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Abstract: The passive optical network (PON) is widely used in optical fiber communication thanks
to its low cost and low resource consumption. However, the passiveness brings about a critical
problem that it requires manual work to identify the topology structure, which is costly and prone
to bringing noise to the topology logs. In this paper, we provide a base solution firstly introducing
neural networks for such problems, and based on that solution we propose a complete methodology
(PT-Predictor) for predicting PON topology through representation learning on its optical power data.
Specifically, we design useful model ensembles (GCE-Scorer) to extract the features of optical power
with noise-tolerant training techniques integrated. We further implement a data-based aggregation
algorithm (MaxMeanVoter) and a novel Transformer-based voter (TransVoter) to predict the topology.
Compared with previous model-free methods, PT-Predictor is able to improve prediction accuracy by
23.1% in scenarios where data provided by telecom operators is sufficient, and by 14.8% in scenarios
where data is temporarily insufficient. Besides, we identify a class of scenarios where PON topology
does not follow a strict tree structure, and thus topology prediction cannot be effectively performed
by relying on optical power data alone, which will be studied in our future work.

Keywords: topology prediction; passive optical network; noise reduction

1. Introduction

Passive optical network (PON) does not contain any active electronic devices or power
source in the optical distribution network (ODN), but is composed of passive devices such
as optical splitters [1], as is shown in Figure 1. On the one hand, the network has many
advantages such as low cost and low resource consumption, thus widely used in fiber optical
communication. On the other hand, the passiveness prevents each secondary splitter from
sending information to the optical line terminal (OLT) about its higher and lower levels in
the topology, which makes the tree structure of ODN unclear to the OLT. It is thus difficult to
know which secondary splitter an optical network unit (ONU) belongs to.

Obtaining complete and accurate topology of PON is very important in practice.
The management of PON consists of two parts, namely resource management and fault
management. Resource management requires knowledge of the number of ONUs on each
secondary splitter to understand the resource occupancy and determine the feasibility of
capacity expansion. Fault management requires quick location of the secondary splitter
over an ONU when it fails. Both of them require a clear structure of PON as a prerequisite.
Therefore, methods to predict PON topology are in great demand.
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Figure 1. Topology of PON. OLTs are in factories of telecom operators while ONUs are in users’ rooms.
The secondary splitter one ONU belongs to is registered, but not guaranteed due to passiveness and
poor management. The higher level is confirmed.

In this paper, we fully explore the structure of PON as well as the features of data
and propose a neural-network-based PON topology prediction solution (PT-Predictor)
to identify which secondary splitter each ONU belongs to. The main contributions are
concluded as follows:

*  We firstly introduce neural networks into such problems as PON topology prediction
and provide a base solution for these tasks, including a preprocessor, a scorer and a
voter, which outperforms previous model-free methods.

*  We design a useful GRU-CNN-ensemble-based scoring model (GCE-Scorer) to extract
the relationship between ONUs and give their similarity scores, which achieves better
performance over the base solution.

*  Weimplement a max-average-aggregation algorithm (MaxMeanVoter) based on data
analysis and a novel Transformer-based voter (TransVoter) to predict the secondary
splitter for each ONU, using scores provided by the scorer.

We conduct experiments on an industrial dataset provided by telecom operators to
show the effectiveness of PT-Predictor. And we further explore the contribution of each
ingredient including GCE-Scorer and TransVoter. Besides, we combine data analysis and
field study to identify the application scope of PT-Predictor. Within the scope, PT-Predictor
is more effective and cost-efficient than previous manual and hardware methods, and
serves as the best software-based method until now.

2. Problem Definition

One important fact of PON is that the information of belonging secondary splitter of
each ONU is usually registered in the resource management systems (RMS) upon installa-
tion. However, under normal circumstances the accuracy is not guaranteed due to poor
management. In some communities, the accuracy can be as low as 50% for the following
reasons: (1) installation error: workers only make sure the ONUs function noramlly and do
not assure the consistency between registered topology and actual installation. (2) removal:
when an ONU is removed, its wires to the secondary splitter may not be removed. (3) mi-
gration: when an ONU is migrated from one place to another, its information in RMS is not
necessarily updated. Therefore, the registered information has many errors, which we will
refer to as noise of the ONU label hereinafter.

Nowadays, manual-based and hardware-based methods are most widely used for
PON noise reduction, but there are shortcomings. Manual-based method requires telecom
operators to hire third-party professional workers to check the ONUs one by one on
site, which is normally expensive and time consuming and the quality of the work is
not guaranteed. Besides, new installations and removals happen every year, resulting in
changes in the topology structure and repetitive manual work. Hence, this approach can
hardly be a reliable and sustainable solution. Hardware-based method requires reflective
chips installed on splitters, which is costly and difficult to maintain.

For the sake of low cost and sustainability, software-based method becomes the main
object of study. It utilizes time-series data from each ONU, e.g., the transmitted and received
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power, to conduct noise reduction. The physical mechanism is that when a secondary
splitter is perturbed by external environments (e.g., wind, rain, or animals passing by), the
optical power waveforms of the ONUs connected to that secondary splitter reveal similar
features, as is shown in Figure 2a. By capturing these consistent fluctuations, it is possible
to determine that these ONUs belong to the same secondary splitter. Then one can cluster
them and tell whether their labels are errors.

However, this software-based method faces some challenges: (1) the signal acquisition
is not continuous, thus not all the perturbations are caught; (2) only perturbations strong
enough can be detected, and there are not many of them; (3) ONUs under the same
secondary splitter do not necessarily show similar features depending on the location
where perturbation happens. It can be seen in Figure 2b that some of the ONUs show
a high degree of similarity while the others don’t. Due to the above challenges, current
software-based methods such as directly clustering ONUs according to their optical power
don’t work well, and more powerful methods are needed.

Given the background, we can formulate our problem in a more general form as
follows: RMS provides a tree, as is shown in Figure 1, but the registered tree structure
may be inconsistent with the actual situation. Leaves’ labels (their parents) can be wrong
(noises), and need to be corrected based on the fact that leaves from the same parent show
similar characteristics. In this paper, we develop better models to capture the similarity
of leaves, which will be achieved by GCE-Scorer, and design better algorithms to perform
noise reduction on the leaves’ labels, which will be completed by MaxMeanVoter and
TransVoter. The overall methodology PT-Predictor combines these techniques to eventually
help us obtain the correct tree structure.
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Figure 2. Waveforms of ONU’s optical power. The vertical axis represents the optical power. The
horizontal axis represents the sampling point, which is sampled every 10 min. Each subplot shows
the situation of one secondary splitter, and curves of different colors reflect the waveforms of different
ONUs under the same secondary splitter. Similarity of two waveforms indicates that the two ONUs
are suffering the same perturbation. (a) Ideal perturbation. (b) Non-ideal perturbation.

3. Related Work

Previous methods have been concluded in detail for PON failure management [2,3]
which is one important function of topology prediction, but these works are too much
domain oriented. Our work focuses on topology prediction and can be extended to a more
generic problem as explained in Section 2, so we pay more attention to generic techniques.

The key object studied in this paper is optical power, typical time-series data, so
recurrent neural networks are usually applied, such as LSTM [4] and GRU [5]. Convo-
lutional neural networks have also been improved to capture relationship over a longer
time span. In field of audio generation, the dilated convolution used in WaveNet [6]
achieves satisfactory performance. The exponential dilated causal convolution inspired
by WaveNet is also used for universal time-series data [7]. These works show that both
convolutional neural networks and recurrent neural networks function well in time series
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data, which is consistent with our work. Besides CNNs and RNNs, Zerveas et al. provide
a general approach to apply Transformer [8] to time series prediction [9], which shows
the performance of attention mechanism. Furthermore, a lot of improvements have been
made to Transformer based on the features of time-series data [10]. For positional encoding,
Lim et al. employs an LSTM to encode the location information [11], and Informer [12]
encodes the timestamp and incorporates this information into the temporal data through
a learnable model. For the architecture, Informer [12] applies a maximum pooling layer
between attention blocks to perform downsampling, and Pyraformer [13] designs C-ary
trees to capture fine-grained and coarse-grained features respectively. We learn from the
above techniques and then design our NN-based model GCE-Scorer and TransVoter.

Most classification problems lie in supervised learning. Also, Franceschi et al. applies
triplet loss to unsupervised learning through specially designed sampling method [7]. But
our scenario is different. Our dataset provides complete topological information (labels), but a
significant percentage of these labels is wrong. Therefore, the focus of our training process is to
reduce the impact of these noisy labels. Peer loss uses peer prediction to reduce noise [14], which
is based on the assumption that noise labels are uniformly distributed over the training dataset.
By subtracting the loss of random samples simulating noise from that of normal samples, the
impact of noise on training can be effectively reduced. Noise pruned curriculum loss uses
curriculum loss to reduce noise [15]. The key of this method is to select training samples and use
only the best ones for training. By eliminating training samples that have a higher probability of
being noisy, noise pruned curriculum loss effectively avoids the participation of noisy data in
training. In addition, Normalized Loss [16] and other methods can also reduce the impact of
noise. Our work utilizes some of the methods and achieves good results.

4. Methodology
4.1. Base Solution

The structure of base solution is shown in Figure 3, including a preprocessor, a scorer
and a voter. Optical power and topology data are firstly combined and preprocessed to
get sequences, which will be suitable for neural networks to deal with. Various feature
engineerings are conducted as is described in Section 4.2. These sequences are then sampled
to get pairs, and the scoring model captures their similarity to give scores, which will be
discussed in Section 4.3. Finally, these scores are aggregated by the voter to determine
whether a label is wrong, as is shown in Section 4.5. Then we complete noise reduction and
get the accurate topology.
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Figure 3. Structure of base solution. Optical power and topology data are firstly combined and
preprocessed to get sequences. Then the scoring model gives the scores for the similarity of each
sampled sequence pair. Using the scores, the voting algorithm determines the true label (secondary
splitter) of the target ONU.
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The base solution already outperforms previous model-free methods. But we fur-
ther explore different stages of the process and design GCE-Scorer, MaxMeanVoter and
TransVoter to achieve better performance. The best methods in each stage make up the
final methodology PT-Predictor.

4.2. Preprocessing and Feature Engineering

In preprocessing and feature engineering stage, we transform the raw data into se-
quences that can be easily processed by machine learning models and extract features from
the raw data sufficiently. The overall process is roughly illustrated in Figure 4.

Cutting. For some ONUs, the span of time reaches half a year, and as is shown in
Figure 2, the duration of the perturbation is mostly at the hourly level, so it is necessary to
cut the optical power data over a long time into numerous shorter sequences.

Filtering. Ideally, the probe located on the ONU would perform data acquisition every
10 min, which is determined by the probe’s physical design. But in actual production, it
is not always working, and there exists a significant percentage of cases where the probe
returns null values. If the percentage of null values in a sequence is too high, meaningful
perturbations may be skipped and messages such as null values are captured by the model,
so sequences whose null rates are higher than 20% will be filtered out, which will be
explained in Appendix B in detail.

Normalization. In actual production, there are various types of waveforms depending
on communities, such as standard community and tenant community, and our work aims
to build a unified model for all communities. Through experiments, we find that the mean
and variance of optical power from these communities varies a lot, so we firstly normalize
at the level of primary splitters.

In addition, the feature of perturbation needs to be captured as a priority in the model,
but such basic information as mean and variance of different secondary splitters may also
differ significantly. On the one hand, these differences affect the learning focus of the model
and make it unable to capture the perturbation; on the other hand, the differences itself can
play a good role in distinguishing the secondary splitters for some specific communities.
Therefore, we experiment on different levels of normalization in Section 5.2, and select the
best one for PT-Predictor.

Linear Interpolation and Smooth Average. After filtering, there are still a certain
proportion of null values in the remaining sequences, so we fill the sequences using linear
interpolation. Besides, as is shown in Figure 2, the waveform features include macroscopic
scale (overall waveform trend) and microscopic scale (frequent up and down fluctuations).
We use average smoothing to explore the impact of fluctuations at different scales, and
select the best window size as 10 in our experiments.

Preprocessing

Topology

d )
o Linear smooth | |
— Normalization . +> Sequences
' Interpolation Average H

Feature Engineering
Figure 4. Preprocess and feature engineering.

4.3. Sampling and Scoring

In preprocessing stage, we transform raw data into sequences, and now we need to
select the ones located at the same time and extract the features of waveform consistency.
To achieve this, we design sequence-wise scoring models to give scores of the similarity for
each sequence pair.
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The key of scoring model is to process two sequences and get the scores. We design the
model based on different units such as CNN and RNN. And we adopt various processing
techniques, such as dealing with the difference of two sequences or separately processing
two sequences. The experiments in Section 5.2 prove that our carefully designed GCE-
Scorer achieves the best performance, which is an ensemble of a CNN-based model and a
GRU-based model, as is shown in Figure 5.

In this subsection, we tentatively consider our work as a supervised case, i.e., the
secondary splitter to which each ONU belongs is known (in fact this topology information
has been provided by RMS, only that there is noise). Then we can select pairs of sequences
at the same time and from the same secondary splitter. These pairs are labeled as positive,
while the others as negative. The optimization is to enlarge the scores of positive pairs and
reduce the scores of negative pairs.

|

Figure 5. Composition of GCE-Scorer. (a) CNN-based scoring model. (b) GRU-based scoring model.

4.4. Noise-Tolerant Techniques for Training

We have built a supervised sampling and scoring framework in Section 4.3, but it is
based on the premise that the topology information provided by RMS must be accurate. In
fact, the topology has noises.

Assume that there are k secondary splitters containing # ONUs under the specific
primary splitter, and the noise rate of ONU'’s label is &, i.e., each ONU has a probability
« of being randomly labeled to other secondary splitters with equal chance. We firstly
choose one target sequence. The topology information provided by RMS shows that the
number of ONUs under the secondary splitter of the target sequence is m(m < n), and
all ONUs have sequences sampled from the same time as the target sequence. Then, we
sample another sequence and label the pair according to the information given by RMS.
Denote the probability that the selected positive pair is truly negative as p(neg|pos) and
the probability that the selected negative pair is truly positive as p(pos|neg). We have:

plneglpos) = oi(,fa__";)_(:f ) (1)

_ a(km —m —na)
p(pos\neg) - (k*ktk*l)(i’lfm) (2)

The detailed calculation procedure is shown in Appendix A. We substitute n = 24,
k=4,m = 6,0 = 0.2 and then get:

p(neg|pos) = 0.24 p(pos|neg) = 0.067 (3)

To be honest, the above calculation is based on some assumptions, and the actual
situation is more complex. But these results are sufficient to show that the presence of noise
has an impact on the sampling of positive and negative samples, especially positive samples.
So, we explore methods to avoid the interference of noise during the training process.
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4.4.1. Peer Loss

The peer loss function reduces the effect of noise with the help of peer prediction, the
mathematical principles of which are detailed in previous work [14] and the formula is
as follows:

gpeer(f(xi)/yi) = L(f(xi),yi) — f(f(xil):yiz) 4)

¢(f(x;),yi) is the base loss function for training sample {x;,y;}. {x;,, i, } is sampled
randomly from trainsets, and £(f(x;, ), y;,) simulates the loss under pure noise and then is
subtracted from the base loss function.

4.4.2. Noise Pruned Curriculum Loss

The work of curriculum loss focuses on selecting better samples for training. For tasks
with noisy labels, the better training samples are naturally those without noise, based on
which noise pruned curriculum Loss (NPCL) is proposed, which is illustrated in previous
work [15] in detail. The formula is as follows:

(1—e)n (1—¢)n
ancl(xr !/) = min max Z vig(xiryi)/ (1 - 6)11 - Z Ui ®)
ve{0,1}(1-e)n i=1 i=1

0(x;,y;) is the base loss function for traning sample {x;,y;}. n is the number of all
training samples and e is the expected noisy rate. NCPL uses vector v to filter out the
samples with higher loss, corresponding to highly similar negative pairs and quite different
positive pairs, which tends to be noisy.

4.5. Data-Based Voting

In sampling and scoring stage, scoring model is able to give similarity scores of two
sequences. The voter aggregates these scores to predict the secondary splitter for each
ONU, which consists of two steps: getting the score of ONU pair from sequence pairs,
and getting the score of splitter from ONU pairs. We analyze data features, and propose
MaxMeanVoter, which applies different aggregation methods in the two steps.

In the first step, we notice that perturbation is a random event. Only a few positive
pairs of sequences are able to capture the perturbation, as is shown in Figure 6, and the
similarity of these pairs will be higher. So, we conduct max voting and the experiments in
Section 5.2 prove our choice to be right.

For the second step, the principle is shown in Figure 7. For each ONU, its true label
exists objectively, but is unknown to us. We can only obtain its noisy label. We first select a
target ONU, and prepare a large number of other candidate ONUs. These candidate ONUs
are divided into clusters (representing different secondary splitters) according to their noisy
labels. When the noise rate is less than 50%, it is roughly guaranteed that the cluster with
noisy label of x has the majority of candidate ONUs with true label of x. Therefore, the
average similarity between the target ONU and the cluster with the same true label will be
higher, then we get the right secondary splitter.

ONU a

ONU b

l ] | ! | |
I Sequence 1 I Sequence 2 I Sequence 3 ISequence4 I Sequence 5 I

Figure 6. Max voting from sequences to ONUs. Perturbation occurs randomly and occasionally, so
we choose the sequence pair with the most similarity as the scores of ONU pair.
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Figure 7. Average voting from ONUs to secondary splitters. Noisy label is provided by RMS. True
label is temporarily unknown to us, but it exists objectively and is to be found.

4.6. Model-Based Voting

MaxMeanVoter is designed considering data features. But simple maximum and aver-
age operations may still be not expressive enough to capture all the features of the scores,
so we propose TransVoter, a self-attention based model to achieve higher expressiveness,
whose principle is shown in Figure 8.

All the information of sequence pairs concerning one target ONU is a tensor of size
a x d x b, where b denotes all the secondary splitters in the primary splitter, d denotes all the
ONUs in each secondary splitter, and a denotes all the sequences between the target ONU
and each candidate ONU, from the start collection time to the end time. The dimension
of a and b are first integrated to get g vectors of size d. These vectors are then processed
by a self-attention model to get the probability for each secondary splitter. Experiments in
Section 5.2 prove TransVoter to perform better than simple data-based voter.

\ﬁtters b
[ T 1
%luers b

Positional
Scores

sequences @

e ——
#ONUs under one splitter d

Figure 8. Principle of TransVoter. All scores of sequence pairs concerning one ONU are aggregated
and processed to predict its label.

5. Experiments
5.1. Datasets

Datasets in this paper are provided by telecom operators. As of the completion of
the experiments covered in this paper, they have provided us with the topology of 65,043
unchecked ONUs (the labels provided contain noise) and 3084 checked ONUs (the labels
prove to be accurate), as well as the corresponding optical power. In our experiments, we
use the noisy ONUs for training and the noiseless for testing. In the testing process, we
first add noise to the noiseless ONUs at a random rate to obtain a noisy version, and then
use PT-Predictor to conduct noise reduction and compare it with the noiseless version to
judge the effect.

After the data preprocessing in Section 4.2, we choose the communities that still retain
a large number of sequences (>200) as our test dataset, and they cover the OLTs shown in
Table 1. Among them, data collection of OLT 0 and OLT 1 has reached 29 weeks, which is
more reliable, and therefore serve as the representative communities for our experiments.
Their ground truth topology is shown in Figure 9. The other communities have 2~4 weeks
of data collection and are slightly less reliable, but can still be analyzed similarly.
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Figure 9. Ground truth topology of OLT 0 and OLT 1. (a) OLT 0. (b) OLT 1.

Table 1. OLTs in our experiments.

OLT #Weeks #Class1 #Class2 #ONU #Sequences

0 29 1 4 23 1652

1 29 1 4 35 3029

5 4 3 24 70 428

8 4 3 22 65 368
10 2 3 23 74 236
12 2 3 24 95 294
13 2 4 16 99 300

5.2. Results and Discussion

We conduct experiments on OLTs with different collection time and the results are
shown in Table 2. It is not difficult to find the anomaly of OLT 1, about which we will
analyze in detail in Section 5.3. Now we focus on the other OLTs. In Table 2, k% coverage
means the top k% ONUs with the most confidence. Previous method refers to using
FastDTW to calculate distances between ONUs after normalization and then clustering,
which is a common method for time-series data before neural networks are introduced. In
the base solution, we normalize the data on the level of OLT, use GRU as scoring model,
and apply only average aggregation in the voting stage, which are all simple operations.
And PT-Predictor adopts all techniques to achieve the best results.

Table 2. Accuracy improvements on different OLTs.

OLTs OLT 0 OLT1 OLT 5, 8,10, 11, 12
Methods (60% Coverage) (60% Coverage) (60% Coverage)
Previous method 0.615 0.524 0.209
Base solution 0.692 0.476 0.214
PT-Predictor 0.846 0.476 0.357

We conduct further experiments on the influence of various techniques and the result
is shown in Figure 10. We try different levels of normalization and Table 3 shows that
normalization on sequences achieves the highest performance, which is consistent with our
assumption in Section 4.2. We test various scoring models as well as FastDTW and Table 4
proves GCE-Scorer to be the most useful. In the two steps of data-based voting, we use
different combinations, and Table 5 reveals that MaxMeanVoter performs the best, which
corresponds to analysis in Section 4.5.
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Figure 10. Accuracy through different methods. (a) Normalization levels. (b) Scoring methods.
(c) Data-based voters. (d) Voting methods.

Table 3. Accuracy through different levels of normalization.

Coverage
Levels 100% 90% 80% 70% 60% 50% 40% 30%
of Norm
Seq (PT-Predictor) 0.436 0.449 0.461 0.461 0.479 0.507 0.565 0.631
ONU 0.398 0.399 0.424 0.445 0.456 0.496 0.533 0.593
OLT 0.353 0.343 0.363 0.383 0.393 0.423 0.467 0.509

Table 4. Accuracy through different scoring methods.

Coverage
Scoring 100% 90% 80% 70% 60% 50% 40% 30%
Methods
GCE-Scorer 0.436 0449 0461 0461 0479 0507 0.565  0.631

GRU-based model 0417 0433 0445 0461 0.477  0.501 0544 0.612
CNN-based model 0329 033 035 0375 0388 0420 0446  0.495
FastDTW 0375 0374 0366 0383 0393 0392 0411 0.453

Table 5. Accuracy through different voting methods.

Coverage
VOtiIlg 1000/0 900/0 800/0 700/0 600/0 500/0 400/0 300/0
Methods
MaxMeanVoter 0.436 0.449 0.461 0.461 0.479 0.507 0.565 0.631
average—raverage 0.360 0.371 0.377 0.381 0.409 0.406 0.442 0.444
average—rmax 0.304 0.315 0.313 0.333 0.341 0.361 0.372 0.397

max—rmax 0353 0360 0366 0373 0388 0406 0428 0477
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The datasets for experiments of data-based voter are different. We firstly go through
the first two stages: preprocessing and scoring, with GCE-Scorer and obtain the scores
for each sequences pairs. We divide these pairs into training dataset and testing dataset
and then conduct voting experiments. The results are shown in Table 6. And TransVoter
provides another leap of performance.

Although lots of improvements have been achieved, we have to notice that PT-
Predictor performs obviously worse on other OLTs than OLT 0, and the collection time is
worth paying attention to. To confirm this assumption, we conduct further experiments.
We test how the accuracy grows as collection time increases and the results are in Table 7.
The experiments show that as the amount of data increases, which indicates the growth of
effective perturbations captured, the accuracy is improved. The improvements can even
be seen in OLTs with only 4 weeks of data collection, so higher performance is promising.
Data provided is not sufficient by the time of completing this paper, but we will continue
this study. And we will conduct more experiments in our future work with more follow-up
data given in those temporarily insufficient datasets.

Table 6. Accuracy on re-sampled datasets through different voting methods.

Coverage

Voting 80% 70% 60% 50% 40% 30% 20%

Methods
TransVoter 0.447 0.463 0.442 0.449 0.417 0.506 0.565
MaxMeanVoter 0.359 0.353 0.350 0.375 0.407 0.395 0.407
average—raverage 0.309 0.311 0.331 0.368 0.380 0.395 0.426
average—rmax 0.230 0.211 0.215 0.213 0.204 0.222 0.241
max—max 0.313 0.316 0.288 0.279 0.269 0.259 0.241

Table 7. Accuracy on different OLTs of different collection time.

Time 3w 4w 5w 6w 7w Sw ow 10w 3m
OLTs (100% Coverage)
OLTO 0.1 0.25 0.25 0.4 0.45 0.5 0.5 0.55 0.609
OLT 5 0.4 0.446 / / / / / / /
OLT 8 0.345  0.373 / / / / / / /

5.3. Anomaly Research and Analysis

Although 29 weeks of data are provided on OLT 1, the result is still poor, so we analyze
the waveform of OLT 1 specifically.

The waveforms of two secondary splitters from OLT 1 are shown in Figure 11. It can be
seen that ONUs under the same secondary splitter do not show similar waveforms, while
ONUs under different secondary splitters show similar waveforms. This phenomenon is
against the physical mechanism of PT-Predictor. For this reason, we specifically conduct a
field study, and learn that in scenarios like OLT 1, ONU wires under different secondary
splitters come together, so the optical network topology does not satisfy a strict tree
structure. When perturbations occur at these sites, it is impossible to tell whether the
similarity of waveforms is due to being under the same secondary splitter or twisted wires,
with optical power data alone provided.
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Figure 11. Waveforms of OLT 1. The vertical axis represents the optical power. The horizontal axis
represents the sampling point, which is sampled every 10 min. Each subplot shows the situation of
one secondary splitter, and curves of different colors reflect the waveforms of different ONUs under
the same secondary splitter. Similarity of two waveforms indicates that the two ONUs are suffering
the same perturbation. (a) Secondary Splitter 1. (b) Secondary Splitter 2.

6. Conclusions

In this paper, we study the work of topology prediction for PON of telecom operators
and provide a base solution for such problems in practice. Based on the base solution, we
propose effective deep neural network ensembles with various noise-tolerant techniques
integrated, and design novel data-based and model-based voters to make up the final
methodology PT-Predictor. PT-Predictor is significantly better than previous manual,
hardware, and software solutions in terms of accuracy and cost. In scenarios where data
is sufficient, the prediction accuracy can be improved by 23.1% compared to model-free
methods, and in scenarios where data is temporarily insufficient, the accuracy can also be
improved by 14.8%. Besides, the accuracy grows obviously as data provided increases, so
further results are promising and we will continue the experiments when more weeks of
optical power are collected.

Also, we explore the application scope of PT-Predictor and identity a class of scenarios
where PT-Predictor doesn’t work well. Through data analysis and field study, we conclude
that PON topology cannot be predicted using optical power data alone when it is not
a strict tree structure. For such scenarios, more related data are needed, which will be
explored in our future work.
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Appendix A. Probability Calculation

Given that there are k secondary splitters containing 7 ONUs under the specific
primary splitter, and the noise rate of ONUs’ label (secondary splitter) is «, i.e., each ONU
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has a probability « to be randomly labeled to other secondary splitters with equal chance.
Firstly we are given a target sequence. The topology information provided by RMS shows
that the number of ONUs under the secondary splitter where the target sequence is located
(named as target sequence’s secondary splitter hereinafter) is m(m < n), and all ONUs have
sequences sampled from the same time as the target sequence. Then we sample another
sequence and calculate the probability that the selected positive pair is truly negative, and
the probability that the selected negative pair is truly positive.

Assuming that the true number of ONUs under the target sequence’s secondary
splitter is xg, and the true number of ONUs under the remaining k — 1 secondary splitters
are x1, Xo, Xy_1, it is not difficult to find that:

k—1
Z X, =n— X (A1)
i=1

For the i-th secondary splitter (i = 1,2, ...k — 1), the probability that the ONU under
it is incorrectly labeled is «, then the probability that the ONU is incorrectly labeled to the
target sequence’s secondary splitteris 1/ (k — 1), as it is randomly labeled to other secondary
splitters with equal probability. Therefore, the number of ONUs in the i-th secondary splitter
incorrectly labeled to the target sequence’s secondary splitter is ax;/ (k — 1). Combining
with Equation (A1), we can obtain the number of ONUs that belong to other secondary
splitters but are incorrectly labeled to the target sequence’s secondary splitter as a;:

k—1 k—1
B ax; o« o« B
al—i:1k_1—k_11;xz k—l(n xO) (A2)

The number of ONUs that belong to other secondary splitters and are not mislabeled
to the target sequence’s secondary splitter is by:

k—1—ua

by =n—xg— n—xg):kT(n—xO) (A3)

«
k—1 (
For the target sequence’s secondary splitter, the number of ONUs under it that are
correctly labeled is a; and the number of ONUs that are labeled to other secondary splitters

is bz:
ap; = (1 — IX)X() bz = &Xp (A4)

Combining a1 + a = m, we obtain:

km —m—an

k—ka—1 (A5)

X =

Then, denote the probability that the selected positive sample is truly negative

as p(neg|pos) and the probability that the selected negative sample is truly positive as
p(pos|neg). We have:

o oa a(n—m—na)
b a(km—m—na)
p(pos\neg)— n—m - (k—koc—l)(n—m) (A7)

Appendix B. Filtration Exploration

Here we explore the relationship between the threshold of filtering sequences out and
the number of remaining ONUs. The result is shown in Figure A1. It is obvious that there
are three phases with extremely high number of ONUs deleted as follows:
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Figure A1. Relationship of filtering threshold and remaining ONUs. The horizontal axis represents
the threshold. Sequences with null rates higher than the threshold will be filtered out. The vertical
axis represents the number of remaining ONUs under the given threshold. (a) Trainset. (b) Testset.

1. Delete all-empty ONUs. In Figure Al, it corresponds to the situation that the threshold
is 0.99. The percentage of all-empty ONUs in trainset is close to 40%, and that in
testset is close to 60%. Since these ONUs do not provide any data for our experiments,
deleting them is inevitable.

2. The threshold ranges from 0.99 to 0.9. On the premise of cutting sequences with a
length of 1d, 0.99 is too low as a threshold, and each sequence needs only 2 valid data
to meet it, which is infeasible for our model. Therefore, requiring a null ratio of less
than 0.9 per sequence is a basic requirement.

3. The threshold is less than 0.2. This threshold is too demanding, and a large number of
ONUs will be filtered out. In that case, our model covers too few ONUs, so we will
not set the threshold that low.

In contrast, when the threshold ranges from 0.9 to 0.2, the changes of remaining ONUs
are smaller and almost horizontal in Figure Al. Therefore, we set 0.2 as our threshold,
which not only allows our model to cover as many ONUs as possible, but also minimizes
the null rate, reducing its impact on our model.
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