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Abstract: One of the fundamental limitations in human biomechanics is that we cannot directly
obtain joint moments during natural movements without affecting the motion. However, esti-
mating these values is feasible with inverse dynamics computation by employing external force
plates, which can cover only a small area of the plate. This work investigated the Long Short-Term
Memory (LSTM) network for the kinetics and kinematics prediction of human lower limbs when
performing different activities without using force plates after the learning. We measured surface
electromyography (sEMG) signals from 14 lower extremities muscles to generate a 112-dimensional
input vector from three sets of features: root mean square, mean absolute value, and sixth-order
autoregressive model coefficient parameters for each muscle in the LSTM network. With the recorded
experimental data from the motion capture system and the force plates, human motions were recon-
structed in a biomechanical simulation created using OpenSim v4.1, from which the joint kinematics
and kinetics from left and right knees and ankles were retrieved to serve as output for training the
LSTM. The estimation results using the LSTM model deviated from labels with average R2 scores
(knee angle: 97.25%, knee moment: 94.9%, ankle angle: 91.44%, and ankle moment: 85.44%). These
results demonstrate the feasibility of the joint angle and moment estimation based solely on sEMG
signals for multiple daily activities without requiring force plates and a motion capture system once
the LSTM model is trained.

Keywords: electromyography; recurrent neural network; biomechanics; joint moment estimation;
joint angle estimation

1. Introduction

In robotics, accurate prediction of joint orientation and moments is essential. In
developing an energy-efficient exoskeleton for persons with disabilities, joint moment
estimation is crucial for physical interaction with users. Precise prediction of joint positions
and moments allows the device to provide sufficient support for movements without
interfering with users’ natural postures, ensuring the device’s safe operation, thus making
it an appealing choice for assisting daily activities. Regarding bionic limb prostheses,
although various sophisticated industrial products have been invented [1,2], the prosthetic
control algorithm requires further development. Prostheses are supposed to detect and
respond to users’ intentions, requiring high-performance orientation and moment control
techniques to improve amputees’ quality of life. Hence, accurate prediction of joint angles
and moments that align with users’ motor control strategies would significantly enhance
the inputs to such control schemes.

Electromyography (EMG), which can be easily measured with commercially avail-
able wearable sensors, reflects muscle activity and thus can correlate to joint moments [3],
making EMG an ideal information source for analyzing human movements. Addition-
ally, following remarkable developments in recent years, deep learning algorithms have
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enabled robust and accurate estimations from measurable signals by training a black box
to map the inputs to the outputs [4–7]. Previous studies employing machine learning
techniques in EMG-driven applications have proven their accomplishments in making
predictions, though most of them primarily focus on human kinematics estimation [8–10].
Among those techniques, one type of neural network called a recurrent neural network
(RNN) [11–13] is capable of time-dependent processing signals and making predictions
based on past information. However, traditional RNNs may not be able to handle the
patterns of human movements that have long-term dependencies. Meanwhile, a Long-
Short-Term Memory (LSTM) network [14] is a type of RNN employing a memory cell
that can retain information for long periods, making it better equipped to handle the
complexities of human movements.

We aim to evaluate a simple single LSTM model using features extracted from surface
EMG (sEMG) signals to estimate human joint angles and moments during different daily
living activities. This paper is organized as follows, Section 2 shows some research related
to this work. In Section 3, the techniques utilized for acquiring the experimental data will
be addressed, Section 4 shows and discuss the results of the study, and finally, Section 5 is
our closing remarks.

2. Related Works

sEMG signals are used to decode joint kinematics and kinetics owing to their noninva-
sive measurement and broad availability. Several attempts have been made to map sEMG
signals to joint angles or torques [15–18]. There is also an attempt to map sEMG signals to
the ground reaction force [19]. In [15], Staudenman et al. proposed two configurations of
high-density EMG (HD-EMG) electrodes (monopolar and bipolar sets) for muscle force
estimation. Their study involved isometric arm extension movement in which an electrode
grid was attached to the middle of the upper arm, above the triceps brachii muscle. The
results of this study suggested that the EMG amplitudes recorded from the activity of the
triceps brachii muscle can be compared directly with the elbow’s extension moment.

Sartori et al. introduced a model-based framework, namely the EMG-driven muscu-
loskeletal model [20,21], to estimate the joint moment and joint stiffness consistent with
experimental data. In real-time, the model computed the forces in 13 muscle-tendon units
and displayed the resulting moments about 3 joint DoFs. This technique can cover a variety
of movements as long as the parameters for the model are identified. However, because
the joint moments are the sum of individual muscular components, the activity of all the
muscles contributing to joint movements should be considered, which often requires a
large set of EMG electrodes.

Liu et al. [22] extracted mean absolute value (MAV), root means square (RMS), wave-
form length (WL), and energy percentage (EP) from six muscles’ sEMG signals and used
them to compare feed-forward neural network (FNN) and convolutional neural network
(CNN) for knee moment estimation during gait. They also tested the CNN model using the
sEMG without extracting any features. Their feature-based CNN model had the highest
performance compared to the other two models, with root mean square error (RMSE)
5.88± 0.22 and R2 of 0.978± 0.002. They also found out that using EMG features reduced
training time significantly.

In [23], Dongwon Kim et al. employed a model-free approach to predict the moment
and angle based on sEMG signals of a paired flexor and extensor contributing to wrist
movement. They used an LSTM network to perform estimation by feeding the EMG
features through multiple layers to obtain the angle and moment. The results from their
study show a favorable agreement in moment estimation (95%) and angle prediction (85%),
encouraging the use of the LSTM network to decode natural human movements. However,
this study focused only on a single joint. Thus, we were motivated to investigate a similar
system applied to multi-joint inverse dynamics for the lower limbs.

There is a recent trend of combining EMG-driven muscle modeling and neural
networks. The hybrid model used a CNN to map sEMG to specific muscle activation,
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which was used together with neuromusculoskeletal model components to compute knee
torque [24]. A tradeoff exists between muscle model dependency and data-driven neural
networks [25]. In [26], LSTM models were trained with muscle electromyography signals
and lower limb joint angles. Hip flexion/extension, hip abduction/adduction, knee flex-
ion/extension, and ankle dorsiflexion/plantarflexion torques were predicted, including
transfer learning capability. This paper shows interesting results and is useful for some
applications. However, it requires the joint angles information from the motion capture
system as neural network input, and it limits the portability and mobility of the system. In
contrast, in our proposition, we attempt to keep the portable EMG sensing only without
needing a non-portable measurement system.

3. Methodology

Figure 1 illustrates how data were processed to train the LSTM network model. Several
pre-processing steps were conducted to extract EMG features, joint moments, and angles.

Figure 1. Data flow for training the LSTM network model.

3.1. Data Acquisition Process

Three acquisition systems were used in this study. First, the human translations were
traced using the Optitrack system, an optical motion capture system that tracks the three-
dimensional trajectories of reflective markers mounted on the subject at 100 Hz. GRFs
were measured using two multi-axis AMTI force plates, each with a sampling frequency
of 100 Hz. The force plate data were filtered with a fourth-order Butterworth filter with a
cutoff frequency of 6 Hz. Meanwhile, a 16-channel Delsys Trigno wireless sEMG acquisition
system records the sEMG signals from 14 muscles of interest at 1.1 kHz.

3.2. Experiment

The experiment comprises three stages: pre-experiment, static measurements, and
dynamic measurements. The experiment was conducted with six healthy males with
different anthropometric properties (height: 176 ± 9.2 cm and weight: 72.8 ± 11.7 kg); all
subjects were informed about the procedure before the experiment started. The ethical
committee of Tohoku University approved the experimental protocol under 22A-3.

Before the experiment, subjects were asked to wear tight T-shirts and swim trunks
to reduce marker errors while recording their motions. A total of 14 Delsys Trigno sEMG
sensors were placed on the subjects’ lower extremities. Muscle activities on both legs were
investigated. Therefore, for each leg, the sEMG signals from seven muscles of interest
were recorded, namely, the rectus femoris (RF), biceps femoris (BF), vastus lateralis (VL),
semitendinosus (ST), tibialis anterior (TA), gastrocnemius medialis (GAS), and soleus (SOL),
as shown in Figure 2. SENIAM recommendations [27] were followed for sensor placements
to obtain the best signals.
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Figure 2. Fourteen sEMG sensors placed on the muscles of interest.

After installing the sEMG sensors, 39 markers were attached to each subject at positions
specified following a marker set available in OpenSim. Then, the subjects were requested to
hold a reference pose (T-pose) to provide data for a subject-specific model in the OpenSim
simulation. Eight markers were used only for the static measurement: knee lateral, knee
medial, ankle lateral, and ankle medial on both legs, and these were removed after the
static measurements were completed, while the remaining markers were used for static
and dynamic trials. Figure 3 shows the 31 markers used for the dynamic measurements.

Figure 3. Mounting placement of markers on the subject for dynamic measurements.

In the dynamic measurement phase, the participants were instructed to step on two
force plates and perform the following sequences: squatting ten times, picking up an
object and putting it down ten times, then sitting on a chair and standing up ten times.
The participants repeated each action five more times to provide more data. Finally, they
performed the actions in a random order during the remaining time of the experiment.
Regarding dynamic measurements, we recorded experimental data for approximately
5 min without stopping, and our volunteers completed the tasks at their own pace.

3.3. Data Processing

As a biomedical signal, EMG is inherently noisy and thus requires pre-processing as a
mandatory step to make the signals reliable before extracting features. The sEMG signals
corresponding to the muscles of interest were filtered in the following manner:

• Passing raw signals through a fourth-order bandpass filter with a frequency range
from 20 to 450 Hz [28].
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• Passing signals through a second-order infinite impulse response (IIR) notch digital
filter with a cutoff frequency of 50 Hz [28].

• Differentiating the signals to make them more stationary than the original [29].
• Normalizing the signals concerning the maximum value to maintain the signal be-

tween 0 and 1 [30].

The success of the predictive system depends mainly on the chosen EMG features.
Several features could be extracted from EMG pre-processed data, such as integrated
EMG (IEMG), mean absolute value (MAV), waveform length (WL), simple square inte-
gral (SSI), root mean square (RMS), myopulse percentage rate (MYOP), autoregression
model (AR) coefficients, and cepstrum coefficients (CC) [29]. According to [31], a com-
bined feature set, including AR coefficients, RMS, and a simple time-domain (TD) statistic
showed a consistent improvement in classification accuracy. Consequently, in this work, we
employed EMG features consisting of sixth-order AR coefficients, RMS, and MAV, resulting
in eight features for each sEMG channel. In total, 112 features (14 sensors, 8 features each)
were calculated using a 100 ms sliding window with a 50 ms step. These features were
calculated using the following equations:

x(t) =
P

∑
p=1

(apx(t− p) + ε) (1)

RMS =

√√√√ 1
N

N

∑
t=1

x(t)2 (2)

MAV =
1
N

N

∑
t=1
|x(t)| (3)

where x(t) is the sample value at time t, P is the order of the AR model (in this work, P is 6),
ap is the pth order AR coefficient, ε is the white noise, and N is the number of samples.

3.4. OpenSim Simulation

OpenSim [32] is a freely available, user-extensible software system that allows users
to develop models of musculoskeletal structures and create dynamic simulations of move-
ment. Various biomechanical applications have been developed based on this open-source
software [33,34]. In this study, the Scale Tool, Inverse Kinematics (IK) Tool, and Inverse
Dynamics (ID) Tool were used to obtain the joint angles and torques.

First, by applying OpenSim’s Scale Tool, a generic musculoskeletal model (gait2392) [35]
was scaled based on a comparison of experimental marker data with virtual markers to
generate a subject-specific model. After that, the IK tool was used to get the joints angles
by solving the following weighted least squares equation:

min
q

[
∑

i∈markers
wi

∥∥∥xexp
i − xi(q)

∥∥∥2
+ ∑

j∈unprescribed coords
ω
(

qexp
j − qj

)2
]

(4)

where q is the coordinate vector to be solved, wi is the marker i weight, xexp
i is the experi-

mental marker i 3D position, xi(q) is the corresponding virtual marker 3D position, ωi is
the coordinate i weight, and qexp

j is the experimental coordinate value.
Finally, OpenSim’s ID tool was used to estimate each joint’s net force and moment

during the movement using kinematics information and the GRFs applied to the model at
the calcaneus bones to solve the following ID, Equation (5).

M(q)q̈ + C(q, q̇) + G(q) = τ (5)
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where N is the number of degrees of freedom, q, q̇, q̈∈RN are vectors of generalized posi-
tions, velocity, and acceleration, M(q)∈RNN is the system mass matrix, C(q, q̇) ∈RN is the
vector of Coriolis and centrifugal forces, G(q)∈RN is the vector of gravitational forces, and
τ∈RN is the vector of generalized forces.

3.5. Dataset

EMG features were computed at 20 Hz, while joint angles and moments were recorded
at 100 Hz. Joint data were downsampled to match the features recording frequency, then
passed through a sixth-order Butterworth lowpass filter with a cutoff frequency of 6 Hz.
Features and labels are time-dependent; we stacked them together to form a sequence
dataset. The dataset is divided into a training set (first 60%) for model training, validation
(the following 20%) to validate trained models and testing (the last 20%) for the final
evaluation of the trained model. Lastly, features were scaled between 0 and 1 using the
training set only, and joint angles were scaled to make the training faster.

3.6. Evaluation Metrics

The performance of the proposed LSTM network model was evaluated by examining
three metrics:

1. Coefficient of determination (R2) to determine how well the model fits the variance.
However, it does not account significantly for the offset.

2. Root mean square error (RMSE) is affected by the offset between the actual and esti-
mated values. The main drawback of using RMSE is that comparing results between
different subjects and joints will result in misleading information because subjects
and joints will have distinct ranges depending on the subject’s anthropometrics and
other factors, such as the subject’s patterns, to achieve the tasks.

3. Normalized root mean square error (NRMSE) to make results’ intrasubject and inter-
subject links more meaningful.

These metrics were computed using the following equations:

R2 = 1− ∑N
t=1(ŷt − yt)2

∑N
t=1(ȳ− yt)2

(6)

RMSE =

√√√√ 1
N

N

∑
t=1

(ŷt − yt)2 (7)

NRMSE =
RMSE

max(yt)−min(yt)
(8)

where ŷt is the predicted value at time t, yt is the measured value at time t, and ȳ is the
mean value of the observation.

3.7. LSTM Model

The LSTM is an RNN model that takes past information and builds long and short-term
memories to predict future outputs based on the given data. The model’s performance is
affected by the LSTM network’s hyperparameters, such as the model’s architecture, batch
size, validation set, dropout, and activation units. There is no specific rule for determining
the best hyperparameter combination. Training a deep neural network is a repetitive task that
requires adjusting the hyperparameters and retraining the model until a suitable combination
is identified to yield desirable results. The model was tuned to achieve high performance
with a small number of trainable parameters to avoid overfitting. The LSTM model in this
study had two stacked LSTM layers; each contains eight hidden units and a 30% dropout
probability. The output layer is dense with eight neurons; each label will have a specific
neuron assigned to it. The time step is equivalent to 1 s (20-time steps) and estimates the
labels at the following time step (50 ms ahead of time). The model is trained using a NADAM
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optimizer with a reduced learning rate starting from 0.003 and a reduced factor of 70%. The
mean square error (MSE) loss function was used, and the batch size was only eight.

4. Results and Discussion
4.1. Experimental Motion Analysis

Figure 4 shows the signal distribution of data per task and side for each subject.
These data are collected during the first ten consecutive actions of each task. All subjects
performed similar tasks, however, there are some intersubject differences in joint usage and
its combination for completing the same task. Even in this situation, the joint angle and
moment estimation performance is evaluated for different tasks.

4.1.1. Squat

All subjects have comprehensive knee flexion when squatting; S1 and S3 applied higher
knee flexion when squatting, yet S1’s normalized knee moment is more significant than S3’s
because each subject combines various joints to complete a particular action, including the
upper body to control the center of mass and prevent falling; this phenomenon is called
synergy [36]. S1 flexed his knees to approximately 140◦, greater than the other subjects’
knees extension, which resulted in the greatest knee extension moment exceeding 1.5 times
the subject’s weight. Except for S2’s left knee moment, all other knee labels grow greater
than the subjects’ weight. S3 tends to extend his knees, resulting in a 0.5 Nm/kg flexion
moment on the left knee. Even though his knees have similar knee flexion profiles, the
right knee extension moment grows close to 1.5 Nm/kg. In contrast, his left knee extension
moment was only around 1 Nm/kg. He also extended his knees after each action, resulting
in knee extension angles and moments, especially for the left side.

Ankle actions were more asymmetric than the knees. S1 had the greatest ankle plantar
flexion moment with around 1 and 0.8 Nm/kg for both left and right ankles. The outlier
values are represented when a subject performs an action one or two times more intensely
than the other. S2’s ankles had the lowest plantar flexion moment, with less than 0.4 Nm/kg,
with asymmetric dorsiflexion angles.

4.1.2. Pick Up an Object

Unlike normal walking, where the patterns and range of motions are relatively com-
parable for both intersubject and intrasubject cases, for a task such as picking an object
from the ground, some subjects applied unique strategies, depending on many factors such
as the subject’s anthropometrics, the position of the object and subject’s body orientation
concerning the object. S1, S4, and S6 have similar knee actions pattern for this task; they
lower their bodies by flexing their knees (approximately −20◦ to −120◦), similar to when
squatting but with less knee extension moment compared to when squatting but with greater
ankle dorsiflexion moment. Those subjects’ ankles only exercised dorsiflexion orientation.
Still, unlike S4 and S6, S1 has a smaller ankle angle span. Nevertheless, he applied a high
ankle plantar moment, especially on his right ankle, exceeding his body mass.

S2 and S5 slightly flex their knees to pick up the object (approximately 0◦ to −30◦)
and rely on lowering their upper body, which results in a knee flexion moment for most of
the action’s time. Both subjects had intrasubject asymmetric ankles angles and moments,
especially S2, whose left ankle was in the plantar-flex state for most of the action’s time,
reaching −10◦. S3 flexed his knees close to −60◦ when picking the object and extended
them after it. This subject’s left knee only had an extension moment, unlike the right knee.
The ankle motion of S3 was similar to S2 with asymmetric ankle angles. His right ankle
was always in a dorsiflexion position and had a small range of motion compared to the
right ankle, with a greater ankle plantar flexion moment.

4.1.3. Sit Stand

Like the squat, subjects flex their knees in a comprehensive range when sitting on
chairs but with small flexion moments. The lower knee angles’ and the zero knee moment
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medians are because subjects tend to sit for longer than the standing time. Like the previous
two actions, S1’s left ankle plantar flexion moment is more significant than the subject’s
body mass and greater than the right ankle moment, which means that this subject relies
heavily on his left ankle to support the action compared to other subjects.
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Figure 4. Distribution of the kinematics and kinetics data when each subject performed each task for
the first ten times. Red boxes indicate the left side, and blue boxes indicate the right side.
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4.2. Estimation Performance with Personalized Intrasubject Models

Tables 1–3 illustrate the personalized intrasubject models’ on the test sets. The last row
shows the mean ± standard deviation (Std) of the left and right labels. The R2 and NRMSE
tables are used for intrasubject comparison. At the same time, the RMSE is suitable for
reading each label’s actual error value.

Table 1. R2 score of the trained subjects’ personalized models.

Angle Moment
Knee Ankle Knee Ankle

Left Right Left Right Left Right Left Right

S1 98.40% 98.48% 94.61% 94.12% 94.33% 93.46% 95.27% 96.19%
S2 97.52% 97.00% 94.03% 90.36% 96.19% 96.09% 82.52% 90.79%
S3 97.80% 97.91% 95.58% 95.54% 96.64% 97.15% 87.74% 89.22%
S4 97.48% 97.73% 90.45% 89.81% 94.39% 95.60% 69.04% 78.74%
S5 94.19% 94.29% 85.33% 85.75% 94.73% 93.38% 88.69% 90.55%
S6 98.21% 97.99% 90.99% 90.65% 94.05% 92.83% 80.19% 76.39%

Mean ± Std. 97.25% ± 1.46% 91.44% ± 3.48% 94.9% ± 1.4% 85.44% ± 8.14%

Table 2. NRMSE score of the trained subjects’ personalized models.

Angle Moment
Knee Ankle Knee Ankle

Left Right Left Right Left Right Left Right

S1 3.20% 3.20% 4.20% 4.40% 4.10% 4.60% 5.70% 5.10%
S2 4.90% 5.20% 5.90% 7.60% 4.30% 4.50% 10.20% 7.70%
S3 4.30% 4.10% 6.30% 6.20% 4.40% 3.70% 8.20% 8.20%
S4 5.60% 5.40% 8.30% 8.70% 5.40% 4.70% 12.20% 10.00%
S5 6.60% 6.50% 8.40% 8.80% 4.50% 4.70% 8.00% 8.20%
S6 5.10% 5.30% 8.40% 8.20% 6.40% 6.60% 7.70% 10.30%

Mean ± Std. 4.95% ± 1.1% 7.12% ± 1.66% 4.83% ± 0.88% 8.46% ± 1.98%

Table 3. RMSE of the trained subjects’ personalized models.

Angle Moment [Nm/Kg]
Knee Ankle Knee Ankle

Left Right Left Right Left Right Left Right

S1 3.76 3.73 2.23 2.49 0.073 0.079 0.065 0.058
S2 6.00 6.21 2.80 3.05 0.064 0.066 0.057 0.053
S3 6.73 5.78 3.12 3.08 0.074 0.076 0.060 0.073
S4 5.75 5.66 2.70 2.72 0.075 0.063 0.132 0.096
S5 8.35 8.25 4.88 4.66 0.102 0.104 0.073 0.069
S6 5.96 5.90 3.19 3.21 0.080 0.080 0.048 0.062

Mean ± Std. 6.01 ± 1.40 3.18 ± 0.80 0.078 ± 0.013 0.071 ± 0.023

The models estimated knee angles with high accuracy and low variance, achieving
97.25%± 1.46% R2 and 4.95%± 1.1% NRMSE, which is the best performance among other
labels. The maximum difference between left and right knee angles is 0.52% R2 and 0.30%
NRMSE in S2. Most of the variance came from the intersubject compassion. S1 achieved
the highest results, with 98.48% R2, 3.2% NRMSE, and 3.73◦ RMSE on the right side, with
a slight difference from the left side. In contrast, other models achieved remarkable knee
angle estimation results above 97.4% R2 and NRMSE less than or equal to 5.6%, except
for S5, where the model achieved lower performance than other subjects. Compared to
the knee angle estimation, knee moment estimation’s R2 had dropped to 94.9%± 1.4%.
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However, the NRMSE improved to 4.83%± 0.88%. S3’s right knee moment estimation
achieved the best results, with 97.15% R2 and 3.7% NRMSE, but his right knee had an
RMSE of 0.076 Nm/kg, which is higher than the left knee moment by 0.002 Nm/kg.

Regarding the ankle labels, the intersubject and intrasubject variance appears more
than knee labels with lower performance. S3’s ankle angles had the highest R2, with
approximately 95.5% for both sides. However, they achieved 6.3% and 6.2% NRMSE for
both left and right ankle angles, which is greater than S1’s and S2’s left ankle angles. The
model delivered similar results for S3, although the subject tends to have greater left ankle
dorsiflexion than the right ankle. A 3.67% R2 and 1.7% NRMSE difference between S2’s
ankles angles is the most enormous intrasubject variance for the ankle labels.

Ankle moment has the worst estimation results, with 85.44% ± 8.14% R2 and
8.46%± 1.98% NRMSE. S1’s right ankle moment had the highest ankle moment estimation
performance with 96.19% and 5.1% R2 and NRMSE. Although the model could estimate
S4’s left ankle angles with 90.45% R2 and 8.3% NRMSE, S4’s left ankle moment estimation
had the worst estimations, with 69.04% R2 and 12.2% NRMSE. S4’s ankle moment estima-
tion also had the highest intrasubject effect between left and right ankles. S2’s model could
estimate the right ankle moment better than the left ankle moment. Only S1’s and S5’s
ankle moments estimations were better than their ankle angle estimation for both R2 and
NRMSE metrics.

Figures 5 and 6 show the measurement against the estimation for S1 and S2 labels. S1
applied a high and relatively smooth ankle moment similar to the knee angles; therefore, the
model could estimate the ankle angles accurately, unlike S2, which had issues maintaining
a smooth ankle moment line. The models could highly estimate motion with an extensive
range better than the ones with quick changes in direction, which is why the knee angle
estimation had the highest estimation results for all models. S2’s model failed to estimate
ankle moments correctly. However, it followed the moment’s trend, resulting in the
misleading right ankle moment R2 score. Moreover, it made a mistake in estimating the
knee angle when the subject started sitting on the chair but could find the correct angle
value before the subject started standing from the chair.
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Figure 5. S1’s test set measured (straight blue lines) against estimations (dotted red lines) during an
interval of 15 s.
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Figure 6. S2’s test set measured (straight blue lines) against estimations (dotted red lines) during an
interval of 15 s.

5. Conclusions

The standard approach in biomechanics for estimating lower limb joint moments is
applying inverse dynamics based on motion capture and force plate information. However,
the force plate’s ground reaction force is available only for a small area of the force plate.
This work investigated the LSTM network for the kinetics and kinematics prediction of
human lower limbs when performing different activities without using force plates. After
the learning, the neural network only requires the measured sEMG signals for accessing
the estimated joint moment and angles of the lower limb. We have proposed this new
framework for lower limb joint moment estimation and verified its feasibility through
experiments. We measured surface electromyography signals from 14 lower extremity
muscles to generate a 112-dimensional input vector from 3 sets of features: root mean
square, mean absolute value, and sixth-order autoregressive model coefficient parameters
for each muscle for the LSTM network to estimate knee and ankle joint angles and moments
on both sides for eight participants.

Different subjects apply different knee and ankle strategies for the tasks, resulting
in diverse datasets. Not all our subjects are athletes, resulting in an imbalance between
left and right labels. The trained LSTM models are nonlinear and can estimate knee and
ankle angles and moments. Despite these challenges, the LSTM models could estimate
knee angles and moments with 97.25% and 94.9% mean R2 and 4.95% and 4.83% mean
NRMSE. The models achieved results on ankle angle estimation of 91.44% mean R2 and
7.12% mean NRMSE. Out of 12 ankle moment estimations, only 4 outputs had more than
90% R2. The models achieved results on ankle moment estimation of 85.44% mean R2 and
8.46% mean NRMSE.

LSTM models demonstrated some bias, especially for ankle moments, compared to knee
moments. Looking at the measured labels against the estimated labels in Figures 5 and 6,
we believe that the models find it difficult to estimate ankle moments because they find it
hard to maintain their balance, which results in small changes in the moment, which was
not the case for S1, who maintained smooth ankle moment curve.

Generally speaking, an LSTM model with 4488 parameters was trained for each subject.
It could estimate eight different joint angles and moments for multitasking activities using
only EMG features. This study has some limitations and drawbacks that need to be
addressed in future work:

• We assumed that all the output measurements from the motion capture system, force
plates, and OpenSim calculations were accurate and reliable.
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• sEMG signals are susceptible to external factors such as sweat or motion artifacts,
which are inherent issues when opting for the surface type. These factors may affect
the quality of the signal.

• The number of movements is still limited. This system does not cover walking,
jumping, or running activities, which are usually in high demand.

• The number of investigated joints is also insufficient. The hip joint was excluded from
this study because the sEMG signals of the muscles of interest contributing to hip
joints are challenging to access stably for the measurement.

• Results are not always consistent from one subject to another (intersubject variability).
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