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Abstract: Hand gesture recognition from images is a critical task with various real-world applications,
particularly in the field of human–robot interaction. Industrial environments, where non-verbal
communication is preferred, are significant areas of application for gesture recognition. However,
these environments are often unstructured and noisy, with complex and dynamic backgrounds,
making accurate hand segmentation a challenging task. Currently, most solutions employ heavy
preprocessing to segment the hand, followed by the application of deep learning models to classify
the gestures. To address this challenge and develop a more robust and generalizable classification
model, we propose a new form of domain adaptation using multi-loss training and contrastive
learning. Our approach is particularly relevant in industrial collaborative scenarios, where hand
segmentation is difficult and context-dependent. In this paper, we present an innovative solution
that further challenges the existing approach by testing the model on an entirely unrelated dataset
with different users. We use a dataset for training and validation and demonstrate that contrastive
learning techniques in simultaneous multi-loss functions provide superior performance in hand
gesture recognition compared to conventional approaches in similar conditions.

Keywords: human–robot interaction; hand gesture recognition; distribution shift; transfer learning;
contrastive learning; multi-loss simultaneous training

1. Introduction

Hand gestures are an important aspect of human communication serving several
purposes, such as enhancing spoken messages, signaling intentions, or expressing emotions.
Driven by technological advances, the process of classifying meaningful hand gestures,
known as hand gesture recognition (HGR), has received increasing attention in recent
years [1,2]. The major application areas of gesture recognition include sign language
translation, human–machine interaction, medical rehabilitation, and virtual reality. HGR
systems also target robotic applications using a variety of input devices, among which
stands out color cameras, depth sensors, or gloves with embedded sensors. In this context,
the ability of robots to recognize hand gestures seems to be very promising for progress
in human–robot collaboration (HRC), since they are simple and intuitive to produce by a
human partner [1,3]. HRC aims to explore new technologies and methods allowing humans
and robots to coexist and cooperate in the same environment in order to improve the overall
efficiency of the task, distribute the workload, and/or reduce the risk of injury [4–7].

In HRC, it is imperative to develop solutions that are trustworthy, safe, and efficient [8],
which means establishing a robust communication channel capable of real-time practical
utility. The use of voice communication in noisy industrial environments can lead to
errors, miscommunication, and safety risks. In these circumstances, it may be preferable to
explore non-verbal communication, such as static hand gestures [9,10]. However, HGR is an
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inherently challenging task due to the complex non-rigid properties of the hand, such as its
shape, color, and orientation. Even more importantly, vision-based HGR systems must be
robust to variations in lighting conditions, cluttered environments, complex backgrounds,
and occlusions [11–13], which can be even more accentuated in industrial environments.
In collaborative scenarios, we must add the challenges that arise in terms of real-time
processing and safety requirements (e.g., the recognition system must be designed to only
respond to the pre-determined intentional gestures).

As a result, researchers are constantly developing new techniques and algorithms to
improve the accuracy and robustness of HGR systems. In line with the trend of learning
systems, convolutional neural networks (CNNs) have been successfully applied in image
recognition tasks, while recurrent neural networks (RNNs) are a natural choice in recogniz-
ing gestures from videos [14,15]. One solution for HGR is to include a hand segmentation
module as the first stage of the pipeline [16,17]. The process of separating the hand from
the background allows the recognition model to focus on the relevant information of the
input image while reducing the impact of variations in the background or lighting con-
ditions. However, in industrial collaborative scenarios, hand segmentation is difficult (or
even not feasible), requiring sophisticated segmentation algorithms and high-resolution
images. More recently, methods based on deep learning have demonstrated robust results
by training the gesture recognition model in the context of the entire image [18,19].

A significant number of studies devoted to static gestures use transfer learning as a
solution to the data challenge and training constraints. They use as a baseline the knowledge
from a deep model previously trained on a large labeled dataset (e.g., ImageNet [20]) and
re-purpose it for another task. However, the assumption that the training and test datasets
are drawn from the same distribution rarely holds in a practical situation due to a domain
shift. For example, hand gestures can vary significantly across users and illumination
conditions, leading to differences in the statistical properties of the two datasets.

A visual recognition system with its model trained on a dataset obtained from a
couple of users under specific illumination conditions, and tested on a different dataset
based on different users and illumination conditions, will most likely be affected by a
domain shift. This may lead to poor generalization performance and model failure in
real-world applications. In order to address this problem, domain adaptation techniques
can be used to improve the generalization performance of the visual recognition model on
the target dataset [21–24]. These techniques aim to align the statistical properties of the
source and target domains by reducing the distribution shift between them. Adversarial
training and fine-tuning are two common approaches to minimize the difference between
the feature distributions of the source and target domains while maximizing the prediction
accuracy [25,26].

This paper proposes a domain adaptation technique for hand gesture recognition in
human–robot collaboration scenarios. The proposed approach is based on a two-headed
deep architecture that simultaneously adopts cross-entropy and a contrastive loss from
different network branches to classify hand gestures. The main goal is to shed light on the
impact of supervised contrastive learning (SCL) on the generalization ability of the trained
deep model when faced with a distribution shift. For this purpose, the study contributes
with a new RGB annotated dataset of hand gestures extracted in a cluttered environment
under changing lighting conditions. The training data were obtained from a single subject
(the source domain), while the test data involved three new users (the target domain).

In order to investigate the effectiveness of the proposed approach, we compare our
results against two baselines. The first baseline corresponds to a conventional transfer
learning approach in which a pre-trained model is fine-tuned on the source domain,
aiming to demonstrate a significant drop in performance when applied to a target domain.
The second baseline uses the traditional supervised contrastive learning in which the
classification problem is separated into two phases. First, a pre-trained model is used as an
encoder to learn good representations of the input data using a contrastive loss. Then, a
classifier is trained on top of the learned representations (frozen network) using a standard
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cross-entropy loss. In order to evaluate the generalization performance of the HGR model
on different datasets, a cross-dataset evaluation is conducted using evaluation metrics such
as accuracy, precision, recall, and F1-score. To the best of our knowledge, this is the first
attempt to apply contrastive learning in static hand gesture recognition in order to align
the statistical properties of two datasets.

The remainder of the paper is organized as follows: Section 2 presents related work
on vision-based hand gesture recognition. Section 3 describes the experimental setup
underlying the study, including the new dataset acquisition pipeline. Section 4 details
the transfer learning methods and the deep architectures used. Section 5 focuses on the
experiments conducted and on the comparative performance evaluation carried out. Finally,
the conclusions and future work are provided in Section 6.

2. Related Work

HGR is a well-studied problem in computer vision and has been applied to a variety
of applications, including HRI. In recent years, deep learning (DL) techniques have shown
significant improvements in the accuracy and robustness of HGR systems. The problem of
HGR can be divided into five main steps: image acquisition, hand detection, feature extrac-
tion, classification, and output gesture [27]. Recently, DL has shown great performance in
solving these steps, mainly by using convolutional neural network (CNN)-based methods.

In general, the majority of hand gesture recognition studies focus on dynamic gestures
for sign language recognition (SLR). In [28], the authors propose a method based on
spatiotemporal features, using CNN and LSTM configurations to extract features from the
hand, face, and lips in order to classify the dynamic gesture. This approach was tested in
the AUTSL [29] dataset with good performance. Another work tested in this dataset was
the approach proposed in [30], which explored a multi-modal solution with RGB and depth
images. This approach extracted spatiotemporal features using 3DCNNs. The authors also
used a pre-trained whole-body pose estimator to obtain body landmarks used to further
improve the model’s performance. Although this solution has great results in AUTSL, the
accuracy decreases when tested in WLASL-2000. Although these studies with dynamic
gestures, which represent the state-of-the-art in SLR, have good performance in constrained
conditions, they still lack robustness and generalization capabilities in order to be used in
HRI scenarios. For this reason, the state-of-the-art of HGR for HRI focuses on improving
static gesture recognition in unforeseen conditions, in order to establish a communication
channel with minimal message errors.

In [18], the authors use a faster R-CNN model for HGR to pass commands to a
robot. This model could perform hand detection and classification simultaneously on
four different gestures. The detected coordinates of the hands were used to define a
decision threshold, improving the classifier’s accuracy. The authors in [19] also propose a
DL approach for simultaneous hand detection and classification based on YOLOv3. The
model is trained to find the bounding box of every hand in an image and provide the most
probable classification.

In another approach [31], the authors propose an HRI communication pipeline using
the Machine Learning (ML) Framework MediaPipe [32] to extract relevant landmarks
from the hands. These landmarks were used to produce features that are introduced in a
Multilayer Perceptron (MLP) that classifies five different hand gestures. Another work [33]
improves an HGR model by fusing features extracted from the image and features extracted
from the hand landmarks.

In another work [34], the authors propose an approach that tackles the complexity
of vision-based HGR by implementing a DL model that learned to classify gestures in
segmented (black and white) and colored images. The implementation trains the model
based on convolution layers and attention blocks from scratch, in an attempt of creating a
robust solution specific to HGR.

In [16], the authors tackle the problem of the background by applying skin segmen-
tation techniques before performing gesture classification. This is achieved by modeling
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the pixel distributions with Gaussian mixture models (GMMs). In [17], the authors also
propose background removal based on skin and motion segmentation to facilitate the
classification model. In [35], the segmentation was performed using the depth channel of a
Kinect RGB-D camera. The hand was segmented by applying a threshold to the distance
between the hand and the camera. The authors in [36] also used the depth channel of a
Kinect camera for gesture segmentation; however, the classification is performed using
only the depth channel. The authors implemented TL techniques in two different CNNs,
AlexNet and VGG16, which classified the hand gesture in parallel. After that, the system
performed a score fusion based on the output of the two neural networks. The authors
in [37] also use TL by using Inception-v3 and MobileNet architectures to propose a robust
system that classifies ten different gestures. A different approach to hand segmentation
was used in [38], which implemented an MLP module and morphological operations to
obtain the mask of the hand.

From the literature review, it is possible to conclude that vision-based DL methods are
reliable approaches for HGR. However, to tackle the high level of background complexity,
most solutions focus on heavy image processing prior to gesture classification. Additionally,
these processing techniques tend to be based on traditional computer vision techniques,
which are very context-specific and lack flexibility and generalization capacity [31]. For
this reason, we explore novel DL methodologies to train deep neural network architectures
to improve robustness and generalization capabilities in complex industrial environments.
To achieve this, we propose to use TL techniques to reduce the resources necessary and
take advantage of the knowledge acquired in similar tasks. In addition, we explore the
Supervised Contrastive Learning developed in [39].

3. Dataset Acquisition

This section describes the dataset for this study, including the pipeline developed for
online hand gesture detection and classification. This framework was also used to acquire
the datasets to train and test the machine learning model.

Before acquiring a dataset to train a classification model, we searched for existing
large-scale hand gesture datasets. These datasets are useful for the scientific community as
they improve the efficiency and effectiveness of the ML models, and provide comparative
benchmarks for new methods. We found extensive datasets with multiple classes and
users, such as TheRuSlan [40], AUTSL, WLASL, LSA64 [41], and MS-ASL [42]. Although
these corpora are extremely useful in general cases, they fail to provide samples that can
be used to solve our particular problem formulation. This happens because, in general,
the state-of-the-art HGR is focused on dynamic gestures, while the studies of HGR for
HRI are conducted for static HGR. For this reason, the major contributions of datasets,
including the ones mentioned before, use dynamic gestures with video samples. These
datasets were also acquired on backgrounds with a lack of complex features, which could
limit the generalization capabilities of the trained model.

We also found a complete dataset in Kaggle, named ASL Alphabet (ASL dataset on
Kaggle at: https://www.kaggle.com/datasets/grassknoted/asl-alphabet, accessed on 3
March 2023), which is representative of the datasets available for public utility in static
hand gestures. We utilized the dataset to train a CNN model with TL techniques in this
dataset and tested with images taken in an unstructured environment. The accuracy of
this test was very low, mainly due to the background of the ASL Alphabet dataset being
simplistic while our background was complex. This experiment motivated us to perform
the acquisition of a complete training dataset in our environment. After this acquisition, we
trained the same CNN with TL techniques with our data and tested using the ASL Alphabet
dataset, which had an accuracy of 95%. This validates our dataset to train models to predict
images with simplistic backgrounds; however, these will not be the environments used in
collaborative tasks with industrial robots. For this reason, this paper focuses on using our
dataset with new training techniques to increase the generalization of the HGR model.

 https://www.kaggle.com/datasets/grassknoted/asl-alphabet
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3.1. Image Acquisition Pipeline

The framework uses a Kinect RGB-D camera to record 480× 640 RGB images. The
classifier does not use the Depth channel; however, the RGB-D Kinect was chosen to allow
future integration of this channel, and because of the widespread use of this device. The
Kinect camera is installed in a collaborative cell with a UR10e collaborative robot [43]. The
device is mounted at a height of 2.30 m, slightly tilted down to cover the working space of
the operator. This area is about 2 m apart from the camera. The UR10e collaborative robot
is found between the Kinect camera and the operator’s work area. This setup allows the
human to be always facing the robot and the camera simultaneously. Figure 1 illustrates
the physical setup described.

Figure 1. Diagram of the collaborative cell with the robotic arm and the human operator. It includes
the representation of the Kinect RGB-D camera with a representation of its field of view.

The framework was implemented in the ROS environment [44], allowing abstraction
and scalability of the communication pipeline. The images are acquired using a ROS
driver, which publishes the images directly to a ROS topic. After that, the hands of
the operator are detected with a specific ROS node. This node uses the ML framework
MediaPipe, specifically the human pose detection and tracking. The tracker predicts
33 keypoints related to the human pose, with four points for each hand. The detection
node calculates the average value of the landmarks for each hand and defines a bounding
box of 100× 100 pixels using the average value as the bounding box center. Figure 2 shows
an example of the user hand gesture detection performed by the detection node.

To reduce class variability and, henceforth, increase the classifier’s performance, the
image of the right hand is flipped horizontally to appear similar to the left hand. This
pipeline was used to record the training and test dataset, but it can also be used for real-time
communication with the collaborative robot. The data acquisition is performed at 11 FPS.
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Figure 2. Example of user and hand gesture detection using human pose detection and tracking of
the MediaPipe framework. The colored landmarks are generated by Mediapipe and the blue frames
represent the region of interest for classification.

3.2. Dataset Description

The main focus of this framework is to implement a reliable and robust communication
pipeline for HRI in an industrial environment. For this reason, two datasets were recorded
with uncontrolled background and luminosity. This implementation uses four hand gesture
classes inspired by American Sign Language; the symbols chosen are the “A”, “F”, “L” and
“Y” signs. These signals have the advantage of being well-known symbols with already
real-world applications, implying that they are easy to use. These specific signs were chosen
also because they are relatively distinct.

To test the degree of generalization of the proposed method, two datasets were
recorded, which are available online (the authors’ dataset on Kaggle at https://www.
kaggle.com/datasets/joelbaptista/hand-gestures-for-human-robot-interaction, accessed
on 3 March 2023). The first dataset was used to train the classification model. This dataset
was recorded by one user, with different luminosity and clothing, which can be seen in
Figure 3.

The second dataset is used to test the model. This multi-user test dataset was recorded
with three persons who were not included in the training dataset. The recording was
performed on a different day and at a different time of the day, resulting in variation in
luminosity. Figure 4 shows some samples that constitute the multi-user test dataset.

https://www.kaggle.com/datasets/joelbaptista/hand-gestures-for-human-robot-interaction
https://www.kaggle.com/datasets/joelbaptista/hand-gestures-for-human-robot-interaction
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A F L Y

Figure 3. Examples of the training dataset of the four hand gesture classes in the unstructured
environment and complex background. Each column is a class that is associated with an American
Sign Language letter.

A F L Y

Figure 4. Examples of the test dataset with three different persons and acquired at different times of
the day in relation to the training dataset. Each column is a class that is associated with an American
Sign Language letter.

Table 1 shows the distribution of samples among all classes. Although the dataset
is small when compared to large-scale datasets, it has a distribution of samples per class
similar to other static hand gesture datasets used in HGR for HRI [16,18,31]. However, its
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size may limit the generalization capabilities of the classifying model. This concern has led
us to acquire the dataset with a high degree of variation in the background and luminosity.
In addition, we apply online data augmentation in the training phase, which further helps
compensate for the reduced number of samples.

Table 1. Number of images, per class, of the training dataset, and the multi-user test dataset. The
training dataset includes one user and the test dataset includes three users.

Dataset A F L Y Total

Training dataset 6430 6148 5989 6044 24,611
Multi-user test dataset 4183 4277 4276 4316 17,051

3.3. Data Augmentation

To increase the generalization capabilities of the ML model, we use online image
augmentation. The augmentation applied random transformations to the images, intending
to increase the degree of variability between samples.

In this implementation, we use the RandAugment library from PyTorch [45]. The
following list shows the augmentation operations utilized:

autoContrast: Remaps the pixel values so the lowest value pixel becomes black and the
highest value pixel becomes white.
posterize: Reduces the number of bits used to encode a pixel value.
contrast: Adjusts the contrast of an image.
equalize: Equalizes the histograms of an image.
saturation: Adjusts the saturation of the image.
brightness: Adjusts the brightness of the image.
translate-x: Translates the image by the x number of pixels.
translate-y: Translates the image by the y number of pixels.
shear-x: Distorts the image along the x-axis.
shear-y: Distorts the image along the y-axis.
crop and resize: Crops the image randomly and resizes it to the original size.

It is important to mention that the first six augmentation operations change the color
space of the image, providing robustness for changes in color and luminosity. The remain-
ing operations deform the image spatially, in an attempt to generalize the classifications
to other human operators. To the previously mentioned operations, we also added ran-
dom crop and resizing to accommodate for the differences in the operator’s distance to
the camera.

4. Methodologies

This section describes the proposed contrastive domain adaptation technique for hand
gesture recognition, focusing on the overall design and structure of the deep architectures
in comparison. Our goal is to train a model on the source domain and then use it to make
predictions on the target domain that has different characteristics, namely, different users
and illumination conditions.

4.1. Scope and Assumptions of the Study

This study performs a comparative evaluation of three deep architectures that will be
trained based on the concept of transfer learning, aiming to reduce the required resources
to train the ML model. The first baseline involves fine-tuning a deep model, pre-trained on
the ImageNet dataset [20], using a cross-entropy loss function (single-loss training). The
second architecture introduces the contrastive learning framework applied in two phases.
More concretely, the learned representations from the first phase are used as input to a
classifier in the second phase. This is done by optimizing a contrastive loss function in the
first phase and then using a standard cross-entropy loss to train the classifier (multi-stage,
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multi-loss training). Finally, the proposed architecture addresses the domain adaptation
problem by considering a dual-branch head approach in which two loss functions are
optimized (simultaneous multi-loss training). As explained before, the models will be
trained with the source dataset extracted from a single user, while they will be tested on
the target dataset based on three different users.

The main assumption of this comparative study is to use Google’s Inception-v3 [46]
pre-trained model for extracting features in any of the three architectures. The idea is
to leverage the knowledge already learned from the large dataset before fine-tuning the
model with the source dataset. This base model is used as an image feature extractor
and outputs a feature vector of 2048 elements. The assumption made in this step is that
a CNN trained to achieve great performance in a very diversified dataset has learned
important image patterns and features for image classification. The features extracted by
the Inception-v3 convolution layers are passed through a classification module, which
normally consists of an MLP. It is worth mentioning that, in a preliminary phase, we tested
the performance of some other pre-trained models, such as the ResNet50 [47], by applying
standard TL techniques. The tests carried out revealed that Inception-v3 performed slightly
better for this specific problem and dataset. However, the techniques applied in this paper
are not encoder-specific, implying that this choice should not have a large impact on the
investigation.

The task of discriminating 1000 classes of diverse categories is certainly different
from the HGR problem and, for that reason, it may be necessary to retrain some of the
last convolution layers of the full base model. Figure 5 shows a simplified representation
of the Inception-v3 architecture, based on the Stem and Inception modules. The lower
convolutional layers are frozen as they are more likely to contain general features, while
the layers closer to the output layer are fine-tuned since they are more task-specific. The
objective of this work is to produce a hand gesture classification framework that can be
used in unstructured industrial environments while limiting the resources and time utilized
in the model’s training. For this reason, we attempted to retrain the fewest possible number
of modules in the base model. We chose to retrain the last four Inception modules, as
it was the smallest number of retrained modules that allowed the training to converge
properly. This conclusion was empirically verified by gradually increasing the number of
retrained modules.

Figure 5. Inception-v3 architecture based on inception modules. The red modules were updated
during the training phase while the blue modules were kept fixed.

4.2. Single Loss Training

The first baseline architecture consists of the Inception-v3 pre-trained model that is re-
purposed for the specific hand gesture classification task involving four classes. The single
loss training (SLT) consists of the traditional approach of TL, according to the structure
presented in Figure 6. This architecture uses the pre-trained model as a starting point
and then trains it on the source dataset to optimize its performance. During the fine-
tuning process, the weights of the last convolutional layers are updated, while the lower
convolutional layers (i.e., closer to the input layer) are frozen.
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Figure 6. Model architecture in Single Loss Train. The implemented loss is the cross-entropy loss.

This implementation replaces the last fully connected layer of Inception-v3 with an
MLP. We verified experimentally that a reduction from the 2048 feature vector to 4 classes is
not optimal. For this reason, the MLP is composed of four layers, where three layers reduce
the feature vector from 2048 to 256, and one last layer reduces it from 2048 to 4 classes. The
three first layers use the ReLu activation function, while the last layer uses the Softmax
activation function. The four output classes are used to calculate the cross-entropy loss
(CEL), which is used to update the trainable parameters of the base model and the classifier.

Supposedly, this process of transfer learning may not generalize well when there is a
significant domain shift between the source and target datasets. Anyway, the evaluation of
the model is useful as it provides a clear idea of the existing domain shift and the loss of
generalization performance.

4.3. Multi-Stage Multi-Loss Training

Supervised contrastive learning is a technique that involves taking a pair of examples
and mapping them to a common representation space. The multi-stage multi-loss training
(MSMLT) consists of an adaptation of the supervised contrastive learning method in which
the training process is applied separately in two stages. Figure 7 shows the architecture
associated with the MSMLT method. In the first stage, the base model is trained using a
contrastive loss (CL) function. This loss function encourages the base model to produce
similar feature vectors for images of the same class and to move apart the feature vectors
of images in different classes. The classes can be considered very similar as they are
representations of the same object with different shapes. This means that the train data
includes hard negative samples, which are considered as samples in different classes
with similar representations or feature vectors. In these cases, supervised contrastive
learning impacts the performance of the model [48]. This is performed by fine-tuning the
Inception-v3 pre-trained model using the source dataset, while part of its convolutional
layers are frozen.

Contrastive learning loses performance when applied to high-dimensional feature
vectors. For this reason, it is usual to use a projection head that reduces the dimensionality
of the feature vector, while preserving the relevant information. In this implementa-
tion, we reduce the feature vector from 2048 to 64 utilizing five linear layers with ReLu
activation functions.
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Figure 7. Model’s architecture in Multi-stage Multi-loss Training. In the first stage, it is used the
contrastive loss and in the second stage it is used the cross-entropy loss.

The output of this module is only used during the training phase, allowing the cal-
culation of a supervised CL. This loss function compares two feature vectors, attempts to
maximize the difference between them if they belong to different classes, and minimize
it if they belong to the same class. With this implementation, we expect that the neural
network will minimize the CL by updating its weights to produce features that are repre-
sentative of hand gestures, thus ignoring the complex background of the images. The CL
implementation is expressed by Equation (1),

Closs = ∑
i∈B

−1
p ∑

j∈P(i)
log

e(vi ·vj)/τ

∑
a∈A(i)

e(vi ·va)/τ
, (1)

which can be detailed as follows: while training the model, the Projection Head produces a
feature vector vi for each image in batch B. Set P(i) represents the indexes of the positive
samples j in relation to an anchor sample i, and it has a size of p. A sample is classified as
positive when it belongs to the same class as the anchor. Set A(i) includes all the indexes of
B except i. The exponents exhibit the dot product between two feature vectors divided by a
scalar temperature parameter τ that was set to be 0.0007 during the training phase.

After that, the second stage resembles the SLT in which a classifier is trained on top of
the learned representations to perform the classification of hand gestures using a standard
cross-entropy loss. It is worth noting that, in this second phase, the learned representations
from the first phase are frozen.

4.4. Simultaneous Multi-Loss Training

Supervised contrastive learning has been shown to be effective for domain adaptation,
because it can help the model to learn features that are invariant to domain shifts [49].
Inspired by these works, we aim to show that a contrastive loss function can help improve
the generalization performance by learning more robust representations that are less sensi-
tive to distribution shifts. The idea behind the proposed contrastive domain adaptation
technique is to use a network that branches twice after the encoder model (dual-branch
head), allowing to train the representation model and the classification model simulta-
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neously. Figure 8 shows the model architecture of the simultaneous multi-loss training
(SMLT) approach.

Figure 8. Model’s architecture in simultaneous multi-loss training. The losses used are the contrastive
loss and the cross-entropy loss.

On the one hand, the classifier branch uses the output of the encoder and predicts the
hand gesture class label based on a softmax activation function. On the other hand, the
projection head branch uses a full-connected network (MLP) to map the high-dimensional
feature vector to a lower-dimensional space. The implementation of the CL is similar to the
second method, where it utilizes a Projection Head MLP to reduce the feature vector from
2048 to 64 elements. This approach has been used in computer vision tasks such as image
classification and object recognition [39].

As a result, two loss functions are optimized simultaneously—a cross-entropy loss for
the classifier branch and a contrastive loss for the projection head branch. During training,
the projection head MLP and the classifier MLP are updated by a single loss. However,
the trainable parameters of the shared encoder model are updated using the two losses
simultaneously. This is achieved by back-propagating the two losses sequentially in the
PyTorch code, which results in adding the two gradients of the two loss functions when
training the neural network model.

The goal of training with a multi-loss function is to balance the trade-off between
competing objectives of accurate classification and effective feature extraction. This method
aims to increase the generalization capabilities of the classification model by inducing the
encoder model to produce more distinct feature vectors for each class. The difference lies
in the assumption that this objective could be better achieved by optimizing these two
behaviors simultaneously instead of running them separately. After training is completed,
the projection head branch is removed and the model architecture will be composed of the
encoder and the classifier for downstream tasks.

5. Results

This section describes the training and test results in the context of hand gesture
classification, as presented earlier. We compare the three different approaches presented
in the previous section. The training and test were performed in a computer with the
processor AMD Threadripper 2850 Extreme, the graphical processing unit (GPU) NVIDIA
RTX 2080TI and 128 GB of RAM.
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5.1. Training Curves

The following graphs show the model’s accuracy and losses in each epoch for the
proposed SMLT. The training curves of the other approaches were omitted because they
are very similar. In our experiments, we monitored the cross-entropy loss of the validation
dataset to decide when to stop the train. We stipulated that the training finished if the
validation cross-entropy loss increased consecutively for five epochs. We also configured
the training to save the model’s parameters that achieved the highest validation accuracy.
The only exception was in the first stage of the multi-stage multi-loss train, where the
validation accuracy cannot be measured. For this reason, we saved the model’s parameters
that achieved the lowest validation CL.

In the different implementations, we tried to maintain the same training hyperparame-
ters. The training was realized with a batch size of 194 images and a standard learning rate
of 0.0001. The optimizer used was the ADAM [50] optimizer, which calculates adaptive
learning rates for each trainable parameter. We did not implement learning rate scheduling
techniques, because the adaptive learning rates produced by ADAM were sufficient to
converge the model. Furthermore, the training dataset was randomly split into 60% for
training, 20% for validation, and 20% for testing.

After analyzing the accuracy graph in Figure 9, we can see one of the advantages of
transfer learning. The training and validation accuracy reaches 100% within a few epochs,
although the batch size of 194 promotes that each epoch updates the model’s weights
several times. After that, the models were tested with the test split of the training dataset,
which also had results near the 100% accuracy, concluding that the models were able to
learn the provided dataset with minimal overfitting. This confirms the assumption that
patterns learned by the models in the ImageNet dataset were useful for hand gesture
classification, given that even the retrained layers needed only a few updates for the model
to fully learn to classify the training dataset. However, this is not the objective of the
implementation and was rather expected by the state-of-the-art in HGR and by the fact that
we are using a small dataset with four classes and only one person. The objective of this
study is to increase the generalization capabilities of the model in images with complex
backgrounds, and for that, it is necessary to test the proposed solution with a different
dataset in different conditions.

5.2. Testing the Models with a New Multi-User Dataset

In this subsection, we present the results of testing the trained models with the multi-
user dataset, in an attempt of measuring the generalization capability of the classification
models. The multi-user dataset was recorded with three human operators different from
the training subject, at a different time of the day. First, we present the confusion matrices
(see Figure 10) obtained by testing the three models. The confusion matrices are normalized
with respect to the true label.

The three confusion matrices in Figure 10 show relatively similar patterns. The first
aspect to notice is that the higher values of the matrices tend to be in the matrices’ diagonals.
This is the first evidence that the models acquired some degree of generalization capabilities
because the diagonals represent the percentage of the True Positives. The matrices also show
that the models tend to misclassify some images of the A and F classes with the Y label. This
can be related to the fact that the majority of the hand in the Y class is similar to A and F, only
with two fingers held up. We verified that the SMLT helped lower the wrong classification
rate, by teaching the models to focus on features that more accurately separated the three
classes. This confusion could also be resolved by expanding the training dataset with
more examples of these classes, or adding more users; however, these approaches would
not benefit our purpose, which is to study the increase of generalization capabilities with
contrastive learning.
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Figure 9. Training curves implementing the simultaneous multi-loss method. The graphs present the
model’s accuracy and losses in the training and validation dataset in each epoch.

Figure 10. Confusion matrices of results, in percentage (%), obtained by training all three models
with the single-user dataset and testing them with the multi-user dataset with different persons not
present in the training dataset; the models are SLT (left), MSMLT (middle), and SMLT (right).

Table 2 shows the accuracy, recall, precision, and F1-score (average values) of the three
approaches for the multi-user test dataset. The testing results show that simultaneous multi-
loss training provides the best solution. This means that there is an advantage in using
a contrastive loss in addition to the cross-entropy loss. However, it seems that for small
datasets and low levels of model retraining, using the two losses separately in different
training stages does not have any increases in the model’s generalization capabilities.
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Table 2. Evaluation metrics for testing the three different approaches in the multi-user test dataset.
These values are the average of the metrics calculated for each class.

Model Accuracy Recall Precision F1

Cross-entropy loss training 84.23 84.15 86.82 84.07
Multi-stage multi-loss training 79.24 79.12 84.17 78.89
Simultaneous multi-loss training 90.03 89.97 90.96 90.12

6. Conclusions

This paper proposes a domain adaptation technique for hand gesture recognition in
human–robot collaboration scenarios. We defined a set of four gestures inspired by the
ASL dataset, which can be used to trigger the programmed routines of the robot, allowing
the human to communicate with the machine. This study was motivated by the complexity
of the environment and background associated with industrial setups. In order to emulate
these conditions, we created a dataset of hand gesture images in a collaborative cell with
varying backgrounds and luminosity conditions to retrain the pre-trained Inception-v3
model. This source dataset was acquired by a single person. After that, we recorded
a second dataset (target dataset) with three different persons to test the generalization
capabilities of the deep models. This study performed a comparative evaluation of three
deep architectures trained based on the concept of transfer learning.

Using knowledge acquired from the ImageNet dataset allowed the training to converge
rapidly and to classify the training dataset in a few epochs. However, the actual focus of this
study was the generalization capacity of the model, which was tested using the multi-user
test dataset. In this testing phase, the results demonstrate that joining CEL and CL in a
multi-loss training approach helps the model reach higher accuracy. In fact, this approach
performed an increase of 6% in the accuracy of the model, compared to the traditional TL
method of training the model only with the CEL. This shows that contrastive learning is
focused on learning task-specific features, being effective to deal with the domain shift
problem. However, it is important to note that applying CL separately from CEL in different
training stages may not be sufficient (the results were even worse). The trade-off between
accurate classification and effective feature extraction was achieved by optimizing these
two behaviors simultaneously instead of running them separately.

For future work, we propose testing these different training approaches with new
state-of-the-art DL models and comparing them to the results of Inception-v3. We should
also increase the training and test datasets, in gestures, number of users, and size, to
verify if the methodologies uphold. Lastly, we should experiment with hand gestures with
industrial gloves to further simulate the industrial scenario.
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