguilera, R.P.; Lu, D.; Wang, F. Review on the Microgrid Concept, Structures, Components,
Communication Systems, and Control Methods. Energies 2023, 16, 484. [CrossRef]

31. Lévy, L.N.; Bosom, J.; Guerard, G.; Amor, S.B.; Bui, M.; Tran, H. DevOps Model Appproach for Monitoring Smart Energy Systems.
Energies 2022, 15, 5516. [CrossRef]

32. Johansson, B.; Rågberger, M.; Nolte, T.; Papadopoulos, A.V. Kubernetes orchestration of high availability distributed control
systems. In Proceedings of the 2022 IEEE International Conference on Industrial Technology (ICIT), Shanghai, China, 22–25
August 2022; pp. 1–8.

33. Zhu, C.; Han, B.; Zhao, Y. A Comparative Study of Spark on the bare metal and Kubernetes. In Proceedings of the 2020 6th
International Conference on Big Data and Information Analytics (BigDIA), Shenzhen, China, 4–6 December 2020; pp. 117–124.

34. Huedo, E.; Montero, R.S.; Moreno-Vozmediano, R.; Vázquez, C.; Holer, V.; Llorente, I.M. Opportunistic deployment of distributed
edge clouds for latency-critical applications. J. Grid Comput. 2021, 19, 1–16. [CrossRef]

35. Tonini, F.; Natalino, C.; Temesgene, D.A.; Ghebretensaé, Z.; Wosinska, L.; Monti, P. Benefits of Pod dimensioning with best-effort
resources in bare metal cloud native deployments. IEEE Netw. Lett. 2023, 5, 41–45. [CrossRef]

36. Klos, A.; Rosenbaum, M.; Schiffmann, W. Scalable and highly available multi-objective neural architecture search in bare metal
kubernetes cluster. In Proceedings of the 2021 IEEE International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), Portland, OR, USA, 17–21 June 2021; pp. 605–610.

37. Guzmán, R.E.P.; Rivera, M.; Wheeler, P.W.; Mirzaeva, G.; Espinosa, E.E.; Rohten, J.A. Microgrid Power Sharing Framework for
Software Defined Networking and Cybersecurity Analysis. IEEE Access 2022, 10, 111389–111405. [CrossRef]

38. Yadav, G.; Joshi, D.; Gopinath, L.; Soni, M.K. Reliability and Availability Optimization of Smart Microgrid Using Specific
Configuration of Renewable Resources and Considering Subcomponent Faults. Energies 2022, 15, 5994. [CrossRef]

39. Ahmad, S.; Mir, A.H. Scalability, Consistency, Reliability and Security in SDN Controllers: A Survey of Diverse SDN Controllers.
J. Netw. Syst. Manag. 2021, 29, 9. [CrossRef]

40. Mokhtar, H.; Di, X.; Zhou, Y.; Hassan, A.; Ma, Z.; Musa, S. Multiple-level threshold load balancing in distributed SDN controllers.
Comput. Netw. 2021, 198, 108369. [CrossRef]

41. Gupta, N.; Maashi, M.S.; Tanwar, S.; Badotra, S.; Aljebreen, M.; Bharany, S. A Comparative Study of Software Defined Networking
Controllers Using Mininet. Electronics 2022, 11, 2715. [CrossRef]

42. Guerrero, J.M.; Vasquez, J.C.; Matas, J.; De Vicu na, L.G.; Castilla, M. Hierarchical control of droop-controlled AC and DC
microgrids—A general approach toward standardization. IEEE Trans. Ind. Electron. 2010, 58, 158–172. [CrossRef]

43. Garces, L. Microgrid in Island Operation. 2022. Available online: https://www.plexim.com/support/application-examples/1259
(accessed on 3 December 2022).

44. Garces, L.J.; Liu, Y.; Bose, S. System and Method for Integrating Wind and Hydroelectric Generation and Pumped Hydro Energy
Storage Systems. U.S. Patent 7,239,035, 3 July 2007.

45. Zargar, R.H.M.; Yaghmaee, M.H. Energy exchange cooperative model in SDN-based interconnected multi-microgrids. Sustain.
Energy Grids Netw. 2021, 27, 100491. [CrossRef]

46. Khorsandroo, S.; Gallego Sanchez, A.; Tosun, A.S.; Arco, J.; Doriguzzi-Corin, R. Hybrid SDN evolution: A comprehensive survey
of the state-of-the-art. Comput. Netw. 2021, 192, 107981. [CrossRef]

47. Biswas, R.; Wu, J. Traffic Engineering to Minimize the Number of Rules in SDN Datacenters. IEEE Trans. Netw. Sci. Eng. 2021, 8,
1467–1477. [CrossRef]

48. Miguel-Alonso, J. A Research Review of OpenFlow for Datacenter Networking. IEEE Access 2022, 11, 770–786. [CrossRef]
49. CNC Foundations. Available online: https://k3s.io/ (accessed on 25 November 2022).
50. Labs, R. Rancher: Enterprise Kubernetes Management. Available online: https://www.rancher.com/ (accessed on 25 November

2022).
51. Wazirali, R.; Ahmad, R.; Alhiyari, S. SDN-OpenFlow Topology Discovery: An Overview of Performance Issues. Appl. Sci.-Basel

2021, 11, 6999. [CrossRef]
52. Yan, L.; Sheikholeslami, M.; Gong, W.; Shahidehpour, M.; Li, Z. Architecture, Control, and Implementation of Networked

Microgrids for Future Distribution Systems. J. Mod. Power Syst. Clean Energy 2022, 10, 286–299. [CrossRef]
53. Siva Ananmalay, J.A.; Barton, D. Open Networking Foundation. 2022. Available online: https://opennetworking.org/ (accessed

on 16 July 2022).

https://docs.onosproject.org/
http://doi.org/10.1016/j.comcom.2021.01.018
http://doi.org/10.1109/ACCESS.2020.3045563
http://doi.org/10.1155/2022/5037702
http://doi.org/10.1016/j.rser.2017.10.101
http://doi.org/10.3390/en16010484
http://doi.org/10.3390/en15155516
http://doi.org/10.1007/s10723-021-09545-3
http://doi.org/10.1109/LNET.2023.3235106
http://doi.org/10.1109/ACCESS.2022.3215434
http://doi.org/10.3390/en15165994
http://doi.org/10.1007/s10922-020-09575-4
http://doi.org/10.1016/j.comnet.2021.108369
http://doi.org/10.3390/electronics11172715
http://doi.org/10.1109/TIE.2010.2066534
https://www.plexim.com/support/application-examples/1259
http://doi.org/10.1016/j.segan.2021.100491
http://doi.org/10.1016/j.comnet.2021.107981
http://doi.org/10.1109/TNSE.2021.3060372
http://doi.org/10.1109/ACCESS.2022.3233466
https://k3s.io/
https://www.rancher.com/
http://doi.org/10.3390/app11156999
http://doi.org/10.35833/MPCE.2021.000669
https://opennetworking.org/

Sensors 2023, 23, 3395 26 of 26

54. Vachuska, T. ONOS Helm Charts. 2023. Available online: https://github.com/onosproject/onos-helm-charts (accessed on 3
December 2022).

55. Vachuska, T.; Halterman, J. Atomix-Controller: Kubernetes Controller for Atomix 4. Available online: https://github.com/
atomix/atomix-controller (accessed on 16 July 2022).

56. Open Network Foundation. Deploying Onos-Config. Available online: https://docs.onosproject.org/onos-config/docs/
deployment/ (accessed on 7 December 2022).

57. Pérez, R. Deploy HA Kubernetes Cluster for SDN Microgrid Hierarchical Control. 2023. Available online: https://github.com/
ricardopg1987/kubernetes-rpi (accessed on 3 December 2022).

58. CNC Foundations. Available online: https://docs.k3s.io/installation/ha-embedded (accessed on 25 September 2022).
59. KubeSphere. Set up an HA Kubernetes Cluster Using Keepalived and HAproxy. 2023. Available online: https://kubesphere.io/

docs/v3.3/installing-on-linux/high-availability-configurations/set-up-ha-cluster-using-keepalived-haproxy/ (accessed on 25
September 2022).

60. Zhang, Z. A comparison of low-speed communication modes. In Proceedings of the International Conference on Network
Communication and Information Security (ICNCIS 2021), Qingdao, China, 19–21 August 2022; Volume 12175, pp. 38–43.

61. ZodiacFX Communication Device. Available online: https://www.cryptomuseum.com/radio/zodiac/ (accessed on 17 March
2023).

62. Muhammad, A.; Saqib, M.; Song, W.C. Sensor Virtualization and Data Orchestration in Internet of Vehicles (IoV). In Proceedings
of the 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM), Bordeaux, France, 18–20 May 2021;
pp. 998–1003.

63. Heydari, R.; Dragicevic, T.; Blaabjerg, F. High-bandwidth secondary voltage and frequency control of vsc-based ac microgrid.
IEEE Trans. Power Electron. 2019, 34, 11320–11331. [CrossRef]

64. Dragičević, T. Model predictive control of power converters for robust and fast operation of AC microgrids. IEEE Trans. Power
Electron. 2017, 33, 6304–6317. [CrossRef]

65. Villalón, A.; Rivera, M.; Salgueiro, Y.; Mu noz, J.; Dragičević, T.; Blaabjerg, F. Predictive control for microgrid applications: A
review study. Energies 2020, 13, 2454. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/onosproject/onos-helm-charts
https://github.com/atomix/atomix-controller
https://github.com/atomix/atomix-controller
https://docs.onosproject.org/onos-config/docs/deployment/
https://docs.onosproject.org/onos-config/docs/deployment/
https://github.com/ricardopg1987/kubernetes-rpi
https://github.com/ricardopg1987/kubernetes-rpi
https://docs.k3s.io/installation/ha-embedded
https://kubesphere.io/docs/v3.3/installing-on-linux/high-availability-configurations/set-up-ha-cluster-using-keepalived-haproxy/
https://kubesphere.io/docs/v3.3/installing-on-linux/high-availability-configurations/set-up-ha-cluster-using-keepalived-haproxy/
https://www.cryptomuseum.com/radio/zodiac/
http://doi.org/10.1109/TPEL.2019.2896955
http://doi.org/10.1109/TPEL.2017.2744986
http://doi.org/10.3390/en13102454

	Introduction
	Main Disadvantage of an SDN Controller
	Centralized Controller
	Monolithic Controller
	Variability in Programming Interfaces
	Dependencies between Applications and Controllers
	Lack of Reliability and Scalability of SDN Controller

	Hierarchical Control Approach
	Disaggregating Functionalities and Migrating SDN as Microservices
	Implementation of ONOS SDN Controller
	Functionalities of onos-config Module
	Network Interface Cluster Implementation
	Create the Kubernetes Cluster on Raspberry
	Connection to PLECS RT Box
	Monitoring Platform

	Experimental Scenarios and Results
	Latency
	Throughput

	Communication Failure and Recovery Test
	Conclusions
	AppendixA
	AppendixB
	References

