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Abstract: Along with society’s development, transportation has become a key factor in human daily
life, increasing the number of vehicles on the streets. Consequently, the task of finding free parking
slots in metropolitan areas can be dramatically challenging, increasing the chance of getting involved
in an accident and the carbon footprint, and negatively affecting the driver’s health. Therefore,
technological resources to deal with parking management and real-time monitoring have become
key players in this scenario to speed up the parking process in urban areas. This work proposes a
new computer-vision-based system that detects vacant parking spaces in challenging situations using
color imagery processed by a novel deep-learning algorithm. This is based on a multi-branch output
neural network that maximizes the contextual image information to infer the occupancy of every
parking space. Every output infers the occupancy of a specific parking slot using all the input image
information, unlike existing approaches, which only use a neighborhood around every slot. This
allows it to be very robust to changing illumination conditions, different camera perspectives, and
mutual occlusions between parked cars. An extensive evaluation has been performed using several
public datasets, proving that the proposed system outperforms existing approaches.

Keywords: parking; detection; parking lot; convolutional neural networks; ConvNeXt; deep learning;
computer vision

1. Introduction

Along with society’s development, transportation has become a key factor in human
daily life, leading to an exponential increase in the number of vehicles on the streets. As
reported by the Spanish Directorate-General for Roads, a department of the Ministry of
Transport, Mobility and Urban Agenda, the 2021 Annual average daily traffic (AADT) of
Madrid’s main roads was over 23,000 vehicles per road section and day [1]. In addition,
the AADT has undergone an increment of 10% between 2012 and 2021 [1]. This fact
especially affects the chance of finding free parking spaces. According to several studies, an
average of approximately 30% of vehicles on the road in metropolitan areas are searching
for a parking spot [2–4], adding up to 17 h a year just looking for a parking space. This
obviously increases both the chance of being involved in an accident and the carbon
footprint. Although these might be the most foreseeable effects, several studies also report
negative effects for the driver as well. As claimed by Ponnambalam et al. [3], searching
for parking requires a higher workload than regular driving. When parking availability is
low, the driver’s attention is divided between two tasks: driving and searching for parking.
This induces higher driver fatigue levels. Furthermore, it causes a negative feeling of delay
to their final destination, leading the driver to become stressed and frustrated. Even more,
if no parking spot is found after a certain amount of time, the driver might end up parking
in illegal places, increasing the risk of accidents even more [5,6].
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Automatic systems for real-time monitoring and reservation of parking spaces can be
a turning point in parking space management in urban environments. Several methods can
be found in the literature addressing real-time monitoring of parking spaces, which can be
categorized into two different groups: visual and non-visual methods [2].

Non-visual methods were some of the first systems proposed for parking occupancy
detection. They can be divided into global and local occupancy approaches. Global
occupancy approaches count the number of vehicles entering and leaving a parking lot.
For indoor parking lots, gate-arms counters are used to count the number of vehicles going
through both the entrance and the exit. Furthermore, for outdoor parking lots, induction
loop detectors are preferable to count the in-and-out vehicle flow. The main advantages of
these systems are their low price and their fast deployment. An example of these methods
can be found in [7]. However, previous works do not provide the location of the vacant
spots, only the global occupancy information [8]. Local occupancy approaches provide
individual information on the occupancy of every parking spot, and therefore its precise
location. They typically use a detection sensor per parking space, such as ultrasonic or
magnetic sensors, and LED lights as indicators of occupancy. In these cases, one sensor per
spot is typically used. Along with the sensor, LED lights are commonly used as well. An
example can be found in [9]. Whereas these kinds of non-visual methods are usually the
most common in closed parking lots, they are not easy to scale because of the requirement
of one sensor per parking space. This is even more costly for outdoor parking slots, where
additional infrastructure is required for the deployment of sensors and indicators, as there
is no ceiling to set the sensors. Other types of non-visual methods are those based on
crowd knowledge [2]. These methods use human interaction to collect information on
the parking occupancy status. Shi et al. [10] present an example of these methods. In it,
partial information about vacant parking spots is collected via the interaction of drivers
(users) with an app that includes a map and geolocalization capabilities. Then, the missing
information is inferred using a logistic regression method. However, these methods can
miss vacant parking spots due to a lack of collected data. In addition, even when enough
data has been retrieved, the reliability of the crowd-collected knowledge is not guaranteed.

Visual methods are especially appealing for indoor and outdoor parking lots as a
single camera is able to monitor an area with over 100 parking spots. Even more, already
existing surveillance cameras could be reused, reducing the cost and deployment time.
These methods infer parking space locations and markings from the acquired images to
analyze the occupancy. Such systems usually require advanced computer vision algorithms
to process the rich image-based information [8].

There are typically two stages involved: parking slot detection and occupancy esti-
mation. The first stage determines the location of parking slot candidates on the parking
place image, typically when they are empty. In the Chen et al. proposal [11], the marking
corners of parking spaces are estimated using the FAST algorithm to predict every parking
slot. Later, detected corners are filtered and used to estimate possible parking lines via
the RANSAC method. Finally, parking slots are inferred by grouping parallel lines. In the
Xiang et al. design [12], Haar-like image features were extracted and delivered to a cascade
of Gentle AdaBoost classifiers to determine possible parking slots. Varghese et al. [13] use a
background subtraction algorithm to determine potential parking slots for non-delimited
spaces (no markings are available) by monitoring temporal changes of parked cars.

The second stage, parking occupancy, estimates the free parking spaces assuming that
the location of the parking slots on the image is already known, either using one of the
previous parking slot detection algorithms or manually delimiting the existing spaces. In
the Chen et al. proposal [11], a region-growing algorithm and a Canny edge detector for
feature extraction are applied inside every parking slot, and the resulting image features
are delivered to a Naive Bayes classifier that predicts the occupancy. Varghese et al. [13]
suggest a Bag of Features method followed by a Support Vector Machine (SVM) classifier
for the occupancy estimation. Almeida et al. [14] proposed a Local Phase Quantization
(LPQ) for feature extraction followed by an SVM classifier. In the Vítek et al. method [15], a
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Histogram of Oriented Gradients (HOG) was used to obtain the feature descriptor, followed
by an SVM classifier. These previous methods use shallow learning techniques for inference;
however, a significant improvement can be achieved using deep learning ones, such as the
ones presented next, as the relevant features are automatically extracted from images. In the
Xiang et al. design [12], a deep learning model based on VGG-16 [16] architecture is used
to perform the per-slot occupancy prediction. Another Convolutional Neural Network
(CNN) architecture based on a reduced version of AlexNet is proposed by Amato et al. [17]
to estimate the occupancy of every individual parking spot. Similarly, Farley et al. [18]
propose both LeNet and AlexNet architectures to identify parking occupancy in real time.
In the Rahman et al. proposal [19], a low complex architecture called EffecientParkingNet,
is developed to estimate the parking availability under hardware computational limitations.
In the Ellis et al. design [20], a multi-layer perceptron style architecture, called CoarseNet,
along with two reduced versions of DenseNet, are proposed as lightweight architectures
for parking occupancy detection. In [21], Nyambal et al. implemented a LeNet network
with Nesterov’s Accelerated Gradient solver. Šćekić et al. [22] propose a CNN-based
algorithm called Faster R-CNN. Similarly, Muhammad et al. [23] propose a ResNet50
algorithm for parking occupancy detection. In the Rafique et al. study [24], in order to
manage parking availability, YOLOv5 is proposed for vehicle detection instead of parking
slot classification. All the previous occupancy estimation studies work at the local level,
making predictions based on the local image information delimited by single parking
spots. Therefore, they largely depend on the quality of the available information about the
location of the parking spaces. There are two main drawbacks to this type of architecture.
First, no context information is used to predict the occupancy of each parking space, which
might create highly ambiguous and error-prone circumstances due to illumination changes,
background occlusions, inter-vehicle occlusions, and effects of the camera perspective. A
very likely challenging scenario is given by camera perspective. As a single camera is
in charge of several slots, lens distortions are usually encountered. Another challenge
leading to ambiguous situations is given by background occlusions. Objects such as trees,
streetlights, or traffic lights can be found in large parking spaces, partially blocking the view
of several parking spaces. In addition, as the system is expected to work 24 h a day, dramatic
illumination changes are also frequent due to over or underexposure of the camera sensor.
Figure 1 shows some examples of these ambiguous situations. Second, highly precise
annotations of the regions delimiting every parking slot must be provided, which can
be challenging due to occlusions and camera perspective, and very especially if typical
bounding-box-based annotations are used, particularly when using simple bounding boxes
(a common strategy to decrease the annotation computational cost), since it is not possible
to accurately enclose them.

(a) (b)
Figure 1. Examples of challenging scenarios given by illumination changes, background occlusions,
inter-vehicle occlusions, and effects of the camera perspective (such as lens distortion). (a) Example
of background occlusion and lens distortion; (b) example of illumination conditions.
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To partially alleviate the lack of contextual information, the information of three
consecutive space regions is used by Vu et al. [25] to obtain the middle slot status. This work
uses a Siamese CNN architecture for extracting feature descriptors. Then, a convolutional
Spatial Transformer Network is proposed to compensate for the geometrical distortion of
individual parking spots due to the perspective, and finally, another CNN architecture
is used to determine the occupancy. However, more contextual information would be
beneficial, as well as less exigent quality annotations.

This work proposes a new approach to detecting free parking spots that solves, or at
least largely alleviates, the previous problems by using all the available contextual image
information to predict the occupancy of every parking space, and by relaxing the quality of
the location information of every parking spot. This system has two main advantages: (a) to
use the whole image’s contextual information that state-of-the-art architectures lack, and
(b) to allow more flexible annotation requirements for parking slot locations that reduce
its dependency on the prediction results, as the proposed system does not need to know
the location, just the occupancy. For this purpose, a multi-branch output neural network
(MBONN) is proposed, which is composed of a backbone and a set of fully connected
(FC) based branches. The backbone extracts a common feature map from the input image,
which is then independently processed by each output branch, one per parking slot, to
determine the occupancy status of every one of them. Thus, all the contextual information is
considered and differently processed to infer the occupancy, addressing the challenges that
involve each parking slot (different illumination, occlusions, and geometric distortions due
to perspective). Additionally, the backbone is based on the high efficient new ConvNeXt
architecture. On the other hand, the parking slot annotations and their quality are relaxed,
just requiring a point-based annotation indicating the approximate center of every parking
slot instead of complex polygons or oriented bounding boxes. The key is that the proposed
system uses all the contextual image information to predict the occupancy of every slot
instead of the strict area of every parking space, and therefore is not critically dependent
on the accurate delimitation of them. To obtain precise conclusions about the system’s
performance, it will be evaluated with several public datasets, including a new proposed
dataset called ETSIT Parking Lot Occupancy Database (ETSIT) [26]. The system will
allow people to spend less time driving and reduce both pollution and traffic, while also
decreasing the probability of having a traffic accident.

The main contributions of this system are as follows:

• A new architecture is proposed, composed by multiple neural network output branches
where each branch utilizes all available contextual image information to specifically
analyze and predict a single parking slot. In this architecture, each branch is respon-
sible for adapting the system to the unique needs and characteristics (perspective,
distortions, etc.) of its assigned slot. By analyzing all available information in a
personalized manner for each parking slot, each branch is better equipped to handle
challenging scenarios.

• Each parking slot is simultaneously predicted in parallel by a dedicated branch in
the MBONN. This allows all slots to be predicted at the same time, in contrast to
state-of-the-art approaches that predict serially one slot at a time. Consequently, the
proposed MBONN significantly reduces computational complexity.

• The annotation process is simplified by the proposed system, which does not require
exhaustive boundary information to locate each parking slot, unlike other state-of-the-
art approaches. For ground-truth annotations, only the occupancy status is necessary.
However, although the system does not receive explicit information about the order
of the parking slots during training, it implicitly learns to locate them because the
occupancy information is consistently provided in the same order. Specifically, since
the annotator always follows a predetermined order when annotating the slots, the
system learns to associate each occupancy status with the corresponding parking slot
during training, without being explicitly informed about the order.
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The structure of this document goes as follows. Section 2 describes the proposed park-
ing lot recognition system. Section 3 details the used metrics and gives the obtained results,
while also making comparisons with other state-of-the-art works. Finally, conclusions and
future work are drawn in Section 4.

2. Applied Methodology

In this project, a free parking space recognition system using surveillance cameras is
presented. For this purpose, a multi-branch output neural network architecture was devel-
oped, as can be seen in Figure 2. Inputs are color images acquired from the parking scene.
These images are processed by a backbone that is responsible for adaptively computing a
high-discriminative and global feature map that semantically represents the relevant image
information (parking slots, cars, occluding objects, and so on). That common feature map is
independently processed by a set of FC network branches, the multi-branch output, where
each one uses all the image information (the global feature map computed by the backbone)
to estimate if a specific parking slot is free.

Figure 2. Input–Output system architecture. The backbone processes the color images acquired
from the parking scene to compute a global feature map. The multi-branch output independently
processes the common feature map, so each branch uses all the image information to estimate if a
specific parking slot is free.

The proposed system can work with a number of CNN-type architectures, including
ResNet [27], Xception [28], NASNet [29], and ConvNeXt [30]. The system performance
using the previously mentioned backbones has been studied, all of them with an input
image of size 267× 200. All of the different backbones were able to give great performances.
However, the ConvNeXt backbone was chosen for the final implementation. The ConvNeXt
network is the newest one, and it is built following the design ideas of MetaFormer [31],
which combines the high-level design of Transformers while substituting the Self-Attention
module with a 3D convolutional block that has a lower computational cost.

2.1. ConvNeXt-Based Backbone

ConvNeXt is one of the latest CNN architectures that evolves the ResNet architecture
by adopting the design principles of Visual Transformers [32], achieving similar perfor-
mance to that of the former at a significantly lower computational cost. The ConvNeXt
architecture, which can be seen in Figure 3, can be divided into three hierarchical entities
called stages, blocks, and layers. Following this division, its structure contains five stages,
each of which is composed of a fixed number of blocks. Similarly, each block is composed
of a fixed number of layers.

The first stage, in purple, also known as the stem cell, is the network’s input and
consists of a single block with two layers. The first layer processes the input image
with convolutions using 64 kernels of size 4 × 4 and stride of 4 × 4, in such a way
that there is no pixel overlapping between consecutive applications of a filter. This first
layer is equivalent to the operation of tokenization and feature embedding of the Visual
Transformer architecture. The second layer is a Layer Normalization (LN) [33] to avoid the
problem of vanishing and exploding gradients [34].
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Figure 3. ConvNeXt architecture. The left part of the figure shows the general connection of the three
hierarchical entities: stages, blocks, and layers. The right part of the figure represents the composition
of a single block into layers.

The next four stages are composed of a concatenation of 4, 4, 10, and 3 blocks, of which
the first 3, 3, 9, and 3 blocks, respectively, contain five layers each, where the input size
(W) of the first stage is 96, and for each stage, it gets doubled. The first two layers are a
7 × 7 depthwise convolution with W kernels and an LN, which combine the information
among tokens (token mixer) [31]. The other three layers are a 1 × 1 convolution, a Gaussian
Error Linear Unit (GELU) [35], and a 1 × 1 convolution, forming a sub-block called channel
mixer. This sub-block combines the information across channels, following an inverted
bottleneck design [30], in which the hidden dimension is four times wider than the input
and output of the sub-block. The architecture design was presented by MobileNetV2 [36],
and since then it has gained popularity in several advanced architectures [37,38].

The last block of the first three stages is composed of a concatenation of two layers: an
LN and a 2 × 2 convolution with a stride of 2 × 2.

2.2. Multi-Branch Output

The network output is formed by a set of FC branches that make independent pre-
dictions for each parking slot from the common feature map computed by the backbone.
The number of output branches is equal to the number of parking slots in each scene since
each branch processes independently and differently the common feature map provided
by the backbone to predict the occupancy of each of them. This allows to consider specific
challenges per parking space, such as background occlusions, intra-car occlusions, and
perspective distortions. Each branch has been implemented using a block of independent
FC layers, ReLU activation layers, and drop-out layers. The last layer is a sigmoid activation
function that provides occupancy probabilities for every parking slot, which are finally
thresholded to obtain a hard decision about the occupancy status.
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2.3. Network Training

The proposed system has been evaluated on an Intel Core i9-7900X @ 3.30 GHz CPU
along with an Nvidia Titan Xp (12 GB) GPU. TensorFlow using CUDA in Python was used
to implement the model, using PyCharm as the computing platform.

For study purposes, each dataset has been divided into three random subsets following
an 80%, 10%, 10% ratio. The larger subset has been used for training purposes, whereas
the other two subsets have been used for validation and testing, respectively. The binary
cross-entropy cost function, given by Equation (1), where N is the number of parking slots,
was used to compare the predictions made by the network with the ground-truth values.
With the aim of minimizing the cost function (Hp(p)) for each epoch, training is guided by
an optimization procedure based on gradient descent algorithm [39] that minimizes the
previous cost function using an iterative framework.

Hp(p) = − 1
N

N

∑
i=1

yi × log(p(yi)) + (1− yi)× log(1− p(yi)) (1)

Adam optimization has been adopted. This algorithm can be expressed with
Equations (2a) to (2f):

gt = ∇θ ft(θt−1) (2a)

mt = β1 ×mt−1 + (1− β1)× gt (2b)

vt = β2 × vt−1 + (1 + β2)× g2
t (2c)

m̂t =
mt

(1− βt
1)

(2d)

v̂t =
vt

(1− βt
2)

(2e)

θt = θt−1 −
α× m̂t√

v̂t + ε
(2f)

where ft(θ) is a stochastic scalar function that is differentiable with reference to parameters
θ; mt and vt represent the first-order momentum and second-order momentum, respec-
tively; β1 and β2 are their decay rates; m̂t and v̂t are the corrected estimators of mt and vt;
α represents the step-size; and ε is a small constant used to prevent the denominator from
becoming zero.

The hyper-parameter settings that have been used to train the network, such as the
learning rate or the total number of epochs, are listed in Table 1.

Table 1. Hyper-parameters used to train the network.

Hyper-Parameter Value

Learning rate 10−4

Number of epochs 50
Batch size 16
Image size 267 × 200

Weight decay 10−6

2.4. Metrics

Accuracy of the empty parking space prediction has been the metric selected to evalu-
ate the system’s performance, as it was the one used in other proposals. It is defined as the
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percentage of correct predictions; this is, the percentage of correctly detected free parking
slots in every image and across all images. Equation (3) gives its mathematical expression:

Accuracy =
Number of correct predictions

Total number of predictions
(3)

Both enumerator and denominator can be expressed using the metrics True Positives
(TP), True Negatives (TN), False Positives (FP), and False Negatives (FN), resulting in a
new expression of the accuracy given by Equation (4):

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

TP is the number of parking slots that have been correctly identified as free. Similarly,
TN indicates the number of parking slots that have been correctly identified as occupied.
On the other hand, FP is the number of occupied parking slots that have been predicted as
free. Finally, FN is the number of free parking slots that have been predicted as occupied.

3. Results

First, the datasets used to evaluate the proposed system are presented. The Section 3.2
shows the quantitative results. It provides the performance of the system with a comparison
of the different backbones and with other state-of-the-art solutions, as well as its sensitivity.
Finally, some qualitative results are provided in the Section 3.3.

3.1. Datasets

Four different databases have been used to evaluate the proposed system for detecting
the occupancy of parking slots: ETSIT [26], PUCPR [14], UFPR04 [14], and UFPR05 [14].
The ETSIT database contains day and night images of a complex parking scenario located
at the ETSI Telecomunicación of the Universidad Politécnica de Madrid, and it presents
important challenges such as perspective distortions, background occlusions, and different
illumination conditions. Some image examples were shown in Figure 1. This dataset was
chosen because of its extreme conditions of the farthest slots, which suffer from both a high
degree of occlusion and a reduced region size due to the camera perspective. The scene
contains 21 annotated parking slots (see Figure 4a). The other three datasets are subsets
of the PKLot database [14], which is the most extensive database in the state of the art
for parking spot detection. The PUCPR subset contains images of a parking lot located
at the Pontifical Catholic University of Parana, which contains 100 parking spaces (see
Figure 4b). The other two subsets, UFPR04 and UFPR05, have been acquired at the Federal
University of Parana. The UFPR04 dataset contains 28 parking slots (see Figure 4c), while
the UFPR05 has 40 parking spaces (see Figure 4d). In all three cases, the datasets include
various weather, occupancy, and luminosity circumstances.

Each dataset is composed of a set of images and its corresponding ground-truth file.
The latter is a text file containing the occupancy of each parking slot encoded as a binary
vector. A value of 1 means that the spot is empty, while 0 means it is occupied. All datasets
are divided into three subsets: training, validation, and test. General information about
each database, such as the number of images or parking spots, can be found in Table 2.

Figure 4a–d show the numbered slots of the ETSIT, PUCPR, UFPR04, and UFPR05
databases, respectively. Notice that these datasets do not consider all of the parking slots in
the different scenarios.

As can be observed in Figure 4, the different slots have been numbered for visualization
purposes. However, no location is needed for the system. For this method, the occupancy
status is enough. The occupancy information has to be given in the same order for every
image. This way, the system learns to locate the parking spots on its own.
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(a) (b)

(c) (d)
Figure 4. Example images of the four employed datasets, with all the considered slots numbered
from 0 to N-1. (a) a sample of the ETSIT database; (b) a sample of the PUCPR database; (c) a sample
of the UFPR04 database; and (d) a sample of the UFPR05 database.

Table 2. Brief description of the four employed datasets, indicating the total number of images
available and the number of parking slots considered in each scenario.

Database Total Images Number of Parking Slots

ETSIT 31,611 21
PUCPR 4474 100
UFPR04 5104 28
UFPR05 4153 40

3.2. Quantitative Results

The proposed system has been evaluated using the four previous databases (ETSIT,
PUCPR, UFPR04, and UFPR05) and the accuracy metrics. First, a comparison using different
backbones (Resnet50, Xception, NASNetLarge, ConvNeXtBase, and ConvNeXtTiny) is
presented. Then, a comparison with other works in the state of the art is included.

3.2.1. Comparison with Different Backbones

Table 3 shows the obtained accuracy results per database while Table 4 shows its
standard deviation, comparing different backbones for the first stage of the proposed multi-
branch output neural network architecture. The input image size of Resnet50, Xception,
NASNetLarge, ConvNextBase, and ConvNextTiny is 267 × 200, quite lower than the
original image resolution due to the memory restrictions to train the neural networks
models, which is a typical situation in deep neural networks oriented to image processing
applications. This can be problematic for the farthest parking spaces and also for those that
suffer from background occlusions (due to trees, streetlights, etc.).

Table 3 shows the average accuracy for each dataset for the different backbones using
input images of the reduced resolution of 267 × 200. The outcomes for all databases using
any of the backbones are extremely satisfactory. For every scenario, the occupancy of
parking spaces was predicted with an accuracy greater than 99.1%. This fact proves that
the proposed multi-branch network design can effectively infer the occupancy of parking
slots, independently of the chosen backbone.
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Table 3. Average accuracy of the proposed system for each of the tested backbones, computed with
all the employed databases. Each column represents the accuracy performance given by one of the
backbones, while each row indicates the accuracy obtained in a particular dataset.

Resnet50 Xception NASNet
(Large)

ConvNeXt
(Base)

ConvNeXt
(Tiny)

ETSIT 99.98 99.94 99.96 99.97 99.99
PUCPR 98.87 98.20 98.41 99.73 99.12
UFPR04 99.95 99.87 99.92 99.94 99.95
UFPR05 99.77 98.73 99.14 99.84 99.83

Table 4. Standard deviation of the performance accuracy through all the slots for each backbone.

Resnet50 Xception NASNet
(Large)

ConvNeXt
(Base)

ConvNeXt
(Tiny)

ETSIT 0.0180 0.0990 0.0371 0.0225 0.0090
PUCPR 0.6000 0.9032 0.7612 0.2679 0.4751
UFPR04 0.0771 0.1335 0.1073 0.1103 0.0760
UFPR05 0.3098 0.7007 0.6074 0.2857 0.2177

Similarly, Table 4 shows the standard deviation of said accuracy for the different back-
bones. As can be observed, the ETSIT dataset has the lowest values for all the backbones.
Since this dataset is the largest in terms of the number of images, the system is able to gain
better knowledge of more complex scenarios, and therefore its performance is more robust.
Regarding the different backbones, it can be seen that the ConvNeXt architecture is the one
to yield a lower standard deviation.

From the results of Tables 3 and 4, it can be concluded that the model operates as
intended, given the high accuracy outcomes and its small standard deviation. Therefore,
the system is consistent and stable through all parking slots, despite the fact that the
prediction conditions of the farthest lots (see parking slots 6, 18, 19, and 20 in Figure 4a)
are much more difficult than the closest ones. On the other hand, the system proves to be
robust to 24 h operation (daytime and nighttime), considering that 30% of the images have
been acquired in the nighttime. However, a slightly better performance is obtained form
the ConvNeXt architecture, as its average accuracy values are higher while the standard
deviation is lower.

Even if the ConvNeXt backbone has greater performance accuracy, all backbones are
able to obtain great values. Therefore, all backbones are suitable for the system. The total
number of parameters of the entire model has also been considered in order to determine
which architecture would be most convenient for low-cost and embedding processing
hardware. They are portrayed in Table 5. As can be observed, and attending to the
memory requirements of the embedded hardware, the most suitable architecture is the
ConvNeXtTiny algorithm, as it has way less number of parameters.

Table 5. Number of parameters of the complete model for each backbone and each dataset.

ETSIT PUCPR UFPR04 UFPR05

Resnet50 155,730,837 155,811,812 155,738,012 155,750,312
Xception 153,004,605 153,085,580 153,011,780 153,024,080

NASNetLarge 345,051,751 345,132,726 345,058,926 345,071,226
ConvNeXtBase 137,920,661 138,001,636 137,927,836 137,940,136
ConvNeXtTiny 65,591,413 65,672,388 65,598,588 65,610,888

The proposed system is computationally efficient and well-suited for real-time appli-
cations since it is capable of processing an average of 40 frames per second, which is more
than enough for most use cases. For parking management and monitoring, even predicting
just one frame per second is enough because the status of a single parking slot typically
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remains unchanged for a while when a car is parked. Therefore, the system can successfully
meet the requirements of such applications.

3.2.2. Sensitivity Analysis of the System

The proposed MBONN system was subjected to a sensitivity analysis to evaluate
its performance under varying levels of distortion and illumination conditions. Table 6
presents the accuracy results obtained for each parking spot in the ETSIT database at
different distortion levels. The table reveals that the performance of the system remained
stable across all the parking spots, regardless of the level of distortion. This suggests
that the system is robust and reliable even when the images are degraded or distorted.
The performance of the proposed system under varying illumination conditions was also
evaluated. Table 7 shows the average accuracy results obtained for both day and night
scenarios in the ETSIT database. The test images were divided into two categories based
on their light levels, and each scenario was evaluated separately. The results reveal that the
performance of the system remained stable and reliable in both scenarios, indicating that it
is robust even under low lighting conditions.

Table 6. Sensitivity analysis of the image distortion for the ETSIT database and the ConvNeXtTiny
backbone. Accuracy values per parking spot have been computed to portray the stability of the
proposed system.

Spot Accuracy Distortion Level

0 100.00 Low
1 100.00 Low
2 100.00 Low
3 100.00 Low
4 100.00 Low
5 99.97 Medium
6 99.97 Medium
7 100.00 Low
8 100.00 Low
9 100.00 Low
10 100.00 Low
11 100.00 Medium
12 100.00 Medium
13 100.00 Medium
14 100.00 Medium
15 100.00 High
16 100.00 High
17 100.00 High
18 100.00 High
18 100.00 High
20 100.00 High

Table 7. Sensitivity analysis of the illumination of the image for the ETSIT database and the Con-
vNeXtTiny backbone. Accuracy values for day and night scenarios have been computed to portray
the stability of the proposed system.

Scenario Accuracy Light Level

Day 100.00 High
Light 99.99 Low

3.2.3. Comparison with State-of-the-Art Works

Unlike state-of-the-art architectures, the proposed system needs no location annotation.
Therefore, it is expected to be more robust to challenging conditions, as the system is the
one that learns how to locate the spatial position of the different spots. To confirm this
statement, a comparison with several state-of-the-art works has also been obtained through
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a set of experiments. The first one evaluated the accuracy for each system with the PCUPR,
UFPR04, and UFPR05 datasets, as well as the average accuracy performance on the PKLot
database. For each dataset, 45% of the images have been used for training, 5% have been
used for validation, and the other 50% have been used for testing. Table 8 shows a detailed
comparison of the proposed multi-branch system to numerous current state-of-the-art
works with this configuration. The accuracy ratings obtained by each system on a variety
of datasets, proposed by [14], are used to make the comparison. Table 8 shows that the
suggested multi-branch system performs exceptionally well in terms of accuracy on all
datasets. This outstanding performance can be ascribed to the suggested ability of the
multi-branch architecture to appropriately handle several views and a wide variety of slots.

Table 8. Comparison of accuracy values with state-of-the-art works for the PCUPR, UFPR04, and
UFPR05 datasets. Additionally, the average accuracy for the PKLot database has also been compared.

PUCPR UFPR04 UFPR05 PKLot

LQP + SVM [14] 99.58% 99.55% 98.90% 99.34%
HOG + SVM [15] 94.00% 96.00% 83.00% 91.00%

Background subtraction
+ SVM [13]

N/A 99.72% N/A N/A

ResNet50 [23] N/A N/A N/A 99.67%
mAlexNet [17] 99.90% 99.54% 99.49% 99.64%
YOLOv5 [24] N/A N/A N/A 99.50%

LeNet [21] N/A N/A N/A 93.00%
ConvNeXt (Tiny)

multi-branch system
98.30% 99.73% 99.38% 99.14%

Table 8 shows that five of the algorithms that were compared achieved accuracies over
99.1%. While these results are impressive, it is important to note that the information pro-
vided in the state-of-the-art studies may not be sufficiently exhaustive for fully reproducing
the experiments. Therefore, it is difficult to definitively say which algorithm is the best,
since to ensure that the experiments are conducted under equal conditions, a 1% error rate
is typically used as a benchmark. Consequently, any of the five systems with an accuracy
above 99% can be considered to perform similarly.

Computational time is another important factor to consider, but unfortunately, this
information is not always provided in the state-of-the-art literature. However, based on
our analysis, we found that many existing systems only predict one parking slot at a time,
i.e., making predictions in series, which can be a time-consuming process. In contrast, the
proposed MBONN architecture is designed to predict multiple parking slots simultaneously,
in parallel, which should improve computational time compared to traditional approaches.

As the previous datasets do not really consider challenging scenarios, the second
experiment consisted of evaluating the proposed system and the mAlexNet [17] implemen-
tation, which yielded one of the highest performances, in a more challenging scenario. For
this purpose, the ETSIT dataset has been used with a training, validation, and testing ratio
of 80%, 10%, and 10%, respectively. The obtained results for both methods can be seen
in Table 9. In this case, both systems give great performances; however, the multi-branch
output system has been able to perform slightly better. To prove that the system is more
robust to challenging scenarios, the errors made by both systems have been collected. Upon
examination, it has been discovered that the mAlexNet implementation is more prone to
fail when partial occlusions are encountered. Figure 5 depicts an image of this kind of
scenario. Furthermore, it has also been discovered that the proposed method is able to deal
better with perspective distortions. As no spatial information is provided to the system,
it is able to correctly predict the output even if the camera angle barely allows its view.
Figure 6 shows an example of such distortion.
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Table 9. Comparison between the ConvNeXtTiny multi-branch system and the mAlexNet system [17]
for the ETSIT dataset.

ETSIT

mAlexNet [17] 99.93%
ConvNeXtTiny multi-branch system 99.99%

Figure 5. Example of a parking scenario of the ETSIT dataset with a partial occlusion given by a tree.

Figure 6. Example of a parking scenario of the ETSIT dataset with a lens distortion given by the
camera perspective.

Finally, the convergence rate of the ConvNextTiny system and the mAlexNet sys-
tem [17] has also been analyzed. To do so, two trials with a reduced number of training
images for the ETSIT dataset have been computed. The original division of this experiment
has been 45% training, 5% validation, and 50% testing. For the first trial, just 30% of the
training images have been used, while for the second trial, the number has been increased
to 50%. As it can be observed in Table 10, for 30% of the training images both systems give
similar performances. However, when 50% of the images are used to train, the proposed
method is able to achieve higher accuracy values. Therefore, the proposed system needs a
lower number of images to yield accuracies over 99%.
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Table 10. Comparison between the ConvNeXtTiny multi-branch system and the mAlexNet sys-
tem [17] for the ETSIT dataset with reduced training sets.

Training
Percentage

Accuracy Training
Percentage

Accuracy

mAlexNet [17] 30% 95.05% 50% 95.92%
ConvNeXtTiny multi-branch system 30% 95.74% 50% 99.13%

3.3. Qualitative Results

As was previously stated, the system is able to correctly perform under different
lighting and occupancy conditions. Some examples of the obtained results on critical
images using the ConvNextTiny backbone are shown in Figure 7. An interesting scenario
can also be seen in Figure 8. In this case, an error due to a temporal full occlusion is
portrayed. A truck is driving through the parking lot, causing occlusions along the way.
This is arguably a true error since the spot is not visible in the image, and once the truck is
gone, the system will recover its regular performance.

(a) (b)
Figure 7. A sample of predictions obtained with the proposed multi-branch output system for two
different datasets with different illumination and occupancy conditions. (a) Example of prediction for
the ETSIT database with low lightning conditions; (b) example of prediction for the UFPR04 database
with medium occupancy.

Figure 8. Example of an incorrect prediction given by the proposed system testing with the UFPR04
database due to a temporal full occlusion between vehicles.

4. Discussion

In this study, an automatic occupancy detection system for outdoor parking lots
has been presented based on a multi-branch output neural network architecture. The
main contributions are to use the whole image contextual information that state-of-the-art
architectures are lacking and to allow more flexible notation requirements for parking slot
locations that reduce its dependency on the prediction results.
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This work has studied several backbones for the proposed systems. All of them
(Resnet50, Xception, NASNetLarge, ConvNextBase, and ConvNextTiny) with an input
image size of 267 × 200, which is lower than the original image resolution due to the
memory restrictions to train the neural networks models. Regarding accuracy, it has
been concluded that any of them are suitable for this task. However, both versions of
the ConvNeXt have performed slightly better. On the other hand, the total number of
parameters, which has been the deciding factor, indicates that the Tiny version of the
ConvNeXt algorithm takes up the least amount of memory. Therefore, it is better suited
for embedding in hardware with limited computational capacity for more cost-effective
system deployment.

In addition, the proposed MBONN system has been subjected to two types of sensitiv-
ity analysis to evaluate its performance under varying levels of distortion and illumination
conditions. In the first analysis, the system has been tested under different levels of dis-
tortion using the ETSIT database. The results show that the performance of the system
remains stable across all parking spots, regardless of the level of distortion. This indicates
that the system is robust and reliable even when the images are degraded or distorted. In
the second analysis, the performance of the system has been evaluated under different illu-
mination conditions (day and night scenarios) using the same database. The results reveal
that the accuracy of the system remains stable and reliable in both scenarios, indicating
that it is robust even under low lighting conditions. Overall, these findings suggest that
the proposed MBONN system is capable of accurately detecting parking slot occupancy
in real time, and can perform well under challenging conditions. These results can have
important implications for the development of smart parking management and monitoring
systems, which require accurate and reliable detection of parking occupancy status.

On the other hand, the accuracy of the system has been compared with several state-
of-the-art works using a set of experiments on various datasets, and the results have shown
that the proposed system performs exceptionally well in terms of accuracy on all datasets.
The proposed system has been designed to predict multiple parking slots simultaneously,
which should improve computational time compared to traditional approaches. The
robustness of the system has been demonstrated through an experiment using a more
challenging dataset, where it has outperformed one of the highest-performing state-of-
the-art methods. The proposed method has also been found to be able to handle partial
occlusions and perspective distortions better than other methods. Finally, the proposed
system has been found to achieve higher accuracy values with a lower number of training
images than the compared state-of-the-art works.

Improving the available datasets should be considered for future work lines. To do so,
two major objectives must be met. The first is to broaden the range of available datasets.
Even if excellent results have been obtained, some of the observed prediction errors may be
corrected with additional training data. The second approach is to work with pre-existing
data. The most occluded slots in the available datasets have not yet been identified. This
means that performance in more difficult scenarios has not been evaluated. As a result,
improving their notation is critical to creating a more robust system.

Another possible future line of work would be to extend the analysis to the time
domain in order to obtain usage and temporal prediction statistics. The main idea behind
this future path would be to improve the proposed system through data collection and
analysis. Investigating the application of transfer learning techniques in this scenario could
also be a viable future strategy. As a result, the system can be adapted to new scenarios
with minimal additional changes. Finally, another possible future project would be the
system’s adaptation for embedded hardware.
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AADT Annual Average Daily Traffic
BN Batch Normalization
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MBONN Multi-Branch Output Neural Network
ReLU Rectified Linear Unit
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