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Abstract: The operational status of manufacturing equipment is directly related to the reliability of
the operation of manufacturing equipment and the continuity of operation of the production system.
Based on the analysis of the operation status of manufacturing equipment and its characteristics,
it is proposed that the concept of assessing the operation status of manufacturing equipment can
be realized by applying the real-time acquisition of accurate inspection data of important parts of
weak-motion units and comparing them with their motion status evaluation criteria. A differential
data fusion model based on the fractional-order differential operator is established through the study
of the application characteristics of fractional-order calculus theory. The advantages of Internet of
Things (IoT) technology and a fractional order differential fusion algorithm are integrated to obtain
real-time high-precision data of the operating parameters of manufacturing equipment, and the
research objective of the operating condition assessment of manufacturing equipment is realized.
The feasibility and effectiveness of the method are verified by applying the method to the machining
center operation status assessment.

Keywords: manufacturing equipment; fractional order calculus; effective evaluation; operational status

1. Introduction

Mechanical manufacturing equipment is an indispensable tool in industrial production,
and the reliability of manufacturing equipment is a prerequisite for the normal operation
of an enterprise’s manufacturing system. Therefore, realizing a real-time and accurate
assessment of the operational status of manufacturing equipment has become an urgent
problem in enterprise production. If we can achieve real-time accurate assessment of
the equipment’s operating status, we can scientifically develop equipment maintenance
programs and equipment failure points in advance to predict and prevent issues. To
ensure the reliability of the enterprise manufacturing equipment management system
and the normal operation of enterprise production, and promote the development of the
manufacturing industry, is of great significance.

According to the operation rule and lifecycle of manufacturing equipment, the op-
eration of manufacturing equipment can be divided into three stages: normal operation,
fault warning, and fault state. The evaluation of the equipment operation state at home
and abroad primarily focuses on the diagnosis stage of a fault. For example, Maliuk et al.
proposed a Gaussian mixture model-based (GMM) bearing fault band selection (GMM-
WBBS) method for signal processing, which benefits reliable feature extraction using a fault
frequency-oriented Gaussian mixture model (GMM) window series [1]. Stator winding
faults, broken rotor bar faults, rotor asymmetry, and abnormal air-gap eccentricity have
been used in the diagnosis of bearing faults [2–4]. Krzysztof Kecik et al. [5] presented the
problem of rolling bearing fault diagnosis based on a vibration velocity signal. To determine
an optimal set of fault-relevant variables, Deng et al. [6] proposed a fault reconstruction
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algorithm based on least angle regression (LARS). Referance [7,8] used a contribution
plot algorithm to identify the fault-relevant variable without any prior information about
the fault. Wang et al. applied the ADD-HMM algorithm to predict the occurrence of
mechanical equipment faults [9]. Reng et al. implemented a deep-learning waveform
image recognition method for the fault diagnosis technology of bearings [10]. Yong et al.
applied a Bayesian network to the fault diagnosis of weapons and equipment [11]. Bin et al.
applied manic power variability to determine the failure time of mechanical equipment [12].
Qi et al. [13] proposed a progressive fault diagnosis method (PFDM) for the overall diagno-
sis of an entire EHA system, which significantly improved the safety and reliability of the
double-redundancy EHA system. Zhou et al. [14] applied multiple states to evaluate the
operation status of manufacturing systems; however, the method was based on the ideal
state and failed to consider the complexity and variability of the manufacturing equipment
use environment.

It can be seen from the existing research that the proposed methods have the
following characteristics.

1. Limitations of application objects: Each fault diagnosis method mentioned above can
only be applied to specific research objects, and cannot be extended to the diagnosis
of various faults in other manufacturing equipment.

2. Limitations of application functions: In equipment management, there are no real-
time online monitoring and fault prediction functions that affect the reliability of
equipment operation and the continuity of production system work.

Therefore, there is an urgent need for a method that can monitor and evaluate the run-
ning status of various online equipment in the current manufacturing systems. This method
should have the function of equipment operation state judgment and fault prediction in
advance and ensure the normal operation of equipment and production systems through
the timely troubleshooting of equipment faults. This study draws on the research results of
various experts and scholars in the evaluation of the operational status of different types
of equipment. To analyze the working characteristics of various types of manufacturing
equipment, we explore evaluation methods that can be adapted to the operating status of
multiple types of manufacturing equipment, combine the advantages of IoT technology
and data processing technology, and achieve the research goal of real-time and accurate
evaluation of the operating status of various types of manufacturing equipment.

2. Manufacturing Equipment Operating Condition Assessment Methods
2.1. Fundamental Principle

Manufacturing equipment is a combination of multiple motion units, each of which
has its own motion law and parameters. Many moving segments exist as long as there is a
moving segment in a state of failure, and the equipment fails. Therefore, the operational
status of manufacturing equipment depends on the shortest life-cycle of all motion units.
As part of the manufacturing equipment, the working state of the motion unit is divided
into three stages: normal operation, fault warning, and fault state. The motion parameters
under each working state have their own value intervals: [0, C1], [C1, C2], and [C2, C3].
If we can obtain accurate operating parameters C of the motion unit in real time, we can
accurately judge the operating state of the motion unit or even the entire equipment in real
time by referring to the value intervals of each working state.

2.2. Implementation Steps of the Method

According to the evaluation principle of the operational state of the manufacturing
equipment, the evaluation of the operational state of the entire equipment can be divided
into the following steps:

1. The main motion units that affect the running state of the equipment were analyzed
according to the type of manufacturing equipment.
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2. The operation law of the main motion units was analyzed, and the motion unit with
the shortest life-cycle was selected.

3. The main parameters affecting the running state of the motion unit and their value
ranges under different working states were analyzed.

4. High-precision detection data for important motion parameters can be obtained when
the motion unit operates normally in real time.

5. The running state of the motion unit was determined by comparing the high-precision
parameter values obtained in real time with the above value range.

2.3. Premise of Method Implementation

According to the introduction of the basic principle and implementation scheme of
the evaluation method of manufacturing equipment operation status, it can be seen that
the implementation of the scheme needs to solve the following three problems.

1. The judgment technology of the shortest life-cycle motion unit among many motion units;
2. The real-time detection technology for the main parameters affecting the running

state of the motion unit;
3. The high-precision acquisition technology of the main detection information data in a

complex environment.

Among the above three preconditions, the judgment technology of the shortest life-
cycle motion unit in the motion unit can realize the judgment function of the minimum
life-cycle motion unit of different manufacturing equipment by analyzing the motion char-
acteristics of the motion unit and the accumulation of equipment management experience.
In the era of rapid development of information network technology, there are no technical
problems when using IoT to obtain all types of detection information and data in real time;
however, in the collection of detection information data, the detection value of the infor-
mation will inevitably be affected by factors such as equipment performance, the working
environment, and signal interference, which will cause detection errors in information
data, resulting in the acquisition technology of high-precision information data becoming
the main problem in the implementation of manufacturing equipment operation status
evaluation schemes.

3. High-Precision Information Data Acquisition Technology

The essence of the hardware method is to improve the detection accuracy of the infor-
mation data using high-performance detection instruments. The main research results for
the hardware methods are as follows: Hu et al. [15] proposed a high-precision safety valve
test architecture with three testing channels and effectively solved the problems of current
safety valve testing. Huijun et al. [16] developed a comprehensive sliding-separation test
platform for RV reducers to realize the high-precision and high-display test performance for
various RV reducer parameters. References [17,18] proposed a load differential radiation pulse
on a transient electromagnetic high-performance radiation source for pulse-scanning detec-
tion to solve the problems of urban electromagnetic interference and insufficient harmonic
components emitted by radiation sources. References [19–21] designed a hardware system
based on radar and realized a real-time detection function for underground space-related
information by enlarging the detection information. Jiaqi et al. [22] proposed a one-stage
remote sensing image object detection model: a multi-feature information complementary
detector (MFICDet), which can improve the ability of the model to recognize long-distance
dependent information and establish spatial–location relationships between features.

However, in engineering applications, we found that the hardware method had the
following shortcomings.

1. The detection accuracy of information data depends on the performance of the detec-
tion equipment. With improvements in detection accuracy, the cost of the detection
system is higher. Therefore, they exhibit low-cost performance.
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2. Their essence is to reduce the signal distortion caused by energy loss and signal
interference in the information transmission process by improving signal strength.
However, when collecting information, the measurement error of the information
data cannot be eliminated owing to the differences in the equipment performance and
working environment.

In recent years, most researchers have attempted to use software methods to achieve
high-precision information data detection to solve the shortage of hardware methods for
information data detection in complex environments. The essence of the software method
is the information data-fusion algorithm. To date, many studies have been conducted on
this topic. Common mathematical algorithms are fuzzy set theory [23], fuzzy neural net-
works [24], the probability model [25], and the particle swarm optimization algorithm [26].
For example, Huo et al. [27] proposed an integral infinite log-ratio algorithm (IILRA) and
an integral infinity log-ratio algorithm based on signal-to-noise ratio (BSNR-IILRA) to
improve the detection accuracy of the laser communication detection position in the atmo-
sphere. Zhiyuan et al. [28] proposed a normalized-variance detection method based on
compression sensing measurements of received signals and solved the problem of fast and
accurate spectrum sensing technology under the condition of a low signal-to-noise ratio.
Liu et al. [29] proposed a target detection algorithm based on improved RetinaNet, which
is suitable for transmission-line defect detection and improves the intelligent detection
accuracy of UAV in power systems. Cheng et al. [30] proposed a lightweight ECA-YOLOX-
Tiny model by embedding an efficient channel attention (ECA) module into it, which has a
higher response rate for decision areas and special backgrounds, such as overlapping small
target insulators, insulators obscured by tower poles, or insulators with high-similarity
backgrounds. Liu Wenqiang et al. [31] introduced a point cloud segmentation and recogni-
tion method based on three-dimensional convolutional neural networks (3-D CNNs) to
determine the different components of the catenary cantilever devices. Yin et al. [32] pro-
posed a complementary symmetric geometry-free (CSGF) method that made the detection
of cycle slips more comprehensive and accurate. Lingfeng et al. [33] established a junction
temperature model based on a multiple linear stepwise regression algorithm, and used it
to extract high-precision intersection online temperatures. However, through the analysis
of various current software methods, the following deficiencies were found in the detection
of information in complex environments:

1. They do not improve the strength of the detection information and cannot solve the
problems of energy loss and signal interference during information transmission.
Therefore, it is difficult to apply these methods to engineering practice.

2. These methods do not analyze the cause of the information data detection error,
the change rule of each influencing factor, or its influence on the detection value.
Therefore, it is difficult to improve the detection accuracy of information data by
reducing the detection error caused by various influencing factors.

That being the case, we conclude that an ideal high-precision detection method for
information data under the joint action of multiple influencing factors has not yet been
developed. To solve these problems, our team has been using the method of fractional
calculus theory in data processing for many years [34–39] and found that fractional differential
operators are suitable for studying nonlinear, non-causal, and non-stationary signals, and
have the dual functions of improving detection information and enhancing signal strength.
Therefore, by fusing the differences between the information and data, the information and
data detection errors caused by various influencing factors can be eliminated. By improving
the signal strength of the information, it can compensate for the energy loss of the signal in
the transmission process and improve the anti-interference ability of the signal. Therefore,
in this paper, we try to combine fractional order calculus with IoT technology to realize the
function of real-time accurate evaluation of the operation status of a manufacturing assembly.
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4. Fractional Order Differentiation
4.1. Definition of Fractional Order Differentiation

Fractional differentials, also known as fractional derivatives, extend the differential
order of integer-order differential equations to a fractional order. Fractional differentials
(FDs) emerged in 1812. In hundreds of years of development, many scholars have proposed
their own definition methods and theoretical systems based on their own understanding
and application fields. Therefore, a strict definition of the fractional differential is not yet
available. Currently, the most commonly used definitions are those of Grunwald–Letnikov
(G–L), Caputo, and Riemann–Liouville (R–L). Assuming that the information acquisition
system collects any energy signal f (t) and f (t) ∈ L2 (R), we can obtain the three kinds of
fractional differentials of signal f (t) as follows:

4.1.1. R–L Definition of the Fractional Differential of the Fractional

According to the principle of mutual inverse operation of Cauchy’s indefinite integral
formula with fractional differentiation and fractional integration, we can obtain the R–L
definition of fractional differentiation:

aDv
t f (t) =

dn

dtn

[
aDv−n f (t)

]
=

1
Γ(n− v)

dn

dtn

∫ t

a
(t− τ)n−v−1 f (τ)dτ (1)

In the equation above, 0 ≤ n − 1 < v < n, τ is the signal frequency, and τ ∈ [a, t], Γ is
the gamma function.

The main advantage of this definition is that the initial value of the Laplace transform
can be obtained using only an integer-order derivative. Its disadvantage is that it has
stricter requirements for function f (x) than other definitions, but its premise is that the
integer-order derivative of function f (x) is absolutely integrable.

4.1.2. G–L Definition of the Fractional Differential of the Fractional

For any real number v, where the integer part of v is denoted as [v], assuming that the
function f (t) has (n + 1)-order continuous derivatives within the interval [a, t], when v > 0
and n ≥ [v], the fractional v-order derivative is defined as follows:

aDv
t f (t) = lim

h→0
f (v)h (t) = lim

h→0
h−v

[ t−a
h ]

∑
j=0

(−1)j
(

v
j

)
f (t− jh) (2)

In the above equation, 0 ≤ n − 1< v < n, h is the value of the step, and
(

v
j

)
is a

binomial coefficient, which is given by(
v
j

)
=

v(v− 1)(v− 2) . . . (v− j + 1)
j!

=

[
−v

j

]
(3)

Based on the classical definition of the integer derivative of a continuous function, this
definition extends the order of the differential from integer to fraction, which is suitable for
numerical calculations.

4.1.3. Caputo Definition of the Fractional Differential of the Fractional

The equation is as follows:

C
a Dv

t f (t) = aD−(n−v)
t [Dn f (t)] (4)

In the equation above, 0 ≤ n − 1 < v < n.
To simplify the calculation of the fractional differential, this definition further improves

the Grunwald–Letnikov definition based on the basic properties of fractional calculus.
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Among the three definitions, the G–L definition is widely used in engineering
because of its simple calculation process and high speed. Therefore, the G–L definition
of fractional partial differentials was used in this study to research manufacturing
equipment evaluation technology.

4.2. Properties and Applications of Fractional Order Differentiation

Detection data were obtained from the analysis and processing of the detection infor-
mation. Therefore, the measurement error generated during the acquisition and transmis-
sion of detection information directly affects the accuracy of detection data. In terms of the
mathematical properties of the signal and the characteristics of the signal structure, the
detection signal contains information on the fractional differential characteristics; however,
this type of information is not suitable for processing by integer differential operators. For
years, many mathematicians and scientists have attempted to apply fractional calculus
theory in signal processing and have achieved good application results. It is assumed that
there is a detection signal S(t), where S(t) ∈ L2(R) and its Fourier transform is

S(ω̂) =
∫
R

S(t)e−iωtdt (5)

Let Sv(t) be the v-order differential of S(t). According to the properties of the Fourier
transform, we know that the v-order differential operator is equal to the multiplicative
operator of the v-order differential multiplier function, d̂(ω) = (iω)v. Thus, we obtain the
following equation:

DvS(t) FT⇔
(

D̂S
)v
(ω) = (iω)vS(ω̂) = |ω|veiθv(ω)S(ω̂) (6)

From the perspective of signal modulation, the physical meaning of the fractional
differential of a detection signal is equivalent to the generalized amplitude and phase
modulation. From the perspective of signal processing, the v-order fractional calculus
operation of the detected signal is equivalent to establishing a linear time-invariant filtering
system for the signal, and its filtering function is:

dv(ω̂) = [ω]veiθv(ω) (7)

Through the Fourier transform defined by the G–L of fractional-order calculus, it
is known that the essence of fractional-order calculus processing of the energy signal is
to filter the signal, and its filter function is jv(ω̂) = (iω)v = |ω|veiθv(ω). According to
the filter function, we can draw the spectral characteristic curves of the fractional-order
differential operator and fractional-order integral operator during signal processing, as
shown in Figure 1. After analyzing the spectral characteristic curves, we obtained the
following characteristics of fractional-order calculus in the signal processing.

From Equation (7), we know that, after fractional differential processing, the signal
has the following characteristics:

1. The signal shows different levels of signal enhancement for different fractional dif-
ferential operators, so that the very-low-frequency components of the signal can be
preserved nonlinearly.

2. From a physical perspective, signal processing by the fractional differential operator
can be understood as the generalized amplitude phase modulation of the signal. Thus,
the fractional differential operator can significantly improve signal strength when
processing the high-frequency part of the signal.

3. The fractional differential operator significantly improved the high-frequency signal
strength. It also improved low-frequency signals.
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5. Fractional Order Differentiation Based Fusion Model of Equipment
Operation Parameters
5.1. Characteristics of Manufacturing Equipment Inspection Information Data

Currently, manufacturing systems are divided into two modes: continuous and dis-
crete manufacturing. Continuous manufacturing is mainly applied to the production
modes of small and large batches. During the production process, the operational status
of the motion unit changes regularly. As long as the change rule of the operation status
and the evaluation criteria of each operation status are mastered, the evaluation function of
the operation status of the continuous manufacturing equipment can be realized. Discrete
manufacturing is a multi-variety and small-batch production mode, and the difference
in product types leads to differences in the operating status of manufacturing equipment
during the manufacturing process. Therefore, the operation status evaluation scheme of
continuous manufacturing equipment cannot be applied to the evaluation of the operation
status of discrete manufacturing equipment. Aiming at the important problem that the
operation status of manufacturing equipment in the two types of manufacturing is quite
different, and the traditional evaluation technology is difficult to consider, this study ex-
plores a method to realize the evaluation function of the operation status of manufacturing
equipment in the two types of manufacturing by comparing the real-time acquisition of
accurate motion parameters and the evaluation criteria without considering the motion
rules of manufacturing equipment.

5.2. Fractional Order Differential Based Operational State Evaluation Model

According to the spectral characteristics of fractional calculus in information process-
ing, it is known that both fractional calculus and integral operators have the advantage
of reducing the measurement error caused by external interference signals, and both can
effectively fuse to eliminate the information data detection error caused by a single in-
fluencing factor in a one-dimensional space. However, the fractional-order differential
algorithm has the advantage of enhancing the signal strength and reliability of the detection
system compared to the fractional-order integral algorithm. Therefore, the fractional-order
differential algorithm is suitable for processing the main parameter values of the motion
unit of manufacturing equipment.

After analyzing the common fault types of manufacturing equipment, we can obtain
the main fault types and their main causes, analyze the motion unit where the fault point is
located, and obtain the main influencing factor x of its operation status. Then, the value
interval [a, b] of the influencing factor x and its corresponding detection value Si in the
interval after the experiment fit the function formula S(x) between the influencing factor
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x and the detection value S. The mathematical model of the manufacturing equipment
operation status evaluation is shown in Equation (8) according to Equation (2).

aDv
xS(x) = lim

h→0
S(v)

h (x) = lim
h→0

h−v
[ b−a

h ]

∑
i=0

(−1)i
(

v
i

)
S(x− ih) ≈ S(x)− vS(x− h)

− v(1−v)
2! S(x− 2h) + · · ·+ v(1−v)(2−v)···(n−1−v)

n! S(x− nh)

(8)

6. Application of Assessment Methods
6.1. Experimental Platform Construction

According to the analysis of the types and causes of manufacturing equipment failures
over the years, it can be seen that the common failure of manufacturing equipment is
the decline in the movement accuracy of the spindle components, which leads to the
equipment’s failure to meet the processing accuracy requirements. After analyzing the
causes of various machine tool spindle unit failures, it was concluded that the main reason
is that the fatigue damage of the spindle bearing brings a bearing clearance greater than
the maximum allowable value, resulting in a machine tool machining accuracy below the
machining accuracy standards. Most bearings used in machine tool spindle components
are rolling bearings, which have the performance characteristics of easy wear and a short
life-cycle in the application, thus becoming the main source of spindle motion unit failure.
The causes of the short bearing life-cycle are fatigue damage and permanent deformation;
however, fatigue damage is the main cause of bearing failure, which is the result of its
accumulation owing to the amount of wear during normal operation. Therefore, only by
obtaining the actual wear amount of spindle bearings in real time and referring to the value
interval of each operating condition can the evaluation function of the operating condition
of the manufacturing equipment be obtained.

The bearings used in the spindle motion unit of the equipment were the NN3046
series cylindrical roller bearings. Because the equipment is used in discrete manufacturing
systems, the wear of bearings presents the characteristics of irregular and dynamic changes,
which makes the traditional method of applying the change law of motion parameters to
evaluate the equipment operation state appear powerless. Therefore, this study attempts to
verify the feasibility and reliability of the application of this method in the evaluation of
the equipment operation state.

6.2. Information Data Collection
6.2.1. Data Collection Methods

The best solution for measuring the parameter value of the object is to place the
corresponding sensor at the corresponding position of the object; however, in the detection
of rolling bearing wear of precision machine tools, the existence of disassembly of the main
moving parts of the machine tool leads to a decrease in accuracy. The detection value of
the clearance between the outer ring of the rolling bearing and the spindle is affected by
roller interference and other factors, making it difficult to implement the above method
in the detection of spindle bearing wear of precision machine tools. Because the front
bearing of the machining center is the component with the greatest force and wear in the
main motion system, based on the analysis of the structure of the main drive system, the
experiment used a displacement sensor arranged on the inside of the front bearing end
cover of the spindle near the spindle, and indirectly realized the detection function of the
front bearing wear by detecting the value of the external runout of the spindle during
operation. Because it is difficult to predict the magnitude and direction of the force on the
spindle during machining and the speed is too fast to result in the loss of experimental
data owing to the lack of sensitivity of the testing instrument, the experiment was carried
out under idling conditions with a spindle speed of 750 r/min. When the spindle is idle,
the clearance caused by bearing wear is reflected in the upper part of the bearing bore
under the action of self-weight. Therefore, the effective detection of bearing wear can be
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realized by arranging displacement sensors only in the upper part of the spindle. Based
on a comprehensive consideration of the installation space and detection accuracy, five
L3002-12.7 LVDT displacement sensors were placed in the upper part of the bearing-end
cover, the configuration of which is shown in Figure 2.
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To ensure real-time detection data, the experiment used IoT technology to transmit the
information collected by each sensor in real time. IoT technology has two methods for the
transmission of detection information: wireless and wired networks. Wireless networks have
the advantage of real-time collection of mobile equipment production information, but also
have a shortage of information detection errors, which are suitable for the real time collection of
production information of fixed equipment in close proximity, and have the double advantage
of real time collection and accuracy in the collection of fixed equipment production information.
Combining the advantages and disadvantages of the two transmission methods and the
working characteristics of the equipment in this case, a wired network was applied to transmit
the real time collected bearing clearance information to the information processing center for
the expert system to analyze and judge.

6.2.2. Experimental Data Collection

In a limited area, the variability of similar testing information data mainly originates
from variability in the performance of the testing equipment. Although the standard
deviation is an important indicator reflecting the performance of the testing equipment, the
performance of each sensor changes dynamically owing to the influence of the service life
and working environment. To obtain the true standard deviation of the sensors during the
test, the equipment spindle at 750 r/min idle speed, the application of each sensor in the
C-point position to collect test data, the spindle every two revolutions sampled a total of
six times, and the relevant test data and its standard deviation values are listed in Table 1.

After obtaining the standard deviation of each sensor, the spindle continues to rotate,
and the five sensors are sampled six times at the detection points A, B, C, D and E according
to the above sampling frequency, and the average of the six detection values is taken as the
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detection value of the sensors at each point. The detection values of each sensor at different
points are shown in Table 2.

Table 1. List of detection values and their standard deviations for each sensor at point C (mm).

Sensor No.
Number of Measurement

Mean Value Sc Standard Deviation Si
1st 2nd 3rd 4th 5th 6th

1# 0.164 0.158 0.168 0.166 0.171 0.158 0.1642 0.0048
2# 0.162 0.171 0.168 0.175 0.165 0.173 0.1690 0.0045
3# 0.162 0.173 0.165 0.163 0.171 0.165 0.1665 0.0041
4# 0.172 0.165 0.174 0.162 0.169 0.165 0.1678 0.0042
5# 0.168 0.162 0.165 0.163 0.165 0.173 0.1660 0.0037

Table 2. List of detection values of each sensor at different detection points and their average
values (mm).

Location of Sampling
Points

Sensor No.
Average Value wi

Standard Deviation
before Fusion swi1# 2# 3# 4# 5#

A 0.112 0.105 0.108 0.118 0.114 0.1114 0.00454
B 0.158 0.162 0.165 0.162 0.156 0.1606 0.00320
C 0.175 0.172 0.178 0.171 0.177 0.1746 0.00273
D 0.213 0.198 0.204 0.212 0.208 0.2070 0.00632
E 0.152 0.147 0.145 0.149 0.146 0.1478 0.00248

Standard deviation
of sensors Si

0.0048 0.0045 0.0041 0.0042 0.0037 Total average w 0.1603

6.3. Analysis and Processing of Detection Data

Although the data shown in Table 2 can be intuitively seen, sampling point D is the
location of the largest amount of wear, because the differences in the performance of the
testing equipment lead to a large difference between the detection data values, resulting in
a large error between the detection data of different sensors at the same sampling point,
such as sampling point A, where there are 2# and 4# sensor measurement errors of more
than 5%; therefore, the data in Table 1 are not easy to use in the evaluation of the wear
amount. That being the case, the evaluation of spindle bearing wear must be based on
the high accuracy of the measured values at each sampling point to lay the foundation for
the comparative method in the identification of the maximum wear point and to avoid
misjudgment in other cases.

6.3.1. Selection of the Influence Factor of the Detection Value

According to the above analysis, information detection data in the collection process
will be affected by a variety of factors, such as equipment performance, the working
environment, and signal interference; however, whether it is mobile equipment or fixed
equipment, its working interval is within a limited range, and the working environment
and signal interference factors on the same detection value are basically the same. Therefore,
the variability between the detection data mainly comes from the variability between the
performance of the detection equipment. Considering that the standard deviation is the
best parameter for measuring the performance of the testing equipment, the standard
deviation Si of the sensor can be used as the influencing factor x of the bearing clearance
detection value. The influence of the influencing factor on the detection value of each
testing point can be explored according to the standard deviation of each sensor and its
measured value at each testing point, as listed in Table 2.



Sensors 2023, 23, 3373 11 of 16

6.3.2. The Functional Relationship between the Detection Value Fi and the Impact Factor xi

Among various fitting algorithms, the least-squares method has the advantage of not
requiring a priori data information in the data processing process. It is widely used to
fit the function polynomial of the measurement data and can obtain the ideal data fusion
accuracy, which is suitable for fitting the equation of the function F(x) between the detected
value Fi and each influence factor xi (standard deviation Si) at each point in the experiment;
assuming that the expression of the function F(x) is

F(x) = a0 + a1x + a2x2 + · · ·+ anxm (9)

According to Equation (9), we can determine the parameters in the equation to fit the
required functional relationship: According to the data values shown in Table 2, the polyfit
function in MATLAB software can be applied to fit the values of each sampling point, as
shown in Equation (10), and the functional relationship between each influence factor xi
Fa(x), Fb(x), Fc(x), Fd(x), and Fe(x).

Fa(x) = −3.6416x + 0.1269
Fb(x) = 1.0405x + 0.1562
Fc(x) = −3.0058x + 0.1874
Fd(x) = 1.0116x + 0.2027
Fe(x) = 5.0x + 0.1265

(10)

6.3.3. Selection of Fractional Order v and Step Size h Values

As shown by Equation (8), establishing a detection data fusion model based on frac-
tional differentiation under the definition of G–L requires two problems to be solved:
determination of the fractional order v and the selection of step h.

1. Selection of order v:

After analyzing the amplitude-frequency characteristics of the fractional-order differ-
ential operator, it can be seen that when the differential order v ∈ [0,1], the signal intensity
in the high-frequency stage increases with an increase in the fractional order. However,
with an increase in the fractional order, the difference between the differential operators of
different orders in the signal enhancement value shows a decreasing trend. Therefore, from
the viewpoint of saving space and facilitating calculations, this experiment explores the
application effect of the fractional-order differential operator in the processing of machining
center spindle bearing wear detection data when the fractional order v is taken as 0.5, which
is the middle value of [0,1].

2. Selection of step h:

During the processing of information data, the signal frequency depends on the value
interval [a, b] of the influencing factor and its step value h. According to the amplitude-
frequency characteristics of the fractional-order differential operator, it is known that the
step length and value interval of the influence factor are associated with the frequency of
the signal; however, in the high-frequency region of the signal, the difference between the
signal enhancement effect of the differential operator in the same order is negligible. The
smaller the step size h, the higher the fusion accuracy of the data; however, it also causes a
decrease in the fusion efficiency owing to the increase in the computation step n. Therefore,
the fusion speed is considered in this case. Considering both the fusion speed and fusion
accuracy, the fusion step h = 0.0001 is taken according to the value range [0.0037,0.0048]
of the influence factor x (sensor standard deviation) shown in Table 2, and the number of
steps n = 11 must be calculated.
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6.3.4. Information Data Processing Techniques Based on Fractional Order
Differential Operators

According to the fusion model of manufacturing equipment operation parameters un-
der the G–L definition shown in Equation (3), the fusion processing model of the machining
center spindle bearing wear data can be expressed as

aDv
xFk(x) = lim

h→0
h−v

[ b−a
h ]

∑
i=0

(−1)i
(

v
i

)
Fk(x− ih) ≈ Fk(x)− vFk(x− h)

− v(1−v)
2! Fk(x− 2h) + · · ·+ v(1−v)(2−v)···(n−1−v)

n! Fk(x− nh)

(11)

where: v = 0.5, n = 11, h = 0.0001, k = a, b, c, d, e.
In Equation (11), x is the standard deviation Si of each sensor and Fk is its detection

value at each position. Now, the parameters (v, h, n) are substituted into Equation (6), and
combined with Equation (5), and the detection data Fij of each sensor at different positions
shown in Table 3 can be obtained using MATLAB (R2022a).

Table 3. List of the fusion values of the detection values of each sensor at different detection
points (mm).

Sampling Site Location
Sensor No.

Average Value rj Magnification Factor K
1# 2# 3# 4# 5#

A 1.7734 1.7918 1.8163 1.8102 1.8408 1.8065

17.05
B 2.7310 2.7258 2.7188 2.7205 2.7118 2.7216
C 2.8543 2.8695 2.8897 2.8846 2.9099 2.8816
D 3.6784 3.6939 3.6545 3.6694 3.6452 3.6683
E 2.6244 2.5991 2.5655 2.5739 2.5318 2.5789

Standard deviation
of sensors Si

0.0048 0.0045 0.0041 0.0042 0.0037 Average value after
fusion r 2.733

From the data shown in Table 3, it can be seen that the fused data values show
two characteristics compared to the data before fusion processing: the measured values of
different sensors at each detection point are evenly distributed around the mean value, the
variability between the data is significantly reduced, the fused values increase significantly,
and the amplification factor K is as high as 17.05 compared to that before fusion. It was ver-
ified that the fractional-order differential operator has amplitude-frequency characteristics
that enhance the information’s intensity and reduce the variability among the information
data. To compare the accuracy of the data before and after the fusion of the machining
center spindle bearing wear, the data shown in Table 3 were divided by the amplification
factor K to obtain the final value of the data shown in Table 2 after the fusion of the 0.5th
order differential operator. The results are shown in Table 4.

Table 4. List of the fusion results of the detection values of each sensor at different detection points (mm).

Sampling Site Location
Sensor No.

Average Value r
′

j
Standard Deviation

after Fusion srj1# 2# 3# 4# 5#

A 0.1040 0.1051 0.1065 0.1062 0.1080 0.1060 0.00144
B 0.1602 0.1599 0.1595 0.1596 0.1590 0.1596 0.00038
C 0.1674 0.1683 0.1695 0.1692 0.1707 0.1690 0.00111
D 0.2157 0.2178 0.2143 0.2152 0.2109 0.2148 0.00128
E 0.1539 0.1524 0.1505 0.1510 0.1485 0.1513 0.00184

Standard deviation
of sensors Si

0.0048 0.0045 0.0041 0.0042 0.0037
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6.4. Analysis of Operating Condition Assessment Results
6.4.1. Evaluation Criteria for Bearing Wear

Machinery manufacturing equipment in the important parts of the life-cycle is equipped
with normal operation [0,T1], failure warning [T1,T2], and failure state [T2,T3] in three time
periods, corresponding to the main parameter values for [0,C1], [C1,C2], and [C2,C3]. The
state for the standard parts and important parts of the main parameters have been devel-
oped to correspond to the value of the standard (parameter value C ≤ C3). However, the C1
and C2 parameter values have not been issued by the state corresponding to the value of
the standard; each enterprise can only be determined according to the performance of the
equipment and production characteristics. In this case, considering that the performance of
the machining center is slightly higher than that of similar machine tools, and it is mainly
used for processing small- and low-precision parts, with reference to the national standard
of C3 ≤ 0.3 mm for the bearing clearance of a diameter more than 100 mm, the parameters
C1 = 0.280 mm and C2 = 0.295 mm were set in the experiment to judge the operation of the
machining center under the existing conditions.

6.4.2. Evaluation of Operation Status

Combining the data shown in Tables 2 and 4, it can be seen that the standard deviation
between the fused data is significantly reduced compared with that before fusion. As
shown at Detection Point D, the standard deviation of the fused detection data is 0.0013,
and the precision is close to five times that before fusion, which is significantly lower than
0.0055 of the least squares method and 0.0036 of the particle swarm optimization [26]. The
data distribution diagram of the detection point D before and after fusion is shown in
Figure 3. It can be observed that the data are randomly distributed near their average
value after being processed by the 0.5-order differential operator, and the discreteness is
significantly reduced, greatly improving the accuracy of the detection data of the spindle
bearing wear of the machining center. According to the data shown in Table 4, the test
data at test point D were significantly higher than the measured values at the other test
points. According to the evaluation method of the fault points mentioned above, test point
D is the maximum point of the wear amount of the spindle bearing of the machining
center in this case, and the wear amount is δD = 0.215 mm. With reference to the above set
operational state evaluation standard, the wear amount δD is within [0,0.28], indicating
that the equipment is in normal operation.

6.5. Application Analysis of Experimental Results

Based on the preconditions for the implementation of the evaluation method of the
manufacturing equipment operation state described above, this case, through the analysis of
the operation characteristics of the current typical manufacturing equipment-machining center,
we conclude that the wear value of the main shaft bearing is an important basis for evaluating
the operation state of the machining center and for realizing the judgment function of the
shortest life-cycle motion unit among many motion units. In view of the fact that the position
of the equipment in this case is static during operation, the detection information transmission
mode based on LAN was adopted, which avoids the lack of information distortion caused by
various interference factors in the transmission process and realizes the real-time detection
function of the manufacturing equipment movement unit parameters. Through research
on fractional calculus theory, the application of the fractional differential operator has the
multiple advantages of enhancing the signal strength, improving the accuracy of the detection
data, and realizing the high-precision acquisition function of the detection information data.
Therefore, the entire experimental process meets the three prerequisites for the evaluation
of the manufacturing equipment’s operation status. Through the application of the method
described in this paper, the research goal of the real-time and accurate evaluation of the
manufacturing equipment’s operation status is achieved.
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7. Conclusions

Through an analysis of the operation characteristics of the manufacturing equipment,
it was concluded that the operation status of the manufacturing equipment depends on the
operation characteristics of the weakest motion unit in the equipment. It is proposed that
the application of real-time acquisition of accurate values of important motion parameters
in the motion unit can realize the concept of real-time evaluation of the operational status
of manufacturing equipment by comparing it with its evaluation criteria. Through the
research of fractional calculus theory, this paper proposes a combination of IoT technology
advantages and fractional differential algorithms; to use IoT technology to realize the
real-time collection function of detection information data, to apply a fractional differential
operator to significantly reduce the difference between the detection data, and to solve the
technical problem of real-time acquisition of high-precision detection values for the main
motion parameters of manufacturing equipment movement units, which lays a foundation
for the implementation of real-time and accurate evaluation schemes for manufacturing
equipment operation status. Through the application of a real-time evaluation experiment
on a machining center’s running state, the effectiveness and feasibility of the method
described in this paper, in engineering practice, was verified.
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