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Abstract: Detection of the changes in Multi-Functional Radar (MFR) work modes is a critical situation
assessment task for Electronic Support Measure (ESM) systems. There are two major challenges that
must be addressed: (i) The received radar pulse stream may contain multiple work mode segments of
unknown number and duration, which makes the Change Point Detection (CPD) difficult. (ii) Modern
MFRs can produce a variety of parameter-level (fine-grained) work modes with complex and flexible
patterns, which are challenging to detect through traditional statistical methods and basic learning
models. To address the challenges, a deep learning framework is proposed for fine-grained work
mode CPD in this paper. First, the fine-grained MFR work mode model is established. Then, a
multi-head attention-based bi-directional long short-term memory network is introduced to abstract
high-order relationships between successive pulses. Finally, temporal features are adopted to predict
the probability of each pulse being a change point. The framework further improves the label
configuration and the loss function of training to mitigate the label sparsity problem effectively.
The simulation results showed that compared with existing methods, the proposed framework
effectively improves the CPD performance at parameter-level. Moreover, the F1-score was increased
by 4.15% under hybrid non-ideal conditions.

Keywords: bi-directional long short-term memory (Bi-LSTM); Change Point Detection (CPD);
Multi-Functional Radar (MFR); fine-grained work modes; multi-head attention

1. Introduction

Modern Multi-Functional Radars (MFRs) can perform multiple tasks at the same time,
including surveillance, tracking and target recognition through the adaptive selection of
various complex signal modulation types and parameters. Electronic Support Measure
(ESM) systems analyze intercepted radar signals to detect the change points of the work
modes to assess threats [1]. These radar signals may contain multiple work mode segments
of unknown number and duration. The mode changes are more difficult to detect when the
signal features are compromised in non-ideal conditions, such as when pulses are lost or
spurious. Therefore, the precise detection of the change point of each work mode is a vital
challenge for ESM.

Change Point Detection (CPD) refers to a set of feasible methods for identifying abrupt
changes in a time series and can be applied in various fields to extract work mode infor-
mation [2–7]. The objective of this considered task is to detect all points at which a change
in trends occurs, which are defined as change points. In particular, CPD has been proven
to be effective in radar signal processing. Early studies for radar work mode CPD were
typically based on statistical methods, such as probabilistic analysis [8,9], circular binary
segmentation algorithms [10], cumulative sum algorithms [11–13], and manually-designed
feature extraction [14]. Nevertheless, heavy reliance on these hypothetical statistical models
and manually-designed features usually results in high complexity and poor performance
under non-ideal conditions in real applications. Deep Learning (DL) has provided a promis-
ing approach to this problem through automatic learning of complex patterns from large
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datasets without the requirement for feature and metric engineering [15–17]. Most related
studies solved the work mode CPD through binary classification or work mode recognition
and mode change boundary detection methods. In Ref. [18,19], an Autoencoder was used
to remove noise from the original pulse stream before identification. Several studies [20–22]
have used Convolutional Neural Networks (CNNs) to recognize the modulation type of the
Pulse Repetition Interval (PRI).Compared to traditional manual feature extraction, CNNs
achieved significant improvements in recognition performance. These CNN-based methods
improved MFR system performance and are robust to lost and spurious pulses but have the
limitation of requiring inputs of fixed length. To overcome this limitation, in Ref. [23–25],
Recurrent Neural Networks (RNNs), including their improved form, i.e., The Long Short-
Term Memory (LSTM) network, were utilized to classify pulse sequences of different work
modes. Moreover, RNNs introduced the concept of timing into network architecture design
to achieve better adaptability in time series data analysis. However, due to the vanishing
gradient problem, RNNs have a limited memory capacity, which can be problematic for
tasks that require the processing of very long sequences. Furthermore, through Ref. [26],
attention mechanisms with RNNs made their way into modulation recognition, resulting in
an improvement in capturing dependencies at long intervals. These existing DL methods
have achieved automatic identification of multiple work modes with different modulation
types under non-ideal conditions, which can be understood as detecting change points
of work modes at the modulation type level. Considering that within the same modula-
tion type, there may exist consecutive multiple work modes with different modulation
parameters in the MFR pulse sequences. These fine-grained work modes exhibit similar
trends under the same modulation type, making it difficult for existing methods to extract
discernible features. Therefore, it is necessary to further study CPD algorithms at the
modulation parameter level to cope with the rapid and flexible work mode changes of
advanced MFRs. There are two problems remain to be solved: first, CPD tasks are often
treated as binary classification problems in deep learning, which creates label imbalance
issues and makes model fitting difficult. Second, the feature extraction module for detecting
fine-grained work mode changes needs to be carefully designed.

To address these challenges, this paper propose a processing framework to accommo-
date fine-grained MFR work modes with flexible modulation types and parameter ranges
under non-ideal conditions. The proposed framework consists of three modules: data
normalization, label configuration, and a Multi-Head Attention-based Bi-LSTM (MHAB)
network. Data normalization ensures that the input radar sequence values are within a
unified range. Then label configuration converts sequences with change point labels into
weighted change probabilities. The MHAB network identifies all trends with different
dynamics, extracts important features and generates the probabilities of change points.
The training process is optimized utilizing weighted Binary Cross Entropy (wBCE) as the
loss function, which can highlight the minority target labels during training. Extensive
simulations with PRI-defined MFR work modes prove the effectiveness and superiority of
the proposed method. To our knowledge, this paper is the first to introduce the DL-based
CPD methods into fine-grained MFR work mode detection. The main contributions of this
paper are as follows:

1. The Bi-LSTM learns the long-term dependencies between past and future, and the Multi-
Head Attention (MHA) mechanism helps the model to focus on multiple aspects of the
most informative features to reduce the impact of non-ideal observations and other useless
features. Thus, the performance of the proposed method on CPD is also improved.

2. This paper design a new label configuration and utilize a weighted binary cross
entropy (wBCE) loss function for training, which effectively addresses the problem of
sparse change point labels.

3. Simulation results show that the proposed CPD method is superior to other methods
for fine-grained work modes, and has robustness under non-ideal conditions.
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The remainder of this article is organized as follows: in Section 2, the CPD problem is
formulated. In Section 3, the proposed processing framework is presented. The simulations
are discussed in Section 4. Finally, Section 5 is the conclusion.

2. Problem Formation
2.1. Fine-Grained MFR Work Modes

MFR work modes are defined via radar pulses with multiple parameters [27]. Mathe-
matically, it can be represented on two levels from the implementation perspective: modu-
lation type level (modulation-level) and modulation parameter level (parameter-level) [28].

Definition 1. A radar work mode is described via a dedicated arrangement of a finite num-
ber of ordered pulses P = (p1, p2, · · · , pT) ∈ RH×T that serves a certain radar function. A
radar pulse p ∈ RH in the work mode P using H mode definition parameters is represented
p = (p1, p2, · · · , pH).

Definition 2. A mode definition parameter describes a certain feature of a radar work mode.
From radar’s perspective, the mode definition parameters can refer to some of the work mode
related parameters in a Pulse Descriptive Word (PDW), such as PRI, Radio Frequency(RF), Pulse
Width(PW) and intra-pulse modulations.

Definition 3. A modulation type refers to the modulation pattern of a mode definition param-
eter. Typical PRI modulation types include constant, jittered and stagger. The corresponding
modulation type varies with different mode definition parameters.

Definition 4. A mode modulation parameter refers to a specific parameter defining a modula-
tion type (e.g., The mean and variance for a jittered modulation type).

PRI is the most important parameter in the PDW, due to its inherent temporal charac-
teristics and that it largely reflects the characteristics of the intercepted MFR pulse stream.
Therefore, to simplify the analysis, in this paper, only the PRI mode definition parameter is
considered. A radar work mode can either be defined on a coarse-grained level through
different modulation type [24] or a fine-grained level through its modulation type and
parameters [9,27,29]. Consequently, two levels of representation can be defined for each
MFR work mode.

The coarse-grained representations of the modulation-level work modes underlie
the flexibility of MFRs to adapt their transmission modulation types. Specifically, pulse
sequences with the same PRI modulation types but different modulation parameters are
regarded as the same work mode at the coarse-grained analysis level.

The fine-grained representation of a parameter-level work mode can be understood as an
unrestricted choice of the modulation parameters regulated by the relevant modulation type.
In particular, since the MFR can select parameter values in the corresponding space, each
resulting combination can be a parameter-level work mode. Taking Figure 1 as an example,
the PRI sequence includes the four work modes A–D, which are defined as having the same
modulation type as jittered but with different parameters in the {mean, variance} space.
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Figure 1. Illustration of PRI sequence with fine-grained MFR work modes conversion.

2.1.1. Basic PRI Models under Ideal Conditions

The PRI data are inherently timing data and have more complicated temporal correla-
tions than other mode definition parameters, such as the RF. To enhance the applicability
of the method, in [30] four statistical PRI models were formulated, including jittered,
sliding, stagger and periodic, to fit all modulation types. Other types of modulation can
be extrapolated from variations of these basic modulation types. For instance, constant
modulation with noise can be considered as jittered modulation with small variance, while
dwell-and-switch modulation can be treated as multiple consecutive constant modulations.

2.1.2. Non-Ideal Observation of PRI Sequence

As real electromagnetic environments are very complex, the received signals are
inevitably non-ideal, and the interference usually takes the form of measurement noise, lost
or spurious pulses. In practical applications, instead of directly observing the PRI values,
the Time Of Arrival (TOA) of each pulse is recorded by the ESM receiver. Many factors
affect the measurement accuracy of TOA, the most dominant of which is the noise in the
receiver circuit. In this study, to simulate measurement noise, Gaussian White Noise (GWN)
is added to the original TOA pulse sequence. The crowded electromagnetic environments
and reception errors are the main causes of lost and spurious pulses.

x = {x1, x2, . . . , xL} denotes an original PRI sequence of length L. The TOA of the
t-th pulse can be described as TOAt+1 = TOAt + xt, 1 ≤ t ≤ L. A non-ideal PRI sequence
where j pulses are lost from the i-th pulse can be expressed as [26]:

x′t =


xt, t = 1, 2, . . . , i− 1
xi + . . . + xj, t = i
xt+j+2, t = i + 1, . . . , L− j− 1

(1)

For spurious pulses, a non-ideal PRI sequence with j pulses train insertion after the
i-th pulse can be expressed as:

x′′t =


xt, t = 1, 2, . . . , i− 1
st−i, t = i, . . . , i + j
xt−j, t = i + j + 1, . . . , L + j− 1

(2)

where s0 is the difference between the original i-th pulse and the first spurious pulse; sj is
the difference between the last spurious pulse and the original (i + 1)-th pulse; and s1 to
sj−1 is the differences between the spurious pulses themselves. An example of lost and
spurious pulse conditions is shown in Figure 2.
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Figure 2. Example of lost and spurious pulse conditions.

2.2. CPD for PRI Sequence
2.2.1. Change Point Definition

Assuming that the PRI values of a received MFR pulse sequence are denoted using
xt, where t is the discrete time index. In a certain work mode, {xt}t≥1 follows a certain
probability density function PDF(xt), with parameter θ.At an unknown time t0, the MFR
changes the radar work modes with the corresponding parameter changing from θ0 to θ1 after
t0. The pre-change and post-change distributions PDF(xt) are represented respectively as:

PDFθ(xt) =

{
PDFθ0(xt), if t < t0
PDFθ1(xt), if t ≥ t0

(3)

In this paper, the change point is defined as the first point of the θ1 distribution,
denoted by the time index t0 in Figure 3.

t0 t0+1 t0+2 tt0–1321

Change Point

Figure 3. A single change point model.

As there are often multiple change points in a sequence, the set of PRI sequence with
K change points is formulated as T = {T1, T2, . . . , TK}.

2.2.2. Fine-Grained MFR Work Mode CPD Task

In fine-grained work mode, MFRs can emit specified pulse sequences with different
PRI modulation types and corresponding modulation parameters. The CPD task’s objective
is to accurately identify these work mode change boundaries in the PRI sequence.

An input PRI sequence x of length L input is denoted as x = (x1, x2, · · · , xT) ∈ X ,
where {xt}1≤t≤L is the PRI value of the t-th pulse. The corresponding true label is denoted
as y = (y1, y2, · · · , yT) ∈ Y , which expresses the probabilities that the corresponding
pulses are the change points. Where X and Y denote the input and the target spaces,
respectively. The main task is to learn the model function f : X → Y , from a training
dataset D = {(xi, yi), 1 ≤ i ≤ N}. For each training sample (xi, yi), xi ∈ X is the input
PRI sequence, and yi ∈ Y is the corresponding output associated with xi. Given a test
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sample x ∈ X , the trained function f (·) will output ŷ = f (x) as the CPD result, ŷt
is the predicted probability that the point corresponding to index t is a change point.
As mentioned above, CPD is generally regarded in DL as a problem of binary classification,
that is, the probability of judging whether the current point is a change point based on
existing information. For this task, a special loss function and a unique neural network
structure parameterized using a vector of weights need to be designed.

3. The Proposed Approach
3.1. The Proposed Framework for CPD

In this paper, a processing framework using a MHAB network for CPD is proposed.
As shown in Figure 4, the framework consists of three modules. First, the values of the
input PRI sequence are normalized into a unified range. Then, the label configuration
module converts the corresponding change points set into a sequence of weighted change
probabilities. Next, the MHAB network extracts features and finally generates the target
probability sequence. In addition, a wBCE loss function is adopted to improve the fitting of
the proposed network. The details of each of these processing steps are described in the
following sections.

104 303 499 635

Bi-LSTM Bi-LSTM
wBCE
Loss

N
orm

alization

501 Label 
Configuration

Multi-
Head 

Attention
Classifier

Feature extraction

MHAB network

225 433 652
138 365 546 678

Chang points sets Label sequences

Training PRI sequence

Ŷ

Y

Figure 4. Flow diagram of the proposed MHAB-based CPD framework.

3.2. Data Normalization

PRI sequences are usually represented via different modulation types and parameters
with different value ranges. Normalization generally limits data to a specific range, such as
[0, 1], thus eliminating the impact of data dimensions on modeling. Data normalization
can result in accelerated training speeds and improved network convergence. In this paper,
the input sequences are normalized using maximum-minimum normalization according to
the following equation:

x
′
=

x−min
max−min

(4)

where min and max denote the minimum and maximum values of the sample sequence,
respectively.

3.3. Label Configuration

As mentioned above, CPD is a problem of determining whether a given time step
is a point of change based on existing information. In DL, these types of problems are
typically approached through binary classification. However, the number of change points
in a time series is often small compared to the total number of samples; for example,
there may be 1 to 4 change points in a sequence with a length of 800 samples. This leads
to a highly imbalanced classification problem that can be difficult to model with deep
networks. Furthermore, pulse merging and imperfect receiver circuits are factors that often
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affect real-world radar data, which can cause confusion at mode changes and make it
difficult to accurately identify change points. This is particularly true in cases of slow-trend
changes. To balance the proportion of samples in the training set and improve the model’s
performance, in this paper a method of linear smoothing of the training labels at change
points is proposed to improve detection accuracy. As shown in Figure 5, if the change
point’s position is Ti and a smoothing margin M is used, then the label of each sample is:

Yt =

{
1− |Ti−t|

M , |Ti − t| ≤ M
0, |Ti − t| > M

, t = 1, 2, . . . , L; i = 1, 2, . . . , k (5)

In this new label configuration, model parameters are optimized to solve a regression
problem.
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Figure 5. Example of the change point in a noisy periodic PRI sequence (first row). Both the dynamic
trend and noise makes it difficult to establish the exact location of the change point, which can be
identified within the red dashed box region. The corresponding label designed as a linear centered
smoothing margin in the change point (second row).

3.4. MHAB Networks
3.4.1. Feature Extraction Module

The normalized PRI sequence is fed into the two Bi-LSTM layers with rectified linear unit
activations. This part regards the entire PRI sequence as a whole and extracts the temporal
features for CPD task. The Bi-LSTM iterates over pulse sequences x from opposite directions
of forward (superscript f w ) and backward (superscript bw), generating hidden state vectors
H f w =

(
h f w

1 , h f w
2 , . . . , h f w

L

)
and Hbw =

(
hbw

1 , hbw
2 , . . . , hbw

L

)
, respectively, where:

h f w
t = LSTM

(
xt, h f w

t−1

)
, t = 1, 2, . . . , L (6)

hbw
t = LSTM

(
xt, hbw

t−1

)
, t = L, L− 1, . . . , 1 (7)

Here xt is the input pulse of the LSTM at time index t, and ht is the hidden state. LSTM [31,32]
denotes the LSTM cell function, which is implemented through the following functions:

ft = σ
(

W f · [ht−1, xt] + b f

)
(8)

it = σ(Wi · [ht−1, xt] + bi) (9)
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C̃t = tanh(WC · [ht−1, xt] + bC) (10)

Ct = ft � Ct−1 + it � C̃t (11)

ot = σ(Wo · [ht−1, xt] + ba) (12)

ht = ot � tanh(Wt) (13)

where ft, it, ot variables represent the forget gate vector, input gate vector and output gate
vector; C̃t is the new candidate value for the cell state, Ct and Ct−1 are the new and the old
cell state; W and b with corresponding gate subscripts denote the learnable weights and
the corresponding biases; σ and � are the sigmoid function and the Hadamard product,
respectively. Then the Bi-LSTM output’s hidden state ht concatenates the h f w

t and hbw
t ,

namely ht =
[

h f w
t , hbw

t

]
, which can effectively capture the contextual information and

dependencies in the input pulse xt.

3.4.2. Multi-Head Attention Module

Lost and spurious pulses can cause incorrect PRI values that interfere with detection,
yet these values also contain some original information. However, the LSTM lacks the ability
to focus on certain areas adaptively, potentially leading to redundancy or lost information
during learning process. To address this issue, the MHA mechanism is employed to enable
the LSTM to concentrate on the critical feature vectors. This approach enhances the model’s
ability to capture the most relevant information from the input data, leading to more
accurate and efficient detection outcomes.

The attention mechanism is simulating the data retrieval process in the data manage-
ment system. To retrieve data, a query needs to be addressed to the data management
system. If the query matches a key, the value associated with the key will be retrieved.
Equation (14) shows the formulation process of queries Q, keys K, and values V.

(Q, K, V) =
(

WQ, WK, WV
)
·H (14)

where WQ, WK, WV are trainable weight matrices. To retrieve the most relevant part of the
values V, the scaled dot-product method uses to calculate attention [33]:

Attention(Q, K, V) = softmax
(

QKT
√

dk

)
V (15)

where dk is the model dimension; QKT is used to calculate the self-attention score which is
divided each by

√
dk; and a softmax function is employed to obtain the weights of the values.

As shown in Figure 6, the MHA mechanism is a projection of Q, K, and V through
different linear transformations for h times, which corresponds to perform the attention
function on different projected versions in parallel. These are concatenated and once again
projected, resulting in the final values. This structure allows the model to focus on different
aspects than the single self-attention.The equations are as follows.

at = Concat(head1, . . . , head h)W
o (16)

head i = Attetion
(

QWQ
i , KWK

i , VWV
i

)
, 1 ≤ i ≤ h (17)

where W0 are the trainable weight matrices of the final projection.
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Figure 6. The framework of the MHA mechanism.

3.4.3. Classifier

Finally, the classifier outputs the probability of change point at time t from the Fully
Connected (FC) layer through the sigmoid activation function σ. Given the features at
extracted by the MHA module at time step t, the classifier provides the predicted output
ŷt ∈ [0, 1], which is the probability of input sample xt being a change point.

ŷt = FC(at) = σ(WFC · at + bFC) (18)

where WFC and bFC are the weight and bias of the FC layer, respectively.
Another solution to the problem of unbalanced data that we adopted is to reweight

the losses to give higher weight to the error relative to the change points. Thus, the wBCE
loss function is obtained. By adjusting the weight of the loss function, the model can be
forced to pay more attention to the minority target label during training, which improves
the accuracy of detecting minority targets.

loss = − 1
L

L

∑
t=1

wc · yt · log(ŷt) + (1− yt) · log(1− ŷt) (19)

In this paper, wc is set to wc = (NN/NCP), with NN and NCP being the total numbers
of normal points and change points in the sequence, respectively. The use of this loss
function for updating results in better model performance.

4. Simulations and Analysis

In this section, four non-ideal scenes are simulated to evaluate the ability of the
proposed framework for fine-grained MFR work mode CPD with different PRI sequences.

4.1. Simulations Design
4.1.1. Dataset Description

In this paper, the MHAB network is evaluated on a simulated PRI sequence set with
change points. Four PRI modulation types were adopted in the sample sequences including
jittered, periodic, sliding and stagger. The simulation data were generated randomly
based on the modulation types and the modulation parameter values were generated
uniformly from specific ranges. The corresponding value ranges of the modulation types
and parameters during training and testing are listed in Table 1. An L length PRI sequence
with K change points was utilized as a sample, where L = 800, K = U(1,4). The interval
between adjacent change points was greater than 100.
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Table 1. Value ranges of modulation types and parameters.

Types Parameters Ranges

Jittered Mean of jittered value U(100 µs, 200 µs) 1

Variance of jittered values [1 µs, 4 µs, 7 µs, 10 µs]

Periodic

Center value U(100 µs, 200 µs)
Modulation amplitude U(10%, 20%)

Sampling frequency U(2 fc, 8 fc)
Center frequency 50 Hz

Sliding
Initial value U(10 µs, 30 µs)

Rate U(2, 6)
Number of sliding steps U(10, 30)

Stagger Range of stagger value U(100 µs, 200 µs)
Number of stagger steps U(3, 10)

1 U(·) represents the uniform distribution.

In order to evaluate the robustness of the proposed method in non-ideal conditions,
four scenarios were simulated, including measurement noise, lost pulses, spurious pulses
and the hybrid scenes combinations of these three. The three basic non-ideal condition
scenarios are denoted as Measurement Noise Only (MNO), Lost Pulse Only (LPO), and
Spurious Pulse Only (SPO). In the MNO scenario, GWN was introduced to the TOA
observation at seven noise levels with a variance σ ranging from 0 µs to 3 µs with a step of
0.5 µs. Both LPO and SPO involved pulse sequences with a proportion of lost or spurious
pulses at five levels ranging from 0 to 20% in 5% steps. The hybrid scenario combined the
three basic non-ideal conditions, the parameter setup as shown in Table 2. Training and test
sets were generated to verify the robustness of the model under these non-ideal scenarios.
Taking lost pulse only scenarios as an example, 4000 samples per lost pulse ratio level were
generated, i.e., 20,000 in total for five levels. The samples are divided into training and test
sets with a proportion of 75% and 25%, respectively. Then the model was trained using the
15,000 samples in training sets together and separately tested with 1000 samples at each
level. The dataset settings were the same for other scenarios.

Table 2. Parameter setup of hybrid scenes.

Scene Measurement Noise (µs) Lost Pulse (%) Lost Pulse (%)

1 0 0 0
2 1 5 5
3 2 10 10
4 3 15 15

Simulations were also conducted to verify the extent to which the model trained on
MNO was affected by the modulation types and the number of change points.

4.1.2. Evaluation Metrics

The ability to detect change points within a specific margin of error is an important
aspect of evaluating CPD methods [2]. F1-score can represent the detection accuracy
within a certain error range. Therefore, in this study, the F1-score is used to evaluate the
performance of the models. A change point estimation was considered to be a True Positive
(TP) if it fell within an uncertain detection margin M of the ground truth change point.
In cases where multiple change point estimates fell within the error margin of the ground
truth change point, only the closest estimate was considered a true positive, and the rest
were considered False Positives (FP). Ground truth change points without any estimates
within the specified error margin were considered False Negatives (FN). In this simulation,
the detection margin M and the target region of label configuration were set to 5.
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4.1.3. Simulation Implementation

The Adam optimizer [34] was adopted with a learning rate lr of 0.00005 (5× 10−5).
For the network layers, the network weights were updated using the following rule:

W = W − lr
m√
ν + ε

(20)

The number of hidden layer nodes Nh of the network was set to 256, and the size of the
input batch was 128. In addition, in order to mitigate overfitting, the dropout strategy was
employed for the Bi-LSTM layer. After multiple rounds of simulations, when the dropout
rate was 0.25, the model achieved a better performance. Following [33], the number of
attention heads h was set to 8. Early stopping was been employed in the simulations to
avoid overfitting during training. The programing environment of the proposed model
was Python 3.7.0 and the deep learning library Pytorch 2.6.0 was used.

4.2. Validation of Basic CPD Performance

To demonstrate the effectiveness in CPD, this section compared the performance
of the proposed method with three methods: CNN [2,18,19], CNN-LSTM [2] and Bi-
LSTM [20,21,31] as baselines. Ref. [18] extended PRI modulation recognition to PRI CPD
on the basis of CNN. The hybrid CNN-LSTM model [2] combined CNN and LSTM which
extracting complex features effectively with spatial and temporal information. With its
inspiration, this paper applied CNN-LSTM from anomaly detection in our MFR problem.
The Bi-LSTM for radar pulse sequence analysis [31] and a version of Bi-LSTM involving
weighted BCE loss function (Bi-LSTMw) [35] were both adopted as baselines.

In order to verify the basic performance of CPD for fine-grained MFR work modes,
1000 test samples with different parameter were generated at each modulation type.
The model were trained by the MNO scenario at all variance levels and tested at the
σ = 1.5 µs level. Due to the sparsity of change points in the samples, the baseline methods
could hardly reach convergence in our simulation scenario with the normal binary labels,
so label configuration was added to all baseline methods. In the methods using wBCE loss
function, predictions were obtained by retaining the peaks in the output probability distri-
bution with threshold values greater than 0.8, while for the other methods, the threshold
was set to 0.3.

The different methods’ CPD performance on PRI sequences of different modulation types
is presented in Table 3. It can be seen from Table 3 that the MHAB achieved the best effect
under all the modulation types. Because the LSTM can learn long time sequence information,
it showed a significant improvement compared with CNN. CNN-LSTM combines local
spatial information and long temporal information, thus reducing the error rate. The Bi-LSTM
allowed the model to learn the dependencies between the past and future of the data to better
capture two-directional features, so its detection effect was also improved. The weighted
BCE loss function constrained the acceleration of the network’s convergence and reduced the
possibility of the output being drowned in noise, while the MHA mechanism further enhanced
this effect. Since the constraint of wBCE loss function made the probabilities obtained by the
network closer to 0 and 1, it can be seen from Figures 7 and 8e that the predicted values of
MHAB and Bi-LSTMw at the change point were also the highest, reducing the detection error
caused by the peak threshold setting.
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Table 3. Effectiveness of four modulation types.

Method
Jittered Periodic Sliding Stagger

TP↑ FN↓ F1↑ 1 TP↑ FN↓ F1↑ TP↑ FN↓ F1↑ TP↑ FN↓ F1↑

CNN 1236 1234 0.6670 1403 1089 0.7202 1154 1299 0.6392 1560 940 0.7641
Bi-LSTM 2211 259 0.9447 2036 457 0.8991 2318 135 0.9717 2224 276 0.9416

CNN-LSTM 2221 249 0.9469 2317 175 0.9636 2315 138 0.9711 2396 104 0.9788
Bi-LSTMw 2266 204 0.9569 2428 84 0.9870 2422 31 0.9936 2448 52 0.9895

MHAB 2342 128 0.9734 2481 11 0.9978 2449 4 0.9992 2486 14 0.9972
1 F1 means F1-score. ↓means that smaller is better for this indicator; otherwise, it’s ↑. Bold values represented the best.
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Figure 7. Example of predicted label sequences on jittered PRI, including 4 change points (gray
dashed). The horizontal axis is the PRI index, and the vertical is the probability that the point is a
change point.

Compared with the randomly jittered PRI, the modulation characteristics of more
regular sequences were more easily learned by the network. Therefore, the detection effect
for periodic, sliding and stagger PRI sequences was better.

4.3. Performance under Non-Ideal Conditions

Electromagnetic environments with highly non-ideal conditions often result in con-
taminated pulse sequences. Effective CPD methods should be robust enough to correctly
recognize change points in corrupted pulse sequences. The models’ performance was
therefore evaluated in four non-ideal scenarios, including MNO, LPO, SPO and hybrid
scenario at 7, 5, 5 and 4 levels of interference intensity, respectively. In each scenario, the
model was trained using 3000 samples per non-ideal condition intensity level together. And
1000 samples were tested on each level. The F1-score was used to evaluate the performance
of the different methods, and the corresponding simulation results are shown in Figure 8.
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(a) (b)

(c) (d)

(e)

Figure 8. CPD performance under non-ideal conditions. (a) Under measurement noise conditions;
(b) Under lost pulses conditions; (c) Under spurious pulses conditions; (d) Under hybrid non-ideal
conditions; (e) A predicted result of a stagger PRI sequence in hybrid scene 4.

The MHAB significantly outperformed the other baseline methods in all non-ideal
conditions. Figure 8a shows that the performance of all methods was almost unaffected
by the increase in measurement noise variance. Figure 8b,c show that the total F1-score
of MHAB was almost unaffected by the proportion of lost and spurious pulses, but the
total F1-score of CNN,CNN-LSTM and Bi-LSTM decreases as the conditions become worse.
In Figure 8d, as the hybrid conditions became more complex, the total F1-score of all
methods decreased, inevitably. But the proposed method proved to be more stable. Because



Sensors 2023, 23, 3326 14 of 17

it lacks the ability to capture timing relationships, CNN exhibited the worst performance
among all methods. Compared with CNN-LSTM and Bi-LSTM, Bi-LSTMw achieved better
performance, thanks to the use of wBCE in training. However, the effective improvement
of Bi-LSTMw due to the utilization of wBCE loss became less obvious as the percentage of
spurious pulses increased. This was primarily because the original sequence features were
not effectively extracted, owing to the overwhelming presence of noise. To compensate for
this shortcoming, the MHA mechanism was adopted in the proposed method. As shown
in Figure 8e, the stagger PRI sequence exhibited five work modes and corresponding four
change points in the hybrid 4 scenario. However, the transition between the fourth and
fifth work modes was not clearly visible in the noise. Including Bi-LSTMw, none of the four
baselines were able to detect this change point. With the help of MHA, MHAB was able to
focus on this transition well. Although hybrid scenes posed a higher challenge to feature
extraction, the proposed method still achieved a 93.83% CPD accuracy with 15% spurious
pulse, 15% lost pulse and 3 µs measurement noise.

4.4. Comparison of Different Framework Structures and Experimental Settings
4.4.1. Influence of Label Configuration

This section examined the influence of the designed label configuration. F1-score was
used to present the results. In Section 3.3, the smoothing label sequence is designed to address
the pulse confusion problem that arises at change points in practical situations. It also solves
the difficulty of model fitting caused by sparse samples to obtain better performance.

Figure 9a compared the performance of the original binary label and designed label.
With different modulation types, the F1-score for designed label was considerably higher
than original label corresponding to all the four types. The maximum gap was 8.08%.
Summarizing, the superiority of label configuration in this study was verified.

4.4.2. Influence of WBCE Loss Function

As discussed in Section 3.4.3, another solution to the problem of unbalanced data that
we adopted is wBCE loss function. This section compared the performance of the MHAB
network trained by binary cross entropy (BCE) loss function and wBCE loss function.
The result was presented by F1-score.

The periodic and sliding modulation types exhibit obvious trends, making the ordinary
BCE loss function sufficient for the model to learn these features. However, the weak
features of random jittered and stagger modulation in MFR sequences submerge the noise,
which pose a great challenge to BCE loss function. As shown in Figure 9b, the effect
enhancement of the network using wBCE loss function was more significant for jittered
and stagger types. The F1-scores of the former methods increased from 87.83% to 97.34%
and from 91.13% to 99.72%.

4.4.3. Influence of Change Point Numbers

The variation of the number of change points causes various detection difficulties.
Therefore, in this simulation the network was trained uniformly through the introduction
of K = 1 to 4 change points in MNO scenario and tested at the σ = 1.5 µs level. 1000 test
samples were generated at each level. The FN and F1-score were measured respectively
under different values of K. The corresponding results are shown in Figure 10. Intuitively,
with the increase of the change point number, the number of false positives increased.
On the whole, the FN was more sensitive to K than the total F1-score, which means that
FN should be monitored more closely in CPD tasks. Compared with the other baseline
methods, the FN increase rate as K increased was reduced. This showed that the proposed
model can adapt to more complex samples, and the FN for samples containing four change
points was only 59 points out of 4000 total predicted points.
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(a) (b)

Figure 9. Influence of label configuration and wBCE loss function. (a) Performance comparison of
original label and designed label; (b) Performance comparison of BCE loss and wBCE loss.

(a) (b)

Figure 10. The effectiveness of change point numbers; (a) Result presented by F1-score; (b) Result
presented by FN.

5. Conclusions

In this paper, an MFR work modes CPD framework using the MHAB network is
proposed. In this framework, the Bi-LSTM learns the dependencies of contextual data in
the pulse stream, while the attention mechanism emphasizes the informative features and
ignores the noisy parts. Meanwhile, a new label configuration is adapted and an improved
wBCE loss function is utilized for training, which solves the problem of change point label
sparsity effectively. The simulation results demonstrate that in each modulation type, the
proposed framework effectively extracts the temporal features between pulses of different
modulation parameters and can be used to detect changes in work modes in different
non-ideal environments. In future work, we will perform the detection using real data and
conduct this research in unsupervised methods.
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Abbreviations
The following abbreviations are used in this manuscript:

BCE Binary Cross Entropy
Bi-LSTM Bi-directional Long Short-Term Memory
Bi-LSTMw Bi-LSTM with wBCE loss function
CNN Convolutional Neural Network
CNN-LSTM CNN and LSTM
CPD Change Point Detection
DL Deep Learning
ESM Electronic Support Measurement
FC Fully Connected
FN False Negative
FP False Positive
F1 F1-score
GWN Gaussian White Noise
LPO Lost Pulse Only
LSTM Long Short-Term Memory
MFR Multi-Functional Radar
MHA Multi-Head Attention
MHAB Multi-Head Attention-based Bi-LSTM
MNO Measurement Noise Only
PDF Probability Fensity Function
PDW Pulse Descriptive Word
PRI Pulse Repetition Interval
PW Pulse Width
RF Radio Frequency
RNN Recurrent Neural Network
SPO Spurious Pulse Only
TP True Positive
wBCE weighted Binary Cross Entropy
TOA Time Of Arrival
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