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Abstract: In order to balance the performance index and computational efficiency of the active 

suspension control system, this paper offers a fast distributed model predictive control (DMPC) 

method based on multi-agents for the active suspension system. Firstly, a sev-

en-degrees-of-freedom model of the vehicle is created. This study establishes a reduced-dimension 

vehicle model based on graph theory in accordance with its network topology and mutual coupling 

constraints. Then, for engineering applications, a multi-agent-based distributed model predictive 

control method of an active suspension system is presented. The partial differential equation of 

rolling optimization is solved by a radical basis function (RBF) neural network. It improves the 

computational efficiency of the algorithm on the premise of satisfying multi-objective optimization. 

Finally, the joint simulation of CarSim and Matlab/Simulink shows that the control system can 

greatly minimize the vertical acceleration, pitch acceleration, and roll acceleration of the vehicle 

body. In particular, under the steering condition, it can take into account the safety, comfort, and 

handling stability of the vehicle at the same time. 

Keywords: active suspension system; distributed model predictive control; multi-agent; RBF  

neural network 

 

1. Introduction 

The pitch and roll motions of the vehicle will cause the occupants to shake, which 

seriously affects the ride comfort of the vehicle. Therefore, research on the restraint of the 

pitch and roll motion of the vehicle has great practical significance [1,2]. With the gradual 

intellectualization, networking, electrification, and sharing of the automotive technology 

field, people have higher demands for computing power, ride comfort, and driving 

safety. 

Compared with passive and semi-active suspension, active suspension reduces the 

vibration of sprung mass caused by road excitation in an active way, so the damping 

effect is more obvious [3]. Active suspension can isolate the road vibration and enhance 

the road grip be�er under the control of its controller, which can not only enhance the 

comfort of the passengers but also ensure the safety of the vehicle. In addition, active 

suspension can realize multi-objective control, thus balancing the conflict between ride 

comfort and driving safety in electric vehicles [4,5]. 

At present, the more common control methods to improve suspension performance 

include optimal control [6], neural network control [7], adaptive control [8], sliding mode 

control [9,10], fuzzy control [11], and model predictive control [12–14]. Ding et al. [6] 

proposed the optimal selection strategy of anti-interference coefficients in the 

time-delay-dependent H-infinity/H-2 controller, and the effectiveness of the proposed 

method is verified by simulation. Wang et al. [7] proposed an output feedback algorithm 
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based on a neural network for the active suspension system. They constructed an auxil-

iary system to compensate for the input saturation constraint, and riding comfort and 

safety conditions were ensured. Hao et al. [8] presented a novel multi-objective com-

mand-filtered adaptive control strategy for active suspension systems with nonlinear 

hydraulic actuators, which effectively improves the ride comfort. Control methods such 

as PID and LQR cannot provide the best effect for improving vehicle vibration; Chen et 

al. [9] proposed a revised active disturbance rejection sliding mode controller to improve 

the vertical stability of UGV. Liu et al. [10] proposed an adaptive sliding mode control 

method for active suspension systems with specified performance, which can stabilize 

the suspension system′s displacement and speed in finite time. Robert et al. [11] devel-

oped fuzzy control of active suspension system, and the results obtained from the simu-

lation of the road profile show that the proposed fuzzy control performs be�er than the 

conventional controller in terms of body displacement and body acceleration. For the 

past few years, MPC has been widely studied by many scholars in dealing with large and 

complex systems, such as online processing of system state, output and control input 

constraints, high flexibility and fault tolerance, model dimensionality reduction, com-

putation reduction, and control efficiency improvement. Myron et al. [12] presented a 

model predictive controller combined with radial basis function networks for the active 

suspension system, which demonstrated excellent performance in all scenarios when 

compared with passive suspension. Mai et al. [13] presented an explicit model predictive 

control method for the semi-active suspension system with magnetorheological dampers 

subject to input constraints, which effectively improved the comfort of a semi-active 

suspension system. The team led by Yu [14] designed a road preview model predictive 

control scheme for the semi-active suspension system with the magneto-rheological 

damper to improve the comprehensive performance of the semi-active suspension. In 

addition to some individuals, there are also many teams studying integrated control. In 

order to address both braking safety and ride comfort, Zhang et al. [15] established a 

comfort braking dynamics model for brake-by-wire vehicles, taking into account the re-

lationship between braking and suspension dynamics. Liang et al. [16] proposed a de-

centralized cooperative control framework to achieve the integration of the active front 

steering system and the active suspension system by applying a multi-constrained dis-

tributed model predictive control approach. 

The constrained optimization control capability of MPC is mainly produced by 

solving constrained quadratic programming (QP) problems online. Although the tradi-

tional QP numerical algorithm has been widely used, it involves matrix inversion, which 

results in the disadvantage of MPC in terms of solution speed. Yannic et al. [17] presented 

an optimal control strategy for the high computational requirements of nonlinear model 

predictive control by learning through artificial neural networks to speed up the com-

putation while obtaining good objective function values and satisfying constraints. In the 

framework of a multi-agent network, Le et al. [18] proposed a collective neural dynamics 

optimization method based on a recurrent neural network to solve the control method of 

a distributed convex optimization problem, which avoids the calculation of matrix in-

version and improves the execution efficiency of the algorithm. Wysocki et al. [19] have 

given an improved recurrent Elman neural network algorithm that can consider the time 

delay of the process and provide an MPC for the network. 

A Multi-Agent System (MAS) is a group of agents that can work together to com-

pute. Each agent completes tasks or reaches goals by working with other agents. MAS 

refers to a set composed of multiple agents that can perform network computing, in 

which agent completes tasks or achieves specific objectives through cooperation. It has 

been widely used in the automotive field [20]. Based on multi-agent theory, Zhang et al. 

[21] decomposed a four-wheel independent drive ASR system into four separate driving 

wheel agent systems. For actuator faults, a Lyapunov function based on multiagent the-

ory was designed for a single driving wheel agent to avoid the impact of the coupling 

subsystem fault. Wang et al. [22] proposed a multi-objective optimization coordinated 



Sensors 2023, 23, 3357 3 of 19 
 

 

control method for ABS and AFS based on multi-agent MPC, and improved the braking 

safety and handling stability of the vehicle. Zhang et al. [23] presented a four-wheel in-

dependent steering finite time control method based on the theory of heterogeneous 

multi-agent, and the simulation results verify that the proposed method can improve the 

yaw stability of the vehicle. The four suspensions in the active suspension control system 

are sca�ered at the four wheels, and their communication is realized through the 

on-board CAN bus, which enables the signals transmi�ed on one data line to be shared 

by multiple control units (systems). 

In particular, based on the multi-agent theory and neural network fast partial 

differential equation solving idea, this paper regards the body′s vertical, pitch, roll, and 

the vertical motion of the four wheels as seven agents. By using the mutual communica-

tion among the agents, a distributed model predictive control method of active suspen-

sion for engineering applications is proposed, which can improve the computational 

efficiency of the algorithm under the premise of satisfying multi-objective optimization. 

The contributions of this study are as follows: 

(1) According to the dynamic mechanism of the vehicle and the working principle of 

the active suspension control system, by redefining the control input and constraints, the 

seven subsystems of the seven-degree-of-freedom vehicle model are regarded as seven 

agents, and the graph-theory-based active suspension dimensionality reduction control 

model is used to simplify the model dimension. 

(2) Considering the influence of the state of other adjacent agents on its own agents, 

a system control model based on multi-agents is established, and the vertical vibration 

acceleration of the unsprung mass and the vertical acceleration of the vehicle body are 

realized through the cooperation between the agents. Body roll angular acceleration and 

body pitch angular acceleration follow their ideal values. 

(3) In the model predictive control algorithm, the advantages of the simple structure 

and global approximation capability of the RBF neural network are used to propose a fast 

optimal solution method for the i-th intelligent body based on the RBF neural network to 

quickly find the rolling optimal solution in the model predictive control algorithm. 

The rest of this article is described as follows: In the second segment, a sev-

en-degrees-of-freedom vehicle model is established. In the third segment, in order to 

comprehensively analyze the performance of the suspension according to its network 

topology and mutual coupling constraints, a vehicle model is established based on graph 

theory with reduced dimensionality. In the fourth segment, a multi-agent-based distrib-

uted model predictive controller is designed. The RBF neural network is used to improve 

the solution speed of partial differential equations, and the effectiveness of the proposed 

method is verified by simulation. Finally, the fifth segment draws conclusions. The 

overall framework of this paper is shown in Figure 1. 
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Figure 1. Overall framework of the paper. 

2. Seven-DOF Vehicle Model 

At present, in the research of active suspension control, the 1/4 vehicle model, the 1/2 

vehicle model, and the whole vehicle model are the research objects [24–26]. Using the 

two-degrees-of-freedom model as the object of study can be�er reflect the problem of 

vertical vibration but it ignores the mutual coupling between the suspensions and the 

influence of the angular motion of the body in the pitch and roll directions on the com-

fort, and the control requirements for vehicle comfort cannot be fully described. The 

four-degrees-of-freedom model is often used to study the vertical jump of the front and 

rear suspensions and the body’s pitching motion. The seven-degrees-of-freedom model 

can fully reflect the vertical jump, pitch, and roll changes. Therefore, this paper selects the 

seven-degrees-of-freedom vehicle model as the research object, as shown in Figure 2. 
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Figure 2. Seven-DOF Model of the Full Vehicle. 

The meanings of the symbols in Figure 2 are as follows: sm  represents the sprung 

mass of the suspension, sz  represents the vertical displacement at the body centroid,   

represents the vehicle roll angle, I  represents the moment of inertia for mass roll angle 

on the spring of suspension,   represents the vehicle pitch angle, I  represents the 

moment of inertia for mass pitch angle on the spring of suspension, 1 2 3 4, , ,q q q q  repre-

sent road excitation for wheels, 1 2 3 4, , ,u u u uz z z z  represent the vertical vibration displace-

ment of the unsprung mass, 1 2 3 4, , ,s s s sz z z z  represent the vertical vibration displacement 

of the sprung mass, 1 2 3 4, , ,u u u u  represent the actuation force for the actuator, 

1 2 3 4, , ,s s s sc c c c  represent the damping coefficient of the suspension damper, 1 2 3 4, , ,s s s sk k k k  

represent the suspension spring stiffness, 1 2 3 4, , ,u u u uk k k k  represent the tire elasticity 

coefficient, 1 2 3 4, , ,u u u um m m m  represent the unsprung mass, fL  represents the distance 

from the mass center on the spring to the front axle, rL  represents the distance from the 

mass center on the spring to the rear axle, fT  represents the distance from the sprung 

mass center to the front wheel, rT  represents the distance from the sprung mass center 

to the rear wheel. The seven degrees of freedom are 1 2 3 4, , , , , ,s u u u uz z z z z  . 

When the pitch angle and roll angle are small, the dynamic differential equation of 

the seven degrees of freedom vehicle model is as follows: 

Vertical displacements at the four endpoints of the body: 

1

2

3

4

s s f f

s s f f

s s r r

s s r r

z z L T

z z L T

z z L T

z z L T

 

 

 

 

  

  

  

  

 
(1)

Vertical motion at the center of body mass: 

1 2 3 4 1 2 3 4s s s s s s
m z F F F F u u u u         (2)
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where 
si
F is the resultant spring and damping force of the i-th suspension, iu is the ac-

tuation force of the i-th suspension, 1, 2,3, 4i  . 

Body pitching motion: 

2 4 2 4

1 3 1 3
f si r si f i r i
i i i i

I L F L F L u L u
   

         (3)

Body roll motion: 

2 2 1 1 4 4 3 3( ) ( )s s f s s rI F u F u T F u F u T          (4)

Unsuspension mass vertical motion (four-wheel motion): 

1 1 1 1 1 1 1

2 2 2 2 2 2 2

3 3 3 3 3 3 3

4 4 4 4 4 4 4
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 (5)

The resultant force of the spring and damper in the suspension: 
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 (6)

Equation (2) is the acceleration term of the suspension sprung mass; Equation (3) is 

the pitch angular acceleration term of the suspension sprung mass; and Equation (4) is 

the roll angular acceleration term. They are all affected by the vibration displacement 

1 2 3 4, , ,u u u uz z z z of the wheel. Equation (6) is the dynamic equation of each wheel, and the 

vibration of each wheel is affected by the road surface excitation. 

2.1. Dimension Reduction of System Model 

Redefine the input variables for vertical motion (2), pitch motion (3), and roll motion 

(4) at the center of body mass, so that 

5 1 2 3 4

6 1 2 3 4

7 1 2 3 4

1 1 1 1

s s s s

f f r r

f f r r

u u u u u
m m m m

L L L L
u u u u u

I I I I

T T T T
u u u u u

I I I I

   

   

   

    

    

 

(7)

The 7-DOF vehicle model is organized as follows: 

1 11 1 12 1 1 1 1u u u uz a z a z u m h      (8)

2 21 2 22 2 2 2 2u u u uz a z a z u m h      (9)

3 31 1 32 1 3 3 3u u u uz a z a z u m h      (10)

4 41 1 42 4 4 4 4u u u uz a z a z u m h      (11)

51 52 5 5s s sz a z a z u h      (12)
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61 62 6 6a a u h        (13)

71 72 7 7a a u h        (14)

In the formula,  11 1 1 1u s ua k k m   , 12 1 1s ua c m  ,  21 2 2 2u s ua k k m   , 
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. 

This paper selects the state vector of the system as 1 1 1[ ]Tu ux z z  , 

2 2 2[ ]Tu ux z z  , 3 3 3[ ]Tu ux z z  , 4 4 4[ ]Tu ux z z  , 5 [ ]Ts sx z z  , 6 [ ]Tx    , 

7 [ ]Tx    , and system output as 1 1uy z  , 2 2uy z  , 3 3uy z  , 4 4uy z  , 5 sy z 

, 6y   , 7y  . The control input is iu . This paper mainly considers the control cou-

pling and lists the remaining items as uncertain items ih . The seven-DOF vehicle model 

(8)–(14) is abbreviated as follows: 

1, 2, , 7
i i i i i i i
x A x B u h i      (15)

1, 2, , 7
i i i i i i i
y C x D u h i      (16)

In the formula,  1 20,1; ,i i iA a a ,  
1 2i i i

C a a , 1
i
  ,  

5 6 7
0 1

T

B B B   , 

 0 1
T

i
  , 1 1

1
u

D m  , 
2 2

1
u

D m  , 3 3
1

u
D m  , 4 4

1
u

D m  , 
5 6 7

1D D D   , 

 
1 1

0 1
T

u
B m  ,  

2 2
0 1

T

u
B m  ,  

3 30 1
T

uB m  ,  
4 4

0 1
T

u
B m  . 

It can be seen from Equations (15) and (16) that the 7-DOF vehicle model is decom-

posed into seven subsystems. According to the multi-agent theory, the seven subsystems 
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can be regarded as seven agents, 1, 2, , 7i   . By designing the i-th agent control strategy, 

the system can follow the ideal value of its output. 

2.2. System Control Model Based on Graph Theory 

In multi-agent system graph theory, it is mainly composed of node sets and edge 

sets, represented by  ,G V   [27]. Use  1 2, , , nV v v v   to represent the node set, and 

define the node set as a finite non-empty set, where node set V contains n elements, and 
{1, 2, , }i n   can be used to represent each node, representing n agents. Let 

1 2
{ , , }

m
      denote the edge set. The edge k  belonging to the edge set must have 

a corresponding node pair ( , )i jv v  in the node set V, where iv  represents the start point 

and jv  represents the end point. lA  is the adjacency matrix, which represents the rela-

tionship between the subsystems in the system, element ija  is the relationship between 

the i-th agent and the j-th agent, the correlation is 1, and the non-correlation is 0, 

1 2( , , , )r nD diag d d d   is the In-degree matrix, among 
1,

n

i ijj j i
d a

 
  , L  is the Laplace 

matrix, r lL D A  . 

According to the communication topology and hardware connections of the seven 

subsystems (8)–(14), the topology of the active suspension control system based on graph 

theory is constructed as shown in Figure 3. 
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3. Distributed Model Predictive Control of Active Suspension for the i-th Agent 

The goal of system control is to make the vertical displacement, pitch angle, and roll 

angle of the vehicle as small as possible, while at the same time reducing the acceleration of 

vibration in all directions. As a result, this paper presents a fast distributed model predic-

tive control method for active suspension for engineering applications based on mul-

ti-agent theory and the concept of fast partial differential equation solving using neural 

networks. 

3.1. The i-th Agent Prediction Model 

The purpose of the control in this paper is to make the i-th agent output (16) quickly 

follow its ideal value under the condition of satisfying the state and control constraints. 

The ideal values that define the output of the system are as follows: 

*
i i iy x

 
(17)

In the formula,  1 2i i ik k    , 1, 2, , 7i   , according to the linear control theory, 

the necessary and sufficient condition for the stability of the second-order system is that 

each coefficient  1,2, ,7; 1,2ink i n   of each system must be greater than zero. Se-

lecting a large damping coefficient for the second-order system can significantly a�enu-

ate 1 2 3 4, , , , , ,u u u u sz z z z z   , but the selection of the coefficient must consider other indica-

tors, such as the dynamic deflection of the suspension, the dynamic travel of the wheel, 

and so on. The simulation experiment [28] is used to determine 1 0.25ik  , 2 2ik  . 

Let the output deviation 
*

yi i ie y y  , i i iA   , according to Equations (16) and 

(17), we can obtain 

yi i i i i i ie x D u h     (18)

Definition P  is the prediction time domain, m  is the control time domain, and 
P m  is defined. It is assumed that the control quantity outside the control time domain 

is unchanged, that is,   0, , 1, , 1iu k n n m m P      . The indeterminate term does 

not change after time, which is   0, 1,2, , 1ih k n n P     . 

Using the forward Euler method to discretize the state Equation (15) and output bias 

Equation (18) of the i-th agent, we can obtain 

         1i i i i i i ix k I TA x k TBu k T h k    
 

(19)

       yi i i i i i ie k x k Du k h k   
 

(20)

In the formula, T is the control period. 

Write the discretized state Equation (19) and output deviation Equation (20) in the 

form of an incremental model: 

( 1) ( ) ( ) ( )i i i i i i ix k A x k B u k h k         (21)

( 1) ( ) ( ) ( ) ( ) ( 1)yi yi i i i i i i i i i i ie k e k A x k B u k h k D u k               (22)

In the formula, i iA I TA  , i iB TB , i iT  ,      1i i ix k x k x k    , 

( ) ( ) ( 1)i i iu k u k u k    , ( ) ( ) ( 1)i i ih k h k h k    . 

According to the incremental model of the system (21), we can obtain 
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2

( 2) ( 1) ( 1) ( 1)

( ) ( ) ( ) ( 1)

i i i i i i i

i i i i i i i i i i

x k A x k B u k h k

A x k AB u k A h k B u k





          

        
1 1 2( ) ( ) ( ) ( ) ( 1)

( 1)

P P P P
i i i i i i i i i i i i

P m
i i i

x k P A x k A B u k A h k A B u k

A B u k m

  



          

    
 

(23)

among them, 1, 2, , 7i    is the state prediction at time k  to time 1k  . 

Similarly, according to Formula (22), we can obtain 

   
   

2( 2) ( ) ( ) ( )

( ) ( 1) ( 2)

yi yi i i i i i i i i i i i

i i i i i i i i i i i i

e k e k A A x k AB B u k

A h k B D u k D u k

   

    

       

         

 

 

1 1

1 1 1

1
1

1

1
1

1

( ) ( ) ( ) ( ) ( )

( 1)

( 1)

P P P
n n n

yi yi i i i i i i i i i i i
n n n

P
n

i i i i i
n

P m
n

i i i i i
n

e k P e k A x k A B u k A h k

A B D u k

A B D u k m

   





 

  






 




       

 
    
 

 
      

 

  





 (24)

Define the P  step prediction state vector, the output bias vector, and the m  step 

input vector as follows: 

       ,
1 2

T

P i i i i
X k x k x k x k P          (25)

     , ( ) 1 2
T

P yi yi yi yiE k e k e k e k P       (26)

       1 1
T

i i i iU k u k u k u k m          (27)

From Equations (23)–(27), the equations for predicting the next P  steps of the 

system can be obtained: 

       ,P i i i i i i i
X k x k h k U k        (28)

         ,P yi i yi i i i i i iE k e k x k h k U k        
 

(29)
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. 

3.2. Fast Rolling Optimization Based on RBF Neural Network 

3.2.1. Optimization Indicators 

In order to improve the ride comfort and handling stability of the vehicle and reduce 

the loss of control energy, a multi-objective optimization function 
iJ  is defined. 

Firstly, in order to improve the ride comfort and handling stability of the whole ve-

hicle, the predicted output value of the system is made close to the ideal value under the 

constraints of the system state and control input. 

According to the dimensionality reduction control model of active suspension based 

on graph theory, this paper considers the hardware connection and communication to-

pology among seven agents, as well as the influence of other agents on their own agents, 

and the output following the deviation of the i-th agent is defined as

    
7

, ,
1,

( )i ij m yi m yj
j i j

k a E k E k
 

  . 

Define 1iJ  as follows: 

2

1( ) ( ) ( ) ( )
i

T
i i i i iQ

J k k k Q k     (30)

In the formula,  ,m yiE k  is the systematic deviation vector of the m  step predic-

tion, ija  is the element of the adjacency matrix lA , iQ  is the weight matrix, which rep-

resents the degree of tracking error suppression. 

Secondly, in order to ensure the system stability of the proposed control method, a 

terminal error is introduced and 2iJ  is defined as follows: 

   
2

2
i

i yi F
J k e k m 

 
(31)

In the formula, iF  is the weight matrix, which represents the degree of terminal 

error suppression. 
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Finally, in order to ensure that the control actions in the entire control process are 

within the allowable range to reduce energy loss, and considering the energy saving of 

the vehicle system, 3iJ  is defined as follows: 

   
2

3
i

i i R
J k U k P  

 
(32)

In the formula, iR  is the weight matrix, which represents the inhibition degree of 

the control quantity. 

Therefore, the optimization metric of the i-th agent is in the form 

 1 2 3min ( ) min ( ) ( ) ( )i i i iJ k J k J k J k    (33)

3.2.2. Constraints 

Firstly, to satisfy the dynamic constraints of the system 

       

( 1) ( ) ( ) ( )i i i i i i i

yi i i i i i i

x k A x k B u k h k

e k x k D u k h k



 

   

  
 

(34)

Secondly, the state constraints of the system need to be satisfied: 

,min ,maxi i ix x x 
 (35)

Finally, it is necessary to ensure that the output of the seven agent controllers is within 

the allowable range, and the control constraints can be obtained according to Formula (7) 

as follows: 

,min ,max

5 1 2 3 4

6 1 2 3 4

7 1 2 3 4

0

0

0

i i i

s

f f r r

f f r r

u u u

m u u u u u

I u L u L u L u L u

I u T u T u T u T u





 

    

    

    

 (36)

3.2.3. Quadratic Programming Solution 

According to the constraint Equations (34)–(36) and the performance index Equation 

(33), the optimization indicators in this paper are organized into the following standard 

quadratic programming problems: 

   
7

,
1;

2 2T T T T T
QP i i i i i i i i i i i i ij j i i i i

j i j

J k M Q U U Q R U a U Q U    
 

      
 

(37)

In the formula, 

 iQ diag Q Q F  ,  

              
7

1;
i i yi i i i i ij j yj j j j j

j i j

M k E k x k h k a E k x k h k     
 

         
,  

             
7 7 7

1; 1; 1;

2T T T T
i i i i i i ij i j ij j i i ij i j

j i j j i j j i j

k M k QM k M k Q a U k a U k Q a U k  
     

     
. 

Since    i iM k k、  in formula (37) has no relationship with  iU k , it does not affect 

the optimization of performance indicators and can be ignored. 

In the process of a rolling optimization solution, the model prediction output in an 

analytical expression can be used with quadratic programming to solve the optimal con-

trol sequence: 
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1;

2 2 2
QP i T T T

i i i i i i i i ij j i i i
j i ji
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M Q Q R U a U Q

u
    

 


   


  (38)

 
71*

1;

T T T
i i i i i ij j i i i i

j i j

U Q R a U M Q   


 

 
   

 
  (39)

For the i-th agent, in the process of converting the standard quadratic programming 

problem, the control quantity jU  of other j-th agents is replaced by the control input 

sequence ( | 1)jU k k   predicted at the previous moment. 

So far, the parameterized MPC problem described in Equation (33) has been trans-

formed into a standard quadratic programming problem, which can be directly solved by 

using the quadratic programming algorithm. 

3.2.4. Partial Differential Equation Solution Based on RBF Neural Network 

The QP solution process involves the inverse operation of the solution matrix, which 

reduces the solution speed of MPC. It is difficult to realize engineering applications. The 

RBF neural network has a simple structure and strong nonlinear fi�ing ability. It has a 

global best approximation property. It can approximate any nonlinear function with ar-

bitrary precision [29]. Therefore, to properly weigh the computational efficiency and 

dynamic performance index of the system, the rolling optimization of DMPC is opti-

mized using the RBF neural network in this study. 

In this paper, the RBF neural network is used to solve the partial differential equa-

tion shown in Equation (38). With      1
T

i yi yi ie k e k P x k        as the input 

of the network, the number of nodes from the input to the output of the network is 
1m l m 、 、 , respectively, and the output form of the system is 

 *
1 1 2 2

ˆ
i n n n n nU        

 
(40)

For this neural network, the model parameters can be expressed as 

 
 

 * *

,

, arg min
n n

n n i nJ
 

    (41)

In the formula, n  represents the set of network parameters  ,n n  , and the opti-

mization of parameters adopts stochastic gradient descent. The iterative formula is as fol-

lows: 

 ( 1) ( ) ( )N N N
n n n i nJ        (42)

In the formula,   is the Nth iteration step size, and the gradient n J  of the loss 

function relative to the model parameters is usually calculated using backpropagation, 

which is a special case of the reverse mode automatic differentiation technique. 

Using the data samples obtained in the model prediction as the input of the network, 

through the training of the neural network, the function that maps the input vector to the 

output vector can be found, and the solution of the optimal weight approximation equa-

tion can be found, so that *ˆ
iU  can be easily solved. 

3.3. Feedback Mechanism 

In the actual application process, the existence of external interference is inevitable, 

which will cause certain errors in the prediction model and result in a deviation of the 

predicted output value from the ideal value. Therefore, a feedback strategy will be added 

to the control system to correct the prediction. The combination of the model, rolling op-

timization, and feedback correction can make the prediction model closer to the actual 

situation and improve the anti-interference ability of the prediction model. 
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Select the first element  *ˆ
iu k  in the predicted time domain control sequence 

       * * * *ˆ ˆ ˆ ˆ1 1
T

i i i iU k u k u k u k m         , let 
* * *ˆ( ) ( 1) ( )i i iu k u k u k    . Apply 

 *
iu k  to the system as the input of the controller at the next moment, where 1, 2, , 7i  

. Predict the output at the next moment according to the state quantity and perform error 

compensation through feedback correction, such as rolling optimization, to improve the 

control accuracy of the system. 

4. Simulation Verification 

Establishing a road disturbance input model is the basis for studying vehicle dy-

namic response and its control [30]. In general, in order to ensure that the actual road 

surface is consistent with the obtained time domain road surface, 
0 0.0628Hzf  .The four 

wheels are stimulated by the road surface, as shown in Figure 4. The excitation of the rear 

wheel and the front wheel of the car is time-delayed. 

 

Figure 4. Pavement Incentives. 

The vehicle 7-DOF model and the road excitation model were built in 

Matlab/Simulink, and the simulation was combined with Carsim. Under the B-level road 

excitation input, the simulation model runs at a constant speed of 72km / h  for 10 s. The 

parameters of the vehicle model selected in this paper are shown in Table 1. 

Table 1. Parameters related to 7-DOF vehicles. 

Parameter Value Unit 

sm  1370 kg  

um  40 kg  

I  606 
2kg m  

I  4192 
2kg m  

1 2sc ，  2228 N/ (m/s)  

3 4sc ，  2210 N/ (m/s)  

1 2sk ，  153 kN / m  

3 4sk ，  82 kN / m  

uk  230 kN / m  

0 1 2 3 4 5 6 7 8 9 10

 Time(s)

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01 Left front wheel

Right front wheel

Left rear wheel

Right rear wheel
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fL  1.111 m 

rL  1.666 m 

fT  0.7525 m 

rT  0.7525 m 

In order to verify the optimization effect and effectiveness of the RBF neural network 

modeling method, this paper uses nonlinear objects for simulation experiments and 

compares the accuracy of the RBF neural network combined with model predictive con-

trol and conventional model prediction (taking u1 as an example). The simulation results 

are shown in Figure 5. 

 

Figure 5. RBF neural network prediction result graph. 

When the vehicle drives on the road at a constant speed, the body will shake to 

different degrees, which will affect the riding comfort and driving stability. According to 

the control algorithm proposed in this paper, the actuating forces acting on the four 

suspension agents are solved, as shown in Figure 6a. An uncontrolled suspension is in-

troduced for comparison to reflect the improvement effect of the control strategy pro-

posed in this paper on the ride comfort and handling stability of the vehicle. For ride 

comfort, the most intuitive evaluation index is to minimize the level of acceleration vi-

bration felt by people. The simulation results are shown in Figure 6. When the four 

wheels are excited by the road surface, the vertical acceleration (Figure 6b), pitch angular 

acceleration (Figure 6c), and roll angular acceleration (Figure 6d) of the vehicle body are 

all greatly reduced. 

  

0 1 2 3 4 5 6 7 8 9 10
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-800
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-400

-200

0

200

400

600

800 MPC-RBF
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(a) (b) 

  

(c) (d) 

Figure 6. Vehicles under normal driving conditions: (a) Suspension actuation force. (b) Vertical 

acceleration. (c) Pitch angular acceleration. (d) Roll angular acceleration. 

According to the simulation results in Figure 6, the vertical acceleration and pitch 

acceleration have been significantly improved. Since the roll effect is not obvious when 

the vehicle is driving at a constant speed on the B-level road, this paper chose to add 

steering at 5 s. According to the control algorithm proposed in this paper, the actuating 

forces acting on the four suspension agents are solved, as shown in Figure 7a. The simu-

lation results under the steering condition are shown in Figure 7 Compared with the 

passive suspension, the control algorithm proposed in this paper is significantly lower in 

the vertical acceleration (Figure 7b), pitch angular acceleration (Figure 7c), and roll an-

gular acceleration (Figure 7d). Therefore, it can be seen that, on the basis of reducing the 

vertical motion of the body, the algorithm also suppresses the pitching and rolling mo-

tions of the body and improves the riding comfort and driving stability of the vehicle. 
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(c) (d) 

Figure 7. Vehicles under turning conditions: (a) Suspension actuation force. (b) Vertical 

acceleration. (c) Pitch angular acceleration. (d) Roll angular acceleration. 

In this paper, the proposed control strategy is compared to the conventional model 

predictive control to verify its effectiveness in improving the ride comfort and handling 

stability of the vehicle. The simulation results are shown in Figure 8. It can be seen intui-

tively from the figure that the vertical acceleration (Figure 8a) and the pitch angular ac-

celeration (Figure 8b) of the vehicle body are greatly reduced, and the roll angular accel-

eration (Figure 8c) has also been improved. It can be seen that the control strategy has 

achieved good effects on ride comfort and driving stability. 

  

(a) (b) 

 

(c) 

Figure 8. Comparing Results with Conventional Model Predictive Control: (a)Vertical acceleration. 

(b) Pitch angular acceleration. (c) Roll angular acceleration. 
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5. Conclusions 

This paper establishes a seven-degrees-of-freedom vehicle model and uses the active 

suspension system as the research object. The performance index and computational 

effectiveness of the system are taken into consideration with the aim of reducing vertical 

acceleration, pitch angular acceleration, and roll angular acceleration. A 

fast-distributed-model-based predictive control strategy based on multi-agents is pro-

posed, which comprehensively analyzes the suspension performance through multiple 

performance indicators. The proposed method is compared with passive suspension and 

conventional model prediction algorithms by using CarSim and Matlab/Simulink. The 

outcomes demonstrate that the control strategy suggested in this research has li�le im-

pact on the scheme’s optimality. Additionally, the vertical acceleration, pitch angular 

acceleration, and roll angular acceleration of the vehicle body are significantly reduced, 

particularly in the steering condition, allowing for simultaneous consideration of the ve-

hicle’s safety, comfort, and handling stability. The calculation results show that, com-

pared with passive suspension, the vertical acceleration of the vehicle body, the pitch 

angle acceleration, and the roll angle acceleration of the proposed method are reduced by 

47%, 54.2%, and 15.5%, respectively. Compared with conventional model prediction al-

gorithms of active suspension, the vertical acceleration of the vehicle body, the pitch an-

gle acceleration, and the roll angle acceleration of the proposed method are reduced by 

32.6%, 33.7%, and 8.7%, respectively. This verifies the effectiveness of the control algo-

rithm that was designed. 
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