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Abstract: Human movement anomalies in indoor spaces commonly involve urgent situations, such
as security threats, accidents, and fires. This paper proposes a two-phase framework for detecting
indoor human trajectory anomalies based on density-based spatial clustering of applications with
noise (DBSCAN). The first phase of the framework groups datasets into clusters. In the second phase,
the abnormality of a new trajectory is checked. A new metric called the longest common sub-sequence
using indoor walking distance and semantic label (LCSS_IS) is proposed to calculate the similarity
between trajectories, extending from the longest common sub-sequence (LCSS). Moreover, a DBSCAN
cluster validity index (DCVI) is proposed to improve the trajectory clustering performance. The DCVI
is used to choose the epsilon parameter for DBSCAN. The proposed method is evaluated using two
real trajectory datasets: MIT Badge and sCREEN. The experimental results show that the proposed
method effectively detects human trajectory anomalies in indoor spaces. With the MIT Badge dataset,
the proposed method achieves 89.03% in terms of F1-score for hypothesized anomalies and above 93%
for all synthesized anomalies. In the sCREEN dataset, the proposed method also achieves impressive
results in F1-score on synthesized anomalies: 89.92% for rare location visit anomalies (τ = 0.5) and
93.63% for other anomalies.

Keywords: anomaly detection; indoor human trajectory; DBSCAN; cluster validity index; epsilon
parameter; similarity measurement

1. Introduction

An enormous amount of trajectory data from moving objects is generated due to the
development of location-acquisition devices, such as GPS, smartphones, and transportation
monitoring systems. The variety and richness of location traces enable a better understand-
ing of the movement behaviors of objects, which provides new applications, including
smart transportation, urban development planning, and security surveillance. One of
the crucial problems for the above applications is to detect the anomalous trajectories of
objects. For taxi services, for example, abnormal trajectories are related to issues, such as
traffic congestion, taxi driving fraud, and refusing to take passengers. Therefore, detecting
anomalous taxi trajectories may improve the performance of this service [1–4]. Moreover,
anomaly event detection plays a vital role in security surveillance in public spaces. These
anomaly events, such as terrorism, violent attack, and fire, can be detected by analyzing
the object trajectories in public places [5,6]. Moreover, to guarantee the safety and security
of ships during a voyage, their location data are used to detect outlying trajectories and
remind other ships to take the necessary avoidance actions [7,8]. Similarly, to ensure aircraft
safety, data recorded from current flights are monitored and analyzed constantly. Once
anomalous data patterns are detected, they are informed to the flight monitoring system
to handle them instantly [9–13]. On the other hand, those studies focused on detecting
anomalous trajectories of objects in outdoor spaces.

In recent times, the location data of objects in buildings have been gathered because of
the development of indoor navigation systems. This has attracted increasing attention from

Sensors 2023, 23, 3318. https://doi.org/10.3390/s23063318 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063318
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-6250-2987
https://orcid.org/0000-0003-1384-3405
https://doi.org/10.3390/s23063318
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063318?type=check_update&version=2


Sensors 2023, 23, 3318 2 of 25

researchers in new fields. For example, customers’ shopping behavior can be identified by
analyzing their historical trajectories in supermarkets. This allows managers to improve
product placement and the layout of the supermarkets [14]. Furthermore, human location
prediction technologies in indoor spaces have been developed recently and are an important
part of location-based services. Predicting where people will be in office buildings can help
better understand their intentions and enhance their quality of life [15,16]. Nevertheless,
there are few works on discovering anomalies in indoor human movement, which plays an
important role in security surveillance and identifying emergencies. Therefore, this study
develops a framework to detect anomalies in indoor human trajectories. In particular, two
anomaly types are studied, i.e., rare location visit and route anomalies. A rare location is
where humans rarely visit or are prohibited from visiting. Therefore, a person’s behavior
may be considered abnormal if he/she accesses rare places. In addition, route anomalies
can occur when people travel along unusual routes, such as detours or random routes.
These anomaly types are illustrated in Figure 1.

Normal
Anomaly

(a)

Normal
Anomaly

(b)

Normal
Anomaly

(c)

Figure 1. Illustration of anomalous trajectory types: (a) Rare location visit anomaly. (b) Detour
anomaly. (c) Random route anomaly.

There are several challenges in anomaly detection in indoor human movement. First,
detecting anomalies in urgent situations has a tight time constraint. This task requires anomaly
detection as fast as possible to handle the occurring situations instantly. Hence, existing methods
that detect anomalous trajectories with no time limits are unsuitable [3,17–19]. Second, the
distance between trajectories in indoor spaces is different from outdoor spaces because indoor
trajectories are limited by entities, such as rooms, corridors, and stairs. Therefore, anomaly
detection methods using existing distance functions, including Euclidean distance, longest
common sub-sequence (LCSS) [20], dynamic time warping (DTW) [21], and edit distance on
real sequence (EDR) [22], are ineffective for indoor trajectory data. In addition, indoor human
movement behavior may be represented by location traces and the semantics of data points. For
example, consider the behavior between two people. One stays in a meeting room, the other in
a coffee room. Assume that these two rooms are next to each other. Their behavior is entirely
different in this case, despite their close proximity. Therefore, semantic information should be
considered when estimating the similarity between indoor trajectories. Finally, existing anomaly
detection methods do not provide an effective way to choose algorithm parameters, which
may degrade the detection performance. For example, the performances of distance-based and
density-based methods are affected by the distance and density thresholds [17,23]. Clustering-
based anomaly detection methods require input parameters for the clustering algorithm, such
as the number of clusters in K-Means, spectral clustering, and hierarchical clustering. DBSCAN
requires two input parameters: The minimum number of points to form a new cluster (MinPts)
and the radius to find the neighbors (Eps). Choosing an appropriate value of Eps is essential for
performing DBSCAN; most studies determined this value manually.

In this work, a DBSCAN-based anomaly detection method is developed, which ad-
dresses the above challenges. First, this study detects anomalies in a short time to satisfy
time requirements. A time window is chosen to process trajectories. The window size
is small enough to meet the time constraint. Next, a novel trajectory similarity metric
called the longest common sub-sequence using indoor walking distance and a semantic
label (LCSS_IS) is proposed. This metric uses indoor walking distance and semantic la-
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bels when calculating the similarity between trajectories. Finally, the proposed method
detects human trajectory anomalies based on DBSCAN. The DBSCAN cluster validity
index (DCVI) is proposed to determine the Eps value. Three elements were considered
when designing this index: The inter-cluster distance, the intra-cluster distance, and the
distance between outliers and clusters. DCVI estimates the clustering quality of DBSCAN
based on the separation between clusters, the compactness within each cluster, and the
separation between outliers and clusters. In summary, the main contributions of this work
are presented as follows:

• A novel two-phase anomaly detection framework is proposed to identify anomalous
human trajectories in indoor spaces. Instead of estimating a trajectory over a long
time, the trajectories in a short duration are considered, and an alarm is given when
an anomaly is detected. This ensures timely anomaly detection in urgent situations.

• A new similarity metric LCSS_IS is proposed using indoor walking distance and
semantic labels to discover the similarity between trajectories in indoor spaces. In
addition, a new cluster validity index for DBSCAN called DCVI is proposed to choose
the Eps value. Eps is an important input parameter of DBSCAN, which directly affects
the performance of the clustering algorithm.

• The proposed anomaly detection method is evaluated using two real-world datasets.
The results show that the proposed method outperforms the other anomalous trajec-
tory detection methods over various anomalous trajectory types.

The paper is structured as follows. Section 2 discusses related works and Section 3 defines
the anomaly detection problem. The methodology is described in Section 4. Then, the algo-
rithm performance is evaluated in Section 5. Finally, the conclusion is reported in Section 6.

2. Related Works

This section briefly reviews the related works in anomalous trajectory detection. The
existing methods are divided into two categories: Methods that do not use similarity
metrics and methods that do. The first category discovers the “few and different” char-
acteristics of anomalies to detect them. Zhang et al. [18] introduced the isolation-based
anomalous trajectory (iBAT) method to exploit anomalies using the isolation forest (iForest)
algorithm [24]. They produced a random tree of trajectories and then adopted the iForest
algorithm. The trajectories were split recursively until most were isolated. The trajec-
tories following shorter paths are considered outliers because they were isolated faster
than normal trajectories. The authors in [25] designed a technique called maximal anoma-
lous sub-trajectories (MANTRA) to detect temporally anomalous sub-trajectory patterns
from an input trajectory. By analyzing the distinctive characteristics of anomalous sub-
trajectories, they refined the search space into a disjoint set of anomalous sub-trajectory
islands. The resulting set of maximal anomalous sub-trajectories is determined on the
anomalous islands.

The second category has attracted more research attention. In particular, there have
been various methods using similarity metrics for detecting trajectory anomalies, including
the extensible Markov model (EMM)-based, distance-based, density-based, and clustering-
based methods. The EMM combines a Markov chain with a clustering algorithm, which
detects anomalous trajectories [26]. Each node of EMM is a cluster of location points, which
is represented by a cluster model. Depending on the distance between a new point and
clusters, the point is grouped either into one of the existing nodes or forms a new node.
A point is marked as an anomaly if it belongs to one of two situations: The point forms a
new node, or the point belongs to a node whose occurrence probability or whose transition
probability is lower than a given threshold. A trajectory is considered anomalous if it
contains at least one abnormal point.

The distance-based anomalous trajectory detection method calculates the similarity
between trajectories using a distance function. A similarity threshold is given to identify
abnormal trajectories [27,28]. Zhu et al. introduced the time-dependent popular routes-
based trajectory outlier detection (TPRO) method [27]. In this study, the most popular
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routes on each timestamp were used to detect the temporal anomalies. The trajectory
datasets were divided into groups using a partitioning strategy. A reference trajectory
represents each group. The edit distance between the reference trajectory of each group
and the popular routes in the given city was then calculated. The anomalous trajectory
groups were detected if the distance between its reference trajectory and the popular routes
was larger than a given distance threshold. Saleem et al. presented the road segment
partitioning towards anomalous trajectory detection (RPAT) algorithm [28]. The trajectories
were divided into sub-trajectories based on the road segments. The speed, flow rate,
and visited time were features used to calculate the score for each sub-trajectory. The
score of each trajectory is the total of its sub-trajectory scores. Trajectory scores above a
user-specified threshold are anomalies.

In the density-based anomalous trajectory detection method, the neighbor density of
trajectories is estimated to detect anomalies. A previous study [17] proposed the trajectory
outlier detection (TRAOD) algorithm by investigating the partition and detection strategy
in finding sub-trajectory outliers. A new distance function was proposed, which comprises
three components: Perpendicular distance, parallel distance, and angle distance. The
density of sub-trajectories was determined using a distance threshold. A sub-trajectory
is anomalous if its density is smaller than a threshold. The study in [23] also introduced
a distance measure that uses intra-trajectory and inter-trajectory features. The distances
between trajectories were first calculated to find the neighbor density of each trajectory.
The anomalous trajectories were then detected based on the density threshold.

Clustering-based methods group trajectories into clusters using an appropriate clus-
tering algorithm. Anomalies are detected if they do not belong to any clusters or belong to
clusters that only have a few trajectories. Wang et al. [3] proposed an anomalous trajectory
detection method using a hierarchical clustering algorithm to derive anomalous trajectories
from a taxi GPS dataset. First, the trajectories that travel between the same source and
destination were all extracted. The hierarchical clustering algorithm is then adopted to
derive the clusters of trajectories using the edit distance. The clusters that have only a
trajectory are finally marked as anomalies. Unlike in [3], the authors in [29] developed a
two-phase anomalous trajectory detection framework: Online phase and offline phase. The
offline phase finds the clusters of trajectories. In this step, the distance between trajectories
was calculated using LCSS, and a hierarchical clustering algorithm was also adopted to
group trajectories. In the second phase, a trajectory was marked as an anomaly if it did not
belong to any clusters.

The challenge of clustering-based anomaly detection methods is determining the input
parameters of an algorithm. For example, the hierarchical clustering algorithm requires the
number of clusters as an input parameter. Previous studies [30,31] proposed a few indices
to find the number of clusters. These indices estimated the compactness of clusters and
the separation between clusters for finding the number of clusters in datasets. DBSCAN
requires two input parameters: Eps and MinPts; determining the Eps parameter is more
difficult for DBSCAN. Many methods have been proposed to choose the Eps value. A
combination of the elbow method and the kth nearest neighbor is used to determine the Eps
value for DBSCAN [32]. They found k nearest neighbors of all data points in the dataset
and sorted them in descending order of k− distance. An Eps value was chosen according
to the cutoff point of the sorted k− dist graph. On the other hand, the cutoff point cannot
always be identified. A new method to choose the Eps value was proposed to overcome
the disadvantage of the elbow method [33]. They automatically found the greatest slope
change instead of observing the graph. The Eps value was determined according to the
point with the greatest slope. The performance of this method still depended on the shape
of the k− dist graph. A new approach was also proposed to determine the Eps value using
empty circles [34]. They started by finding all empty circles in the dataset. The radius
of the circles was sorted in descending order. The elbow value of this sorted radius was
chosen as the Eps value. Nevertheless, similar to the reported method [32], it was difficult
to determine the appropriate elbow value if it was unclear. In contrast, in our work, the
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value of Eps is selected based on an evaluation of the clustering quality. Specifically, a novel
DBSCAN clustering validity index called DCVI is proposed to choose the Eps value. DCVI
measures the compactness of clusters, the separation between clusters, and the separation
between clusters and outliers. The value of Eps is determined according to the maximum
value of DCVI.

With anomalous trajectory detection methods, which use distance metrics for deter-
mining the similarity of the trajectories, choosing an appropriate distance metric plays
a vital role. The most straightforward metric, the Euclidean distance, determines the to-
tal distance between all pairs of corresponding points on two trajectories. On the other
hand, the Euclidean distance requires two trajectories of the same length, and it is sensi-
tive to noises or equipment recording errors. Several distance measurements have been
proposed to address these limitations. For example, LCSS can identify similar common
sub-sequences between two trajectories of various lengths. This measurement is also noise-
resistant because it provides the space and time thresholds to find similar points of two
trajectories [20]. DTW has been applied successfully to time series data and trajectories.
DTW is based on defining a cost for aligning two data points and finding the minimum
cost to align all points between two trajectories [21]. EDR can also remove noise effects
by quantizing the distance between a pair of elements to two values, 0 and 1. This mea-
surement does not require the same lengths of two considering trajectories [22]. With
indoor spaces, however, the movement path between two points may not be a straight
line segment because it is limited by indoor entities [35]. Therefore, the above metrics are
relatively ineffective for measuring the similarity of indoor trajectories.

Motivated by this, the authors in [35] proposed an indoor semantic trajectory similarity
measure (ISTSM) that was improved from the EDR. ISTSM integrated semantic labels and
indoor walking distance to calculate the similarity of indoor semantic trajectories. On
the other hand, the indoor walking distance was only considered if the two points were
the same semantic. They directly assigned the penalty value of two different semantic
points to a maximum value of 1. In other words, they ignored the space aspect between
two points if they were different semantic labels. In contrast, this paper proposes a new
distance function called LCSS_IS, which is extended from LCSS. The LCSS_IS uses the
indoor walking distance in both situations of the same and different semantic labels for
estimating the similarity of the indoor trajectories. Furthermore, the trade-off between
space and semantic aspects in LCSS_IS is controlled by pre-defined user parameters.

3. Problem Definition

This work aims to detect indoor human movement anomalies in emergencies. When
humans move, their location data are recorded, and trajectories may be achieved by
connecting their location points. A location point p is defined as (x, y, t), where (x, y) are
the coordinates of p at timestamp t. A trajectory T = {p1, p2, ...pn}, which consists of n
location points, is the collected location data during a time window W. Here n is the length
of trajectory T. The trajectories may have different lengths because some data points may
be lost during data collection.

Problem 1. Given a set of historical location data L = {L1, L2, ...LN} of N people who par-
ticipated in collecting data over the same time duration. Assuming that a set of trajectories
D = {T1, T2, ...TM} is extracted from the location dataset L using the time window W. M is the
number of historical trajectories in D. With a new trajectory Tnew that comes during a time win-
dow W, the anomaly detection framework detects whether Tnew is an anomaly using the historical
trajectory set D.

4. Methodology

In this section, a two-phase framework is first proposed to detect human trajectory
anomalies using DBSCAN. To improve the accuracy of the similarity measure between
trajectories, a new measure called LCSS_IS is then proposed for indoor human trajectories.
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In LCSS_IS, the indoor walking distance and semantic information are combined to evaluate
the similarity between trajectories rather than relying solely on coordinates’ differences
between points as in the original LCSS. Unlike ISTSM, which only uses the indoor walking
distance for points that have the same semantic label, LCSS_IS uses it in both cases of
the same and different semantic labels. Finally, to improve the clustering performance of
DBSCAN, a cluster validity index is proposed to determine the Eps value, an important
parameter of DBSCAN .

4.1. Clustering-Based Anomalous Trajectory Detection Framework

This section introduces an overview of the two-phase framework for detecting human
trajectory anomalies. This section also discusses how to cluster trajectories using DBSCAN
and detect anomalous trajectories.

As shown in Figure 2, phase 1 of the framework groups the trajectories in the database
into clusters. First, raw location traces from the database are preprocessed to extract a
set of trajectories. Trajectories that have lost many data points from equipment recording
errors are removed. Then, a distance matrix of processed trajectories is calculated using
a new distance function LCSS_IS that is extended based on LCSS. Finally, we cluster the
trajectories using DBSCAN. This step proposes a new cluster validity index DCVI to choose
an appropriate Eps value for DBSCAN.

Worker
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Trajectory

New 
trajectory

Data preprocessing

Checking that the 
new trajectory 
belongs to any 

clusters

Normal  
trajectory

Anomalous  
trajectory
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Figure 2. A two-phase framework for detecting human anomalous trajectory.

Anomalous trajectory detection is performed in phase 2. A new trajectory is checked
to determine whether it belongs to any clusters obtained from the database in phase 1. The
Eps-neighbors of the new trajectory in clusters are determined using the Eps value. The
new trajectory belongs to the cluster if the number of neighbors is greater than or equal
to (MinPts− 1). The new trajectory is detected as an anomaly if it does not belong to any
clusters. Otherwise, it is a normal trajectory.

4.2. Similarity Measure for Indoor Human Trajectories
4.2.1. Longest Common Subsequence (LCSS) Measure

LCSS is a similarity measure for character strings [36]. This measure tries to identify the
longest common subsequence between two considering strings. In another study [20], the
original LCSS was extended to compare two trajectories of moving objects. Let R and S be two
trajectories with length m and n, respectively, where R = ((rx,1, ry,1), (rx,2, ry,2), ..., (rx,m, ry,m))
and S = ((sx,1, sy,1), (sx,2, sy,2), ..., (sx,n, sy,n)). For a trajectory R, let Rest(R) be the trajectory
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Rest(R) = ((rx,1, ry,1), (rx,2, ry,2), ..., (rx,m−1, ry,m−1)). LCSS of R and S trajectories is defined
in the following equation [29].

LCSS(R, S) =


0, if m = 0 or n = 0
LCSS(Rest(R), Rest(S)) + 1, if |rx,m − sx,n| < α and |ry,m − sy,n| < α and | m− n |≤ δ

max{LCSS(Rest(R), S), LCSS(R, Rest(S))}, otherwise

(1)

where α and δ are pre-defined parameters that depend on the application and the dataset.
α is a distance threshold to determine whether two points are matched. If the difference on
the X dimension (|rx,m − sx,n|) and the difference on the Y dimension (|ry,m − sy,n|) between
two points rm and sn are smaller than α, the two points are matched. δ controls how far in
time to match one point of R to a point of S.

LCSS can calculate the similarity between two trajectories of varying lengths by finding
the matched points between two trajectories. This measurement is also robust to noise by
giving the distance and time thresholds to find close points of two trajectories. However, in
the LCSS measure, the proximity of two points from two trajectories is determined using
the differences on X and Y dimensions. This measure ignores the movement constraints of
indoor spaces, which are limited by entities such as rooms, corridors, and stairs. The actual
travel distance between two points in indoor space is longer than the distance used in
LCSS. LCSS is inappropriate for determining the similarity of indoor trajectories. Moreover,
LCSS only uses the space distance to determine the trajectories’ similarity and ignores the
semantic information of points. Therefore, this paper proposes a new similarity measure
called LCSS_IS, which uses indoor walking distance and semantic labels to determine the
similarity of trajectories.

4.2.2. Longest Common Subsequence using Indoor Walking Distance and a Semantic
Label (LCSS_IS)

To determine LCSS_IS between two trajectories, a navigation graph is first constructed
to calculate the indoor walking distance between two points. The navigation graph repre-
sents the topology of a floor plan of an indoor space. In this work, the navigation graph
is constructed using a connectivity base graph model [37]. The connectivity base graph
is defined by vertices and edges. Entities of the floor plan, such as rooms, stairs, and
hallways, are decomposed and represented by vertices. Edges are used to connect vertices
in the graph. An edge corresponds to a connection between two partitions in the floor
plan. Moreover, to represent the proximity between entities in indoor space, each edge is
assigned a value according to the distance of entities. The connectivity base graph model
has a low computation complexity while maintaining indoor trajectory modeling efficiency.

In the present work, depending on the floor plans of indoor spaces in datasets, each
vertex represents a particular space. For example, in the MIT Badge dataset, a navigation
graph is constructed as shown in Figure 3. In this floor plan, the space is divided into small
working cubicles for workers. Therefore, each vertex is considered to cover two opposite
cubicles and the part of the corridor between these cubicles. Moreover, since the movement
characteristics are important for anomaly detection in human movement, vertices are
positioned along the corridors. In Figure 3a, vertex 10 covers a space, represented by a
small rectangle in the upper left corner of the floor plan. The graph vertices are connected
based on the walking routes in the indoor area. To measure the indoor walking distance
between the two positions in the floor plan, two vertices in the navigation graph that are
the closest to the two positions in the floor plan are determined. The shortest path between
the two vertices is defined as the indoor walking distance using the Dijkstra shortest path
algorithm [38]. For example, in Figure 3, vertices 12 and 18 are the closest to the A and B
points, respectively. Therefore, the distance between points A and B is the shortest path
from vertex 12 to 18. This path is marked with red arrows as shown in Figure 3b.
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Figure 3. Construction of the indoor navigation graph: (a) Floor plan. (b) Indoor navigation graph.

Next, semantic labels need to be assigned to the trajectory points to compute the
distance between indoor trajectories using LCSS_IS. Each point is matched with a label
using the point coordinates and entity labels in indoor spaces. A list of semantic labels,
defined in the MIT Badge and the sCREEN datasets, is shown in Table 1.

Table 1. List of semantic labels in datasets.

Dataset MIT Badge sCREEN

Working space Rest space Travel space Category of
products Entry and exit Travel space

Configuration Kitchen Corridors Fruit and
vegetables Entrance Main pathway

Pricing Coffee X Dairy Checkout Racetrack

Semantic labels Coordinator Centers X Frozen X X

Printer, Copy X X Drinks X X

Meeting X X Bakery X X

Base space X X Beauty X X

A semantic trajectory is then defined as follows:

T = {((x1, y1), s1, t1), ((x2, y2), s2, t2), ..., ((xi, yi), si, ti), ..., ((xn, yn), sn, tn)} (2)

where (xi, yi) and si are coordinates and semantic labels of point i, respectively, at the
timestamp ti. n is the length of trajectory T. LCSS_IS of R and S trajectories is defined
in Equation (3).

LCSS_IS(R, S) =


0, if m = 0 or n = 0

max{LCSS_IS(Rest(R), S), LCSS_IS(R, Rest(S)), LCSS_IS(Rest(R), Rest(S)) + θ + d},
if IndoorDist(rm, sn) < α and | m− n |≤ δ

max{LCSS_IS(Rest(R), S), LCSS_IS(R, Rest(S)), LCSS_IS(Rest(R), Rest(S)) + θ}, otherwise

(3)

where the parameter d belongs to the range of (0, 1). θ = 1− d if two points rm and sn
are the same semantic, otherwise θ = 0. In this work, d represents the spatial proximity
between the two points while θ indicates their semantic similarity. When the sum of d
and θ equals 1, two points are spatially close and have the same semantics. In addition,
the value of d may be chosen based on the application. For example, d > 0.5 if the focus
is on the spatial aspect over the semantic information and otherwise. When d = 0.5, the
spatial proximity and semantic similarity are considered equally. IndoorDist(rm, sn) is the
indoor walking distance between two points rm and sn, which is used to measure the spatial
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proximity between them. Similar to LCSS, α and δ are pre-defined parameters. If α is a
distance threshold to determine if two points are close to one another, δ controls how far in
time two points are matched.

In addition, two variants of LCSS_IS are also considered: LCSS using indoor walking
distance called LCSS_IWD in Equation (4) and LCSS using a semantic label called LCSS_SL
in Equation (5).

LCSS_IWD(R, S) =


0, if m = 0 or n = 0
LCSS_IWD(Rest(R), Rest(S)) + 1, if IndoorDist(rm, sn) < α and | m− n |≤ δ

max{LCSS_IWD(Rest(R), S), LCSS_IWD(R, Rest(S))}, otherwise

(4)

LCSS_SL(R, S) =


0, if m = 0 or n = 0

max{LCSS_SL(Rest(R), S), LCSS_SL(R, Rest(S)), LCSS_SL(Rest(R), Rest(S)) + θ + d},
if |rx,m − sx,n| < α and |ry,m − sy,n| < α and | m− n |≤ δ

max{LCSS_SL(Rest(R), S), LCSS_SL(R, Rest(S)), LCSS_SL(Rest(R), Rest(S)) + θ}, otherwise

(5)

Equation (4) shows that LCSS_IWD evaluates the similarity between two points rm and
sn only using indoor walking distance. In contrast, the similarity between these two points
in the LCSS_SL and LCSS_IS metrics is considered from both spatial and semantic aspects.
Nevertheless, to estimate the spatial proximity between two points, LCSS_SL uses their
coordinates’ differences between the points as in the original LCSS, while LCSS_IS explores
their indoor walking distance. In other words, LCSS_IS is a combination of LCSS_IWD
and LCSS_SL.

The above metrics are normalized between 0 and 1, as reported elsewhere [20]. For
example, the normalization of LCSS_IS is defined as follows:

NormLCSS_IS(R,S) =
LCSS_IS(R, S)

min(m, n)
(6)

from NormLCSS_IS(R,S), the distance between two trajectories is determined: Dist(R,S) =
1− NormLCSS_IS(R,S). When the distance equals 0, two trajectories are the same, while 1
indicates that they are entirely different.

4.3. Parameter Determination for DBSCAN
4.3.1. DBSCAN

DBSCAN aims to seek high-density clusters and detect outliers in datasets [32]. The
clustering algorithm can also handle datasets with noise and clusters of any shape. In
addition, DBSCAN does not require the number of clusters as an input parameter, while
some of the clustering algorithms require it [39]. Nevertheless, this algorithm requires two
input parameters: Eps and MinPts. The former is the radius to find neighbors, and the
latter is the minimum number of points to form a cluster.

Several related definitions of DBSCAN are first stated.

Definition 1. Point q is an Eps− neighbor of a point p if dist(p, q) ≤ Eps. dist(p, q) is the
distance between two points p and q.

Definition 2. Point q is a core point of the cluster if the number of its Eps− neighbors is greater
than or equal to MinPts− 1.

Definition 3. Point q is a border point of the cluster if it is not a core point, but it is an
Eps− neighbor of the core point.

Definition 4. Outliers are points that are neither core points nor border points of the clusters.
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DBSCAN labels the data points in the dataset as core points if they satisfy Definition 2.
Core points are Eps− neighbor to each other belonging to the same cluster. From obtained
core points, border points are labeled if they satisfy Definition 3. Outliers are data points
that do not belong to any clusters [34].

4.3.2. Determination for Eps Value

In these two parameters of DBSCAN, MinPts can be chosen more easily based on the
user’s knowledge of the dataset [32]. In contrast, Eps has a larger effect on the result of
clusters and outliers. If Eps is chosen incorrectly, DBSCAN fails to discover clusters of
the dataset. For example, when Eps is small, the number of clusters increases, and only
a small number of data points are grouped. Moreover, there are many data points found
as outliers. When Eps is large, the number of clusters decreases, and there will be few
outliers. Therefore, choosing an appropriate Eps value is a challenge for DBSCAN. This
study focuses on choosing the value of Eps.

Inspired by existing cluster validity indices [30], this paper proposes a DBSCAN cluster
validity index called DCVI. This index is used to choose the Eps value by estimating the
quality of DBSCAN. Unlike other clustering algorithms, the clustering results of DBSCAN
contain clusters and outliers. Therefore, the quality of DBSCAN is estimated based on
measuring the separation between clusters, the separation between outliers and clusters,
and the compactness within each cluster. DCVI is defined as the following equation:

DCVI =
Minl={1,..., K−1},k={l+1,..., K} InterCD(Cl , Ck) + Mino={1,2..., O},k={1,..., K}OCD(o, Ck)

(Mink={1,..., K} IntraCD(Ck))γ
(7)

In Equation (7), InterCD(Cl , Ck) is the distance between clusters Cl and Ck. OCD(o, Ck)
is the distance between outlier o and cluster Ck. IntraCD(Ck) is the intra-cluster distance
of cluster Ck. γ controls the contribution of the intra-cluster distance to DCVI.

In this work, InterCD(Cl , Ck) is the average distance between points in cluster Cl
and points in cluster Ck. The minimum distance between outlier o and all points in
cluster Ck is chosen to calculate OCD(o, Ck). IntraCD(Ck) is the average distance between
points within cluster Ck. DBSCAN can be considered successful for grouping data points
when the outliers are far from clusters, the clusters are separated from each other, and
the compactness of clusters is strong. Therefore, the Eps value is chosen when DCVI
is maximum.

Figure 4 presents a way to determine the Eps value based on DCVI. First, the Eps
value is changed from the minimum value to the maximum value of the trajectory distance.
According to each Eps value, clusters of the dataset are found using DBSCAN. Then, the
value of DCVI is calculated at this Eps value. Finally, the Eps value is chosen according to
the maximum value of DCVI.
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𝐸𝑝𝑠 ∈ 𝐸𝑝𝑠𝑚𝑖𝑛: 𝐸𝑝𝑠𝑚𝑎𝑥

Find clusters using DBSCAN 

(Parameters: pre-defined 

Minpts, Eps)

Calculate 𝐷𝐶𝑉𝐼

Find 𝐷𝐶𝑉𝐼 =
max(𝐷𝐶𝑉𝐼𝐸𝑝𝑠𝑚𝑖𝑛:𝐸𝑝𝑠𝑚𝑎𝑥

)

𝐸𝑝𝑠

Eps

Clusters

𝐷𝐶𝑉𝐼

Figure 4. Flowchart for choosing the Eps value using DCVI.

5. Performance Evaluation
5.1. Experiment Setup
5.1.1. Datasets and Preprocessing

In this section, two real trajectory datasets are used to evaluate the performance of the
proposed method: The MIT Badge dataset and the sCREEN dataset.

• MIT Badge dataset. The MIT Badge (http://realitycommons.media.mit.edu/badgedataset.
html, accessed on 8 July 2021) dataset includes the timestamped geographic locations of
employees at an IT call center in Chicago from 26 March–17 April 2007 [40]. The location
data of workers is estimated by the radio signal strength (RSSI) of the badge assigned to
each worker. The in-house positioning system measures the RSSIs of each employee’s
badge at various base stations placed around the office. These signals are used to determine
the instantaneous position of each badge. Thirty-six workers from three other groups
participated in the data collection. The configuration group contains 25 workers. On the
other hand, there are only seven in the pricing group and four in the coordinator group.
Each recorded data point contains x and y coordinates at each timestamp. The sampling
rate of data is 10 points per minute. As shown in Section 3, each trajectory contains data
points collected in a time window W. With this dataset, the size of W is defined as
10 min. In this case, the maximum trajectory length is 100, and the trajectories shorter
than 60 are dropped. Moreover, each day is also divided into timeslots using the time
window W. Each new trajectory is assigned to a specific timeslot and is detected based
only on the history trajectories in this timeslot. The working hours are assumed to be
from 9:00 to 18:00, and a day is divided into 54 timeslots. The data are collected within
17 days and divided into two parts for evaluation. The first part accounts for 70% of
the total and contains 12 days. This part is used in the first phase of the framework to
find the workers’ normal trajectory clusters. The second part is the test dataset, with
30% of the total that contains data within five days. The days for testing are chosen
randomly from 17 collected days in the dataset. The experiments are conducted three

http://realitycommons.media.mit.edu/badgedataset.html
http://realitycommons.media.mit.edu/badgedataset.html
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times with different sets of test days. The output of the algorithm is the average of all
run times. The average number of trajectories over timeslots is about 4000 in the first
phase. Note that only normal trajectories are used to find clusters in this phase. The
average number of trajectories for testing is about 400, with one half for the normal
trajectories and the other half for abnormal trajectories.

• SCREEN dataset. The SCREEN (https://vrai.dii.univpm.it/content/screen-dataset,
accessed on 1 October 2021) dataset was gathered in a German supermarket during
business hours in July 2016 [14]. The location data of customers is collected using
sensors installed in shopping carts and baskets. While customers shop for items,
sensors send the ultra-wideband signal regularly to anchors placed on the supermar-
ket’s ceiling. The location of the anchors is known. The real-time location system is
based on the position of three anchors with the same timestamp to estimate customers’
location. Similar to the MIT Badge dataset, each data point in the sCREEN dataset
also contains information about the coordinates and timestamps of each point. Each
trajectory is extracted from the location trace using the time window W of five minutes.
Assuming that the working hours in the supermarket are from 8:00 to 22:00. Unlike
workers’ behavior, areas visited by customers in supermarkets do not depend on the
time of day, so time is not divided into slots in the sCREEN dataset. All trajectories
are grouped to process for detecting anomalies.
There are 175 carts and baskets to collect data for 29 days. The total number of
trajectories is about 40,000. Five days are chosen randomly to process in the first phase
and one day for testing in the second phase of the framework. From 6000 trajectories in
five chosen days in the first phase, 500 trajectories are randomly chosen for discovering
clusters. In addition, 250 trajectories are selected randomly from the chosen day for
testing in the second phase. Note that the maximum trajectory length is 436, and
trajectories shorter than 200 are removed.

5.1.2. Creating Anomalies for Evaluation

Labeled anomalies are required in the dataset to estimate the algorithm’s performance.
Nevertheless, these two datasets do not contain truth anomalies. Therefore, the need to
be made for evaluation. There are two usual ways to generate anomalies for datasets in
the literature.

First, a hypothesis is given for anomalies based on the difference in behavior between
groups in the dataset. The hypothesis is that if one group occurs more frequently than the
other, this group is described as a normal group. The remaining group with less occurrence
is described as an anomalous group [25,26]. In particular, in the MIT Badge dataset, the
configuration group accounts for approximately 70% of the total, while the pricing group
accounts for only 20%. Since the movement patterns of two of these groups are different, it
is assumed that the movement of employees in the configuration group is normal and in
the pricing group is abnormal. The sCREEN dataset does not contain different groups, so
there is no hypothesis given for anomalies in this dataset. In other words, the first way to
generate anomalies is not used in the sCREEN dataset.

The second way generates anomalies and injects them into datasets [23,41,42]. This
study introduces two anomaly types, i.e., rare location visits and route anomalies. Note that
generating anomalies in a second way is used for the MIT Badge and the sCREEN datasets.

• Rare location visit anomaly. In indoor spaces, the rare location refers to where humans
have rarely visited or been prohibited from visiting. For example, in a factory, the
prohibited places may be security control and engine rooms that workers can not
enter. Moreover, the rare locations can also be places that workers visit only at a
specific time. For example, the cafeteria can be a rare location with workers during
working hours, even though they may come there for lunch. Similarly, customers
in supermarkets or stores are also not permitted to access some locations, including
security, staff areas, and warehouses. Therefore, if one person moves to rare locations,
his/her behavior may be anomalous. Rare locations need to be identified based on the

https://vrai.dii.univpm.it/content/screen-dataset
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floor plan and historical trajectories of the dataset to generate this anomaly. First, the
floor plan is divided into grid cells. Then, the probability of each trajectory visiting
cells is calculated using the history trajectories. The cells with visiting probability
are 0 chosen as rare locations. Rare location visit anomalies are generated from the
normal trajectories by shifting some points of original trajectories to the rare locations.
The number of shifted points is controlled by the parameter τ. For example, τ = 0.5
means 50% of the normal trajectory is moved to rare locations. The starting point for
shifting is randomly chosen from the original trajectory. As shown in Figure 5, the red
trajectory is a generated anomaly, while the blue trajectories are normal.

• Route Anomalies. In some cases, people may travel along unusual routes. For example,
when a person tracks an object, he/she often wanders around the object many times.
Therefore, he/she may make a detour. In addition, in indoor spaces, incidents, such
as fire, may occur suddenly. In this case, people can take random routes to escape.
From these aspects, two types of route anomalies are considered: Detour anomaly and
random route anomaly. The detour often encircles a specific area. Figure 6 depicts a
red detour anomaly. Moreover, a random route anomaly is a list of points, which are
selected randomly in the indoor space using a uniform distribution. An example of
this anomaly type is shown as the red trajectory in Figure 7.

Figure 5. Rare location visit anomaly.

Figure 6. Detour anomaly.
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Figure 7. Random route anomaly.

5.2. Parameter Determination for Distance Metric and DBSCAN
5.2.1. Parameter Determination for Distance Metric

This study proposes the LCSS_IS measurement presented in Section 4.2 to measure the
distance between trajectories. In this metric, the parameter d is set to d = 0.5. The value of
parameter θ is θ = 1− d = 0.5 when two points are the same semantic labels. This implies
that the weights assigned to spatial closeness and semantic similarity are equivalent when
estimating the similarity of the points. Moreover, parameter α = 3500 with the MIT Badge
dataset and α = 5 with the sCREEN dataset. In this work, the value of α is set based on
the floor plan scale and the knowledge about human movement behavior in indoor spaces.
Here, α is a distance threshold for determining the spatial closeness between points. The
parameter δ shows how far in time a point from one trajectory is matched to a point in
another trajectory. In this study, the value of δ is set to the maximum point number of
two considering trajectories. This means there is no time constraint when estimating the
similarity between two points of two trajectories. Since the trajectories are extracted in
a short time window, each point from one trajectory is matched to all points in another
trajectory over the whole time window.

5.2.2. Determining the Eps Value for DBSCAN

DBSCAN requires two input parameters: MinPts and Eps. Based on previous
studies [43,44], MinPts was chosen to be twice the dimensions of data points in the fea-
ture space, i.e., MinPts = 2× dim. In this work, with the Euclidean, EDR, LCSS, and
LCSS_IWD measures, the feature space dimensions for the location points include the
x-coordinate, y-coordinate, and timestamp. In contrast, the data space has four dimensions
with LCSS_SL, LCSS_IS, and ISTSM because the semantic attribute of the location point is
added. Therefore, the MinPts is set to six for the distance metrics in the three-dimensional
space and eight for the others in the four-dimensional space.

The value of Eps is chosen using the DCVI metric in Equation (7). Note that the γ
parameter, which controls the role of intra-cluster distance, needs to be determined before
calculating DCVI. In this work, γ is chosen using the performance of the algorithm when de-
tecting noise. Noise is first generated with a completely different distribution with anomaly
types. This step ensures that the determination of the γ parameter is independent of the
algorithm performance evaluation when detecting anomalies. Noise is then injected into
the dataset as anomalies. The algorithm performance for detecting noise is estimated with
the different γ values. Finally, the value of γ, which corresponds to the best performance of
the algorithm is selected.
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• Noise creation. Noise points are added to the original trajectory as the following
equation [20]:

(xnoise, ynoise) = (x + randn× X, y + randn×Y) (8)

where (x, y) and (xnoise, ynoise) are coordinates of points before and after adding noise,
respectively. randn is a random value created from Gaussian distribution with mean 0
and variance 1. X and Y are constants that control the proximity between the noise
point and the original point. X = 7000 and Y = 5000 with the MIT Badge dataset and
X = 10 and Y = 10 with the sCREEN dataset. In addition, the ratio of noise point
number in each trajectory is chosen randomly in the range [0.3, 1]. The starting point
for adding noise is chosen randomly from the original trajectory.

• Choosing γ parameter. The value of γ is selected based on the trade-off between
the algorithm’s recall and precision. In this work, γ corresponds to the intersection
point of recall and precision. This means that the algorithm needs to ensure anomaly
detection ability while maintaining precision. Figure 8a,b show the performance of
the algorithm when detecting noise for the MIT Badge and the sCREEN datasets,
respectively. The value of γ, which equals 0.2 for both datasets, is determined from
these figures.

• Choosing Eps parameter. After selecting γ, the Eps value is determined using the
DCVI metric, as shown in Figure 4. The Eps value is chosen according to the maximum
value of DCVI. Note that, in the MIT Badge dataset, data are divided into timeslots,
and the algorithm is performed following each timeslot. Therefore, there are 54 Eps
values according to 54 timeslots. Here, this paper shows only one chosen Eps value
according to slot 0, which is 0.42 at the red point in Figure 9a. On the other hand,
with the sCREEN dataset, data are not divided into timeslots, so only one Eps value
(i.e., 0.41 at the red point as in Figure 9b) is selected. In Equation (7), it should be
noted that, if the number of clusters and outliers are equal to 1 and 0, respectively,
InterCD(Cl , Ck) and OCD(o, Ck) are equal to 0. As in Figure 9, if Eps is too large, there
is no outlier, and all trajectories are grouped into one cluster. In this case, DCVI equals
the minimum value at 0 according to the part shown by the red ellipse. In addition, if
the number of clusters is higher than one and the number of outliers is greater than
0, DCVI is large according to the portion indicated in the green ellipses. The yellow
ellipses show that the DCVI is small at Eps values, where only one cluster is found,
and the number of outliers is greater than 0.

 = 0.2

(a)

 = 0.2

(b)

Figure 8. Selecting γ value based on algorithm performance when detecting noise: (a) MIT Badge
dataset. (b) sCREEN dataset.
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Num_cluster > 1
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1

Num_cluster =1
Num_outlier > 0

Num_cluster >1
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Num_cluster =1
Num_outlier = 0
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Figure 9. Selecting the Eps value: (a) MIT Badge dataset. (b) sCREEN dataset.

5.3. Result Analysis

In this work, we use three metrics: recall, precision, and F1-score to estimate the algo-
rithm performance. The proposed method is evaluated and compared with
four baselines.

• EMM. The work in [26] detects anomalous trajectories using an EMM.
• Density method. This method detects a trajectory as an anomaly if its density is smaller

than a given threshold. The density method has been used in studies [17,23,45].
• Hierarchical clustering. The hierarchical clustering-based anomaly detection method

is proposed in [29]. This work detects abnormal trajectories based on their closeness
with extracted clusters from datasets.

• Spectral clustering. From a previous study [29], the hierarchical clustering algorithm
is replaced with the spectral clustering algorithm for finding clusters from datasets.
Anomalies are found in the same way in [29].

The baselines, except for EMM, also require a distance measure to calculate similarity in
the trajectories. In this work, these baselines use four existing distance measures: Euclidean,
EDR, LCSS, and ISTSM. Our DBSCAN-based anomaly detection method is evaluated using
seven existing and proposed distance metrics: Euclidean, EDR, LCSS, ISTSM, LCSS_IWD,
LCSS_SL, and LCSS_IS. The following subsections present the outcomes of methods over
the various anomaly types.

5.3.1. Anomaly as Pricing Group

This subsection only estimates the performance of the methods using the original MIT
Badge dataset. Because there is no labeled anomaly in the dataset, a hypothesis is given
for creating anomalies. In particular, in the MIT Badge dataset, the configuration group
accounts for approximately 70% of the total while the pricing group is only 20%. Therefore,
it is assumed that the workers’ movement in the former is normal, while the workers’
movement in the latter is abnormal. Moreover, the number of normal and abnormal
trajectories for evaluating the algorithm is chosen equally. The algorithm is fairly estimated
owing to the balance between abnormal and normal sample numbers in the test dataset.
Table 2 lists the results of baselines and the proposed method for detecting anomalies as
the pricing group. In particular, EMM achieves a high recall value of 89.55% compared
with a precision of only 66.87%. Because EMM evaluates the abnormality at the level
of the trajectory point, and a trajectory is detected as an anomaly if it contains at least
one anomalous point. This means that EMM prioritizes seeking the abnormality of the
trajectory point. Therefore, there are many normal trajectories detected as anomalies, and
EMM precision is low.
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Table 2. Results with anomaly as pricing group.

Method Measure Recall Precision F1-score

EMM 0.8955 0.6687 0.7635

Density

Euclidean 0.7634 0.7241 0.7408
EDR 0.9929 0.6394 0.7779
LCSS 0.8221 0.7692 0.7927

ISTSM 0.8301 0.7005 0.7598

Hierarchical Clustering

Euclidean 0.8702 0.7206 0.787
EDR 0.8923 0.6738 0.7676
LCSS 0.7826 0.7082 0.7435

ISTSM 0.9288 0.6701 0.7783

Spectral Clustering

Euclidean 0.8681 0.7198 0.7858
EDR 0.8823 0.6964 0.7782
LCSS 0.816 0.7227 0.7664

ISTSM 0.9207 0.6737 0.7777

Proposed

Euclidean 0.7897 0.8214 0.8052
EDR 0.9035 0.7479 0.8179
LCSS 0.8363 0.8085 0.8216

ISTSM 0.8624 0.7134 0.7805
LCSS_IWD 0.6856 0.8817 0.771
LCSS_SL 0.9539 0.8022 0.8708
LCSS_IS 0.8997 0.8838 0.8903

The methods, which use distance metrics, evaluate the abnormality at the trajectory
level. With these methods, LCSS obtains a higher precision than EDR and ISTSM. One
possible explanation is that LCSS aims to find the longest common subsequence between
two trajectories, ignoring the unmatched points. Therefore, LCSS tends to seek out the
normality of a trajectory rather than its abnormality. This explains why the methods obtain
better results in precision. Moreover, in four distance metrics (Euclidean, EDR, LCSS, and
ISTSM), the biggest disadvantage of Euclidean, compared with the remaining metrics, is
that it can not be applied directly to the trajectories with different lengths. In this work,
to use the Euclidean metric, the missed points are interpolated based on existing points.
The linear interpolation method was used [46]. After interpolation, the Euclidean distance
may estimate the similarity of trajectories quite well because this metric uses the absolute
difference between points. Therefore, the performance of methods using Euclidean is
comparable to EDR, LCSS, and ISTSM.

ISTSM, which uses space and semantic aspects to determine the trajectories’ similarity,
obtains a higher recall than precision for all methods. One possible explanation is that
ISTSM prioritizes seeking the difference between trajectories. In ISTSM, if two points have
different semantic labels, evenly close in space, a maximum value of 1 is assigned to the
substitution cost of the two points. Therefore, trajectories may be detected as anomalies
more easily, and recall is high. However, precision is low, so F1-score for this measure is low.

The proposed method with LCSS_IS outperforms the other methods in the F1-score.
LCSS_IS, which is extended from LCSS, shows an improved ability to distinguish between
two trajectories using the indoor walking distance and semantic labels to determine points’
similarity. This means that LCSS_IS uses the spatial proximity and semantic information
to estimate the distance of the trajectories rather than that solely based on the space
aspect as LCSS, EDR, and Euclidean. Unlike ISTSM, which only uses the indoor walking
distance for the same labels and ignores it for the different labels, LCSS_IS uses the indoor
walking distance for both the same and different labels. Moreover, the performance of
the two variants, LCSS_IWD and LCSS_SL, are also evaluated. In LCSS_IWD, the indoor
walking distance is used to determine the similarity between the two points. Meanwhile,
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LCSS_SL uses both the space and semantic aspects to estimate the similarity. Note that, in
LCSS_SL, the spatial proximity is determined using the coordinates’ norm between two
points as in LCSS. As can be seen in Table 2, LCSS_IWD achieves high precision, while
LCSS_SL improves recall. Since LCSS_IS is a combination of LCSS_IWD and LCSS_SL, the
performance of the proposed method with LCSS_IS is improved in the recall, precision
and F1-score.

5.3.2. Synthetic Anomalies

This subsection estimates the performance of the methods for two synthetic anomaly
types: Rare location visits and route anomalies. To estimate the anomaly detection ability
of the methods over various anomaly types, in the test dataset, abnormal trajectories are
replaced according to their type, and the normal trajectories remain.

Tables 3 and 4 depict the results of detecting rare location visit anomalies on the MIT
Badge and the sCREEN datasets, respectively. In the experiments, τ = {0.5, 1}, which
is the ratio of the shifted point number to rare locations in each trajectory. The outcome
of methods is better when τ increases. This is because the abnormality is higher when a
trajectory remains at a rare location over a longer time. Tables 5 and 6 show the performance
of methods in both datasets when detecting route anomalies.

Table 3. Results with rare location visiting anomaly on the MIT Badge dataset.

τ (%) 0.5 1

Method Measure Recall Precision F1-score Recall Precision F1-score

EMM 1 0.6082 0.7563 1 0.6082 0.7563

Density

Euclidean 0.9528 0.7746 0.8537 0.9528 0.7746 0.8537
EDR 0.9964 0.6826 0.8098 1 0.6834 0.8115
LCSS 0.9911 0.8334 0.9052 1 0.8346 0.9096

ISTSM 0.8118 0.7011 0.7524 0.9939 0.7963 0.884

Hierarchical Clustering

Euclidean 0.9379 0.7475 0.8285 1 0.7465 0.8532
EDR 0.8953 0.6542 0.7554 1 0.6787 0.8084
LCSS 0.9132 0.7085 0.797 1 0.7265 0.8412

ISTSM 0.968 0.6401 0.7706 1 0.6894 0.8159

Spectral Clustering

Euclidean 0.9383 0.746 0.8277 1 0.745 0.8522
EDR 0.8766 0.6993 0.7763 1 0.7255 0.8402
LCSS 0.8973 0.7368 0.8074 1 0.8365 0.9098

ISTSM 0.8411 0.6448 0.7299 1 0.6837 0.8119

Proposed

Euclidean 0.9941 0.7908 0.8792 1 0.8351 0.9083
EDR 0.8401 0.7961 0.8153 1 0.8228 0.9025
LCSS 1 0.8585 0.923 1 0.8585 0.923

ISTSM 0.8792 0.7189 0.7886 1 0.8141 0.897
LCSS_IWD 0.741 0.9072 0.8145 0.983 0.927 0.9543
LCSS_SL 0.9977 0.8114 0.8944 1 0.8117 0.8956
LCSS_IS 0.9629 0.91 0.9356 1 0.9137 0.9545

In the evaluated baselines, EMM achieves the highest recall value with synthetic
anomaly types on both datasets. As previously stated, a trajectory is detected as an
anomaly by EMM if the trajectory has at least one abnormal point. Moreover, synthetic
anomalies contain points with high abnormality, and the points are identified easily by
EMM. Therefore, EMM may detect all synthetic anomalies. However, because a trajectory
is detected easily as an anomaly by EMM, the precision of this method is low. Hence the
F1-score is also low.

The baselines, which use distance metrics, also obtain a very high recall value with
all types of synthetic anomalies on both datasets. Because the synthetic anomalies have a
strong abnormality at the trajectory level compared to the normal trajectories, they may be
detected by the baseline methods. Nevertheless, the precision of the baselines is low. As
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the baselines detect anomalies using thresholds (i.e., the density threshold in the density
method and the distance threshold between a trajectory and clusters in hierarchical and
spectral clustering), their performance is affected by the value of the thresholds. However,
choosing an appropriate threshold value for detecting anomalies is a challenge. With
baselines, thresholds are chosen based on the knowledge about datasets. Therefore, the
methods may not obtain the best performance in precision.

Table 4. Results with rare location visiting anomaly on the sCREEN dataset.

τ (%) 0.5 1

Method Measure Recall Precision F1-score Recall Precision F1-score

EMM 1 0.5828 0.7364 1 0.5828 0.7364

Density

Euclidean 1 0.672 0.8038 1 0.672 0.8038
EDR 0.748 0.6608 0.7017 1 0.7225 0.8389
LCSS 1 0.7102 0.8305 1 0.7102 0.8305

ISTSM 0.884 0.6637 0.7582 1 0.6906 0.817

Hierarchical Clustering

Euclidean 1 0.5176 0.6821 1 0.5176 0.6821
EDR 1 0.5435 0.7042 1 0.5435 0.7042
LCSS 1 0.7102 0.8305 1 0.7102 0.8305

ISTSM 1 0.6443 0.7837 1 0.6443 0.7837

Spectral Clustering

Euclidean 1 0.5252 0.6887 1 0.5252 0.6887
EDR 1 0.5495 0.7093 1 0.5495 0.7093
LCSS 0.968 0.7634 0.8536 1 0.7692 0.8695

ISTSM 1 0.6631 0.7974 1 0.6631 0.7974

Proposed

Euclidean 1 0.7937 0.885 1 0.7937 0.885
EDR 1 0.8013 0.8897 1 0.8013 0.8897
LCSS 0.996 0.8111 0.8941 1 0.8117 0.8961

ISTSM 1 0.6684 0.8013 1 0.6684 0.8013
LCSS_IWD 1 0.8065 0.8929 1 0.8065 0.8929
LCSS_SL 1 0.7553 0.8606 1 0.7553 0.8606
LCSS_IS 0.928 0.8722 0.8992 1 0.8803 0.9363

In contrast, the proposed method improves precision value compared to the baselines
while achieving a high recall value. This is because our method detects anomalies using the
Eps value. The appropriate value of Eps is determined based on estimating the clustering
quality of DBSCAN using the DCVI metric. Therefore, the performance of the proposed
method is improved significantly compared with the baselines in precision and F1-score
with synthetic anomalies. Moreover, in the proposed method, LCSS_IS outperforms other
distance metrics in the F1-score, except for detecting route anomalies on the MIT Badge
dataset. In this case, the F1-score obtains the highest value of approximately 96% with
the variant

LCSS_IWD. With LCSS_IS, this method also achieves a high F1-score of approximately
95% and outperforms the other baselines.

Because normal trajectories are maintained in the test dataset when estimating the
method performance over other anomaly types, the result of False Positive samples does
not change for each method. Therefore, if the result of True Positive samples of a method is
the same as with different anomaly types, the F1-score of the method is equal according
to these anomaly types. For example, the F1-score for detecting detour and random route
anomalies is the same following each method in the sCREEN dataset.
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Table 5. Results with route anomalies on the MIT Badge dataset.

Route Anomaly Detour Anomaly Random Route Anomaly

Method Measure Recall Precision F1-score Recall Precision F1-score

EMM 1 0.6082 0.7563 1 0.6082 0.7563

Density

Euclidean 0.815 0.8229 0.8184 0.815 0.8229 0.8184
EDR 1 0.6834 0.8115 1 0.6834 0.8115
LCSS 0.9974 0.8328 0.9076 0.9937 0.8323 0.9057

ISTSM 0.9915 0.796 0.8828 0.8763 0.773 0.8167

Hierarchical Clustering

Euclidean 1 0.7465 0.8532 1 0.7465 0.8532
EDR 0.976 0.6734 0.7968 0.99 0.6765 0.8036
LCSS 0.9903 0.7272 0.8382 0.9846 0.7261 0.8354

ISTSM 1 0.6894 0.8159 0.9843 0.6439 0.7784

Spectral Clustering

Euclidean 1 0.745 0.8522 1 0.745 0.8522
EDR 0.9751 0.6338 0.7682 0.9914 0.7239 0.836
LCSS 0.9954 0.7555 0.8582 0.9988 0.7562 0.8599

ISTSM 1 0.6837 0.8119 0.9048 0.6614 0.7639

Proposed

Euclidean 1 0.8351 0.9083 1 0.8351 0.9083
EDR 0.8862 0.8703 0.8761 0.9224 0.8839 0.9007
LCSS 1 0.8585 0.923 1 0.8424 0.9135

ISTSM 1 0.8141 0.897 0.9685 0.7052 0.8147
LCSS_IWD 0.9983 0.9291 0.9624 0.9928 0.9287 0.9597
LCSS_SL 1 0.8117 0.8956 1 0.8114 0.8954
LCSS_IS 0.994 0.9132 0.9515 0.9885 0.9132 0.9489

Table 6. Results with route anomalies on the sCREEN dataset.

Route Anomaly Detour Anomaly Random Route Anomaly

Method Measure Recall Precision F1-score Recall Precision F1-score

EMM 1 0.5828 0.7364 1 0.5828 0.7364

Density

Euclidean 1 0.6964 0.821 1 0.6964 0.821
EDR 1 0.7225 0.8389 1 0.7225 0.8389
LCSS 1 0.7102 0.8305 1 0.7102 0.8305

ISTSM 1 0.6812 0.8104 1 0.6812 0.8104

Hierarchical Clustering

Euclidean 1 0.5176 0.6821 1 0.5176 0.6821
EDR 1 0.5435 0.7042 1 0.5435 0.7042
LCSS 1 0.7102 0.8305 1 0.7102 0.8305

ISTSM 1 0.6443 0.7837 1 0.6443 0.7837

Spectral Clustering

Euclidean 1 0.5252 0.6887 1 0.5252 0.6887
EDR 1 0.5495 0.7093 1 0.5495 0.7093
LCSS 1 0.7692 0.8695 1 0.7692 0.8695

ISTSM 1 0.6631 0.7974 1 0.6631 0.7974

Proposed

Euclidean 1 0.7937 0.885 1 0.7937 0.885
EDR 1 0.8278 0.9058 1 0.8278 0.9058
LCSS 1 0.8117 0.8961 1 0.8117 0.8961

ISTSM 1 0.6684 0.8013 1 0.6684 0.8013
LCSS_IWD 1 0.8065 0.8929 1 0.8065 0.8929
LCSS_SL 1 0.7553 0.8606 1 0.7553 0.8606
LCSS_IS 1 0.8803 0.9363 1 0.8803 0.9363

5.3.3. Effect of the MinPts Parameter on Performance

This subsection presents the performance of the proposed method over various
anomaly types when varying the MinPts parameter of DBSCAN. It is known that MinPts
has less influence than Eps on the clustering quality of DBSCAN. The value of MinPts



Sensors 2023, 23, 3318 21 of 25

often is chosen based on the user’s knowledge about datasets [45] (i.e., MinPts can be
set to twice the dimensions of the data). In this experiment, the MinPts change in the
range of [3, 40]. With a given value of MinPts, an appropriate value of Eps is determined
using the DCVI metric. Then, the chosen Eps value is used for clustering trajectories and
detecting anomalies. Figure 10a,b show the results in terms of the F1-score for the MIT
Badge and sCREEN datasets, respectively. Note that only the LCSS_IS measure is used
in this experiment. The trend of changing performance is similar to all anomaly types.
The proposed method achieves the best results around MinPts = 8 on the two datasets.
When MinPts > 10, the performance of the proposed method is decreased. This may be
explained by the fact that many trajectories are detected as noise when the MinPts that are
chosen are too large, which may affect the clustering quality of DBSCAN. Therefore, the
effectiveness of detecting anomalies is degraded.

(a) (b)

Figure 10. Performance of the proposed method when varying MinPts: (a) MIT Badge dataset.
(b) sCREEN dataset.

5.3.4. Evaluation for Processing Time

This subsection evaluates the processing time for one trajectory in phase 2 of the
framework. This is the average processing time of one trajectory in the test dataset. A
comparison between the processing time of the proposed method and baselines is shown
in Table 7.

The processing time in the sCREEN dataset is longer than the MIT Badge dataset. This
is because the average length of one trajectory in the sCREEN dataset is longer than that
in the MIT Badge dataset (i.e., 327 in sCREEN and 62 in MIT Badge). The hierarchical
and spectral clustering-based methods have lower processing time than other methods.
Those two methods only compare a trajectory with the cluster centers. Therefore, the
processing time is short. With the DBSCAN-based anomaly detection method, the checked
trajectory is compared with trajectories in clusters to decide whether it is an anomaly
or normal. The density method processes the checked trajectory based on its density.
This method compares the checked trajectory to all trajectories in the dataset to find its
neighbors. Therefore, the density method has the longest processing time compared with
other methods.

The processing time for other distance measures is also different in the same method. Table 7
shows that Euclidean distance has the lowest processing time (i.e., 0.004 in the MIT Badge dataset
and 0.006 in the sCREEN dataset). This can be explained that Euclidean distance is a simple
measure with a low computation complexity compared with other measures. The proposed
measures and LCSS also have a lower processing time than EDR and ISTSM. For example,
LCSS_IS only need 0.405 s for the MIT Badge dataset and 1.01 s for the sCREEN dataset. In
urgent situations, this processing time can be accepted to detect anomalies effectively.
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Table 7. Processing time for one trajectory (Second).

Method Measure MIT Badge sCREEN

EMM 0.005 0.325

Density

Euc 0.087 1.07

EDR 0.75 53.7

LCSS 0.294 28.9

ISTSM 0.726 62.1

Hierarchical Clustering

Euc 0.004 0.008

EDR 0.017 0.235

LCSS 0.008 0.164

ISTSM 0.028 0.258

Spectral Clustering

Euc 0.011 0.006

EDR 0.026 0.192

LCSS 0.017 0.089

ISTSM 0.022 0.228

Proposed

Euc 0.081 0.146

EDR 0.541 17.1

LCSS 0.299 6.32

ISTSM 0.518 17.89

LCSS_IWD 0.193 0.55

LCSS_SL 0.512 0.926

LCSS_IS 0.405 1.01

6. Concluding Remarks

This paper proposed a two-phase framework for detecting indoor human trajectory
anomalies based on DBSCAN. This proposed method discovered trajectory clusters in the
dataset. A newly coming trajectory is detected as an anomaly if it does not belong to any
clusters of trajectories. A novel measure called LCSS_IS was proposed to determine the
similarity of the trajectories, which was extended from the original LCSS for discovering
the features of indoor human movement. In particular, the indoor walking distance and
semantic information were combined to estimate the similarity of trajectories. Therefore,
LCSS_IS measured the distance of trajectories in indoor spaces more precisely than existing
distance metrics. Furthermore, a novel cluster validity index, DCVI, was proposed to
choose the Eps parameter for DBSCAN. DCVI was designed to measure the separation
between clusters, the separation between clusters and outliers, and the compactness within
each cluster. An appropriate Eps value was determined corresponding to the maximum
value of DCVI. The proposed method was evaluated on two real datasets: MIT Badge and
sCREEN. The different anomalous trajectory types were also detected in this work. The
proposed method showed impressive performance and outperformed the baselines.

In this work, there are a few limitations. First, several features of trajectory data, such
as speed and moving direction, were not considered for calculating the distance between
trajectories. Second, the proposed method was not evaluated on datasets with complex
floor plans, such as buildings with many floors. We plan to extend this work to address the
above limitations in a future study.



Sensors 2023, 23, 3318 23 of 25

Author Contributions: Conceptualization, D.T.L. and S.Y.; methodology, D.T.L. and S.Y.; software,
D.T.L.; validation, D.T.L.; formal analysis, D.T.L. and S.Y.; investigation, D.T.L. and S.Y.; resources,
D.T.L. and S.Y.; data curation, D.T.L. and S.Y.; writing—original draft preparation, D.T.L. and S.Y.;
writing—review and editing, D.T.L. and S.Y.; visualization, D.T.L. and S.Y.; supervision, S.Y.; project
administration, S.Y.; funding acquisition, S.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the Institute of Information and Communication Technology
Planning and Evaluation (IITP) Grant by the Korean Government through MSIT (Development of
5G-Based Shipbuilding and Marine Smart Communication Platform and Convergence Service) under
Grant 2020-0-00869.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lan, J.; Long, C.; Wong, R.C.W.; Chen, Y.; Fu, Y.; Guo, D.; Liu, S.; Ge, Y.; Zhou, Y.; Li, J. A new framework for traffic anomaly

detection. In Proceedings of the 2014 SIAM International Conference on DATA MINING (SIAM), Philadelphia, PA, USA, 24–26
April 2014; pp. 875–883.

2. Belhadi, A.; Djenouri, Y.; Srivastava, G.; Djenouri, D.; Cano, A.; Lin, J.C.W. A two-phase anomaly detection model for secure
intelligent transportation ride-hailing trajectories. IEEE Trans. Intell. Transp. Syst. 2020, 22, 4496–4506. [CrossRef]

3. Wang, Y.; Qin, K.; Chen, Y.; Zhao, P. Detecting anomalous trajectories and behavior patterns using hierarchical clustering from
taxi GPS data. ISPRS Int. J. Geo-Inf. 2018, 7, 25. [CrossRef]

4. Yu, W.; Huang, Q. A deep encoder-decoder network for anomaly detection in driving trajectory behavior under spatio-temporal
context. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103115. [CrossRef]

5. Wu, S.; Moore, B.E.; Shah, M. Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In
Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA,
USA, 13–18 June 2010; IEEE: New York, NY, USA, 2010; pp. 2054–2060.

6. Calderara, S.; Heinemann, U.; Prati, A.; Cucchiara, R.; Tishby, N. Detecting anomalies in people’s trajectories using spectral graph
analysis. Comput. Vis. Image Underst. 2011, 115, 1099–1111. [CrossRef]

7. Zhang, T.; Zhao, S.; Chen, J. Ship trajectory outlier detection service system based on collaborative computing. In Proceedings of
the 2018 IEEE World Congress on Services (SERVICES), San Francisco, CA, USA, 2–7 July 2018; IEEE: New York, NY, USA, 2018;
pp. 15–16.

8. Huang, Y.; Zhang, Q. Identification of anomaly behavior of ships based on KNN and LOF combination algorithm. In AIP
Conference Proceedings; AIP Publishing LLC: Melville, NY, USA, 2019; Volume 2073, p. 020090.

9. Fujimaki, R.; Yairi, T.; Machida, K. An approach to spacecraft anomaly detection problem using kernel feature space. In
Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery in Data Mining, Chicago, IL, USA,
21–24 August 2005; pp. 401–410.

10. Oehling, J.; Barry, D.J. Using machine learning methods in airline flight data monitoring to generate new operational safety
knowledge from existing data. Saf. Sci. 2019, 114, 89–104. [CrossRef]

11. Sheridan, K.; Puranik, T.G.; Mangortey, E.; Pinon-Fischer, O.J.; Kirby, M.; Mavris, D.N. An application of dbscan clustering for
flight anomaly detection during the approach phase. In Proceedings of the AIAA Scitech 2020 Forum, Orlando, FL, USA, 6–10
January 2020; p. 1851.

12. Qin, K.; Wang, Q.; Lu, B.; Sun, H.; Shu, P. Flight anomaly detection via a deep hybrid model. Aerospace 2022, 9, 329. [CrossRef]
13. Memarzadeh, M.; Matthews, B.; Avrekh, I. Unsupervised anomaly detection in flight data using convolutional variational

auto-encoder. Aerospace 2020, 7, 115. [CrossRef]
14. Paolanti, M.; Liciotti, D.; Pietrini, R.; Mancini, A.; Frontoni, E. Modelling and forecasting customer navigation in intelligent retail

environments. J. Intell. Robot. Syst. 2018, 91, 165–180. [CrossRef]
15. Wang, P.; Yang, J.; Zhang, J. Location prediction for indoor spaces based on trajectory similarity. In Proceedings of the 2021 4th

International Conference on Data Science and Information Technology, Shanghai, China, 23–25 July 2021; pp. 402–407.
16. Wang, P.; Yang, J.; Zhang, J. A Spatial-Temporal-Semantic Method for Location Prediction in Indoor Spaces. Wirel. Commun. Mob.

Comput. 2022, 2022, 5210005. [CrossRef]
17. Lee, J.G.; Han, J.; Li, X. Trajectory outlier detection: A partition-and-detect framework. In Proceedings of the 2008 IEEE 24th

International Conference on Data Engineering, Cancun, Mexico, 7–12 April 2008; IEEE: New York, NY, USA, 2008; pp. 140–149.

http://doi.org/10.1109/TITS.2020.3022612
http://dx.doi.org/10.3390/ijgi7010025
http://dx.doi.org/10.1016/j.jag.2022.103115
http://dx.doi.org/10.1016/j.cviu.2011.03.003
http://dx.doi.org/10.1016/j.ssci.2018.12.018
http://dx.doi.org/10.3390/aerospace9060329
http://dx.doi.org/10.3390/aerospace7080115
http://dx.doi.org/10.1007/s10846-017-0674-7
http://dx.doi.org/10.1155/2022/5210005


Sensors 2023, 23, 3318 24 of 25

18. Zhang, D.; Li, N.; Zhou, Z.H.; Chen, C.; Sun, L.; Li, S. iBAT: Detecting anomalous taxi trajectories from GPS traces. In Proceedings
of the 13th International Conference on Ubiquitous Computing, Beijing, China, 17–21 September 2011; pp. 99–108.

19. Piciarelli, C.; Micheloni, C.; Foresti, G.L. Trajectory-based anomalous event detection. IEEE Trans. Circuits Syst. Video Technol.
2008, 18, 1544–1554. [CrossRef]

20. Vlachos, M.; Kollios, G.; Gunopulos, D. Discovering similar multidimensional trajectories. In Proceedings of the 18th International
Conference on Data Engineering, San Jose, CA, USA, 26 February–1 March 2002; IEEE: New York, NY, USA, 2002; pp. 673–684.

21. Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [CrossRef]
22. Chen, L.; Özsu, M.T.; Oria, V. Robust and fast similarity search for moving object trajectories. In Proceedings of the 2005 ACM

SIGMOD International Conference on Management of Data, Baltimore, MD, USA, 14–16 June 2005; pp. 491–502.
23. Zhu, Z.; Yao, D.; Huang, J.; Li, H.; Bi, J. Sub-trajectory-and trajectory-neighbor-based outlier detection over trajectory streams. In

Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, Melbourne, VIC, Australia, 3–6 June 2018;
Springer: Berlin/Heidelberg, Germany, 2018; pp. 551–563.

24. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the 2008 Eighth IEEE International Conference on Data
Mining, Pisa, Italy, 15–19 December 2008; IEEE: New York, NY, USA, 2008; pp. 413–422.

25. Banerjee, P.; Yawalkar, P.; Ranu, S. Mantra: A scalable approach to mining temporally anomalous sub-trajectories. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17
August 2016; pp. 1415–1424.

26. SzekéR, M. Spatio-Temporal Outlier Detection in Streaming Trajectory Data. Master’s Thesis, School of Computer Science and
Communication (CSC), Stockholm, Sweeden, 2014.

27. Zhu, J.; Jiang, W.; Liu, A.; Liu, G.; Zhao, L. Time-dependent popular routes based trajectory outlier detection. In Proceedings
of the International Conference on Web Information Systems Engineering, Miami, FL, USA, 1–3 November 2015; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 16–30.

28. Saleem, M.A.; Nawaz, W.; Lee, Y.K.; Lee, S. Road segment partitioning towards anomalous trajectory detection for surveillance
applications. In Proceedings of the 2013 IEEE 14th International Conference on Information Reuse & Integration (IRI), San
Francisco, CA, USA, 14–16 August 2013; IEEE: New York, NY, USA, 2013; pp. 610–617.

29. Ghrab, N.B.; Fendri, E.; Hammami, M. Abnormal events detection based on trajectory clustering. In Proceedings of the 2016 13th
International Conference on Computer Graphics, Imaging and Visualization (CGiV), Beni Mellal, Morocco, 29 March–1 April;
IEEE: New York, NY, USA, 2016; pp. 301–306.

30. Saitta, S.; Raphael, B.; Smith, I.F. A comprehensive validity index for clustering. Intell. Data Anal. 2008, 12, 529–548. [CrossRef]
31. Zhao, Q.; Fränti, P. WB-index: A sum-of-squares based index for cluster validity. Data Knowl. Eng. 2014, 92, 77–89. [CrossRef]
32. Ester, M.; Kriegel, H.P.; Sander, J.; Xu, X. A density-based algorithm for discovering clusters in large spatial databases with noise.

In Proceedings of the KDD, Portland, OR, USA, 2–4 August 1996; Volume 96, pp. 226–231.
33. Rahmah, N.; Sitanggang, I.S. Determination of optimal epsilon (eps) value on dbscan algorithm to clustering data on peatland

hotspots in sumatra. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2016; Volume 31,
p. 012012.

34. Giri, K.; Biswas, T.K. Determining Optimal Epsilon (eps) on DBSCAN using Empty Circles. In International Conference on Artificial
Intelligence and Sustainable Engineering: Select Proceedings of AISE 2020; Springer Nature: London, UK, 2020; Volume 1, p. 265.

35. Zhu, J.; Cheng, D.; Zhang, W.; Song, C.; Chen, J.; Pei, T. A New Approach to Measuring the Similarity of Indoor Semantic
Trajectories. ISPRS Int. J. -Geo-Inf. 2021, 10, 90. [CrossRef]

36. Hirschberg, D.S. Algorithms for the longest common subsequence problem. J. Assoc. Comput. Mach. 1977, 24, 664–675. [CrossRef]
37. Jensen, C.S.; Lu, H.; Yang, B. Graph model based indoor tracking. In Proceedings of the 2009 Tenth International Conference on

Mobile Data Management: Systems, Services and Middleware, Urbana, IL, USA, 30 November–4 December 2009; IEEE: New
York, NY, USA, 2009; pp. 122–131.

38. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
39. Shi, Z.; Pun-Cheng, L.S. Spatiotemporal data clustering: A survey of methods. ISPRS Int. J. Geo-Inf. 2019, 8, 112. [CrossRef]
40. Olguín, D.O.; Waber, B.N.; Kim, T.; Mohan, A.; Ara, K.; Pentland, A. Sensible organizations: Technology and methodology for

automatically measuring organizational behavior. IEEE Trans. Syst. Man Cybern. Part (Cybern.) 2008, 39, 43–55. [CrossRef]
[PubMed]

41. Liu, Y.; Zhao, K.; Cong, G.; Bao, Z. Online anomalous trajectory detection with deep generative sequence modeling. In
Proceedings of the 2020 IEEE 36th International Conference on Data Engineering (ICDE), Dallas, TX, USA, 20–24 April 2020;
IEEE: New York, NY, USA, 2020; pp. 949–960.

42. Lei, P.R. A framework for anomaly detection in maritime trajectory behavior. Knowl. Inf. Syst. 2016, 47, 189–214. [CrossRef]
43. Schubert, E.; Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN.

ACM Trans. Database Syst. (TODS) 2017, 42, 1–21. [CrossRef]
44. Sander, J.; Ester, M.; Kriegel, H.P.; Xu, X. Density-based clustering in spatial databases: The algorithm gdbscan and its applications.

Data Min. Knowl. Discov. 1998, 2, 169–194.

http://dx.doi.org/10.1109/TCSVT.2008.2005599
http://dx.doi.org/10.1007/s10115-004-0154-9
http://dx.doi.org/10.3233/IDA-2008-12602
http://dx.doi.org/10.1016/j.datak.2014.07.008
http://dx.doi.org/10.3390/ijgi10020090
http://dx.doi.org/10.1145/322033.322044
http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.3390/ijgi8030112
http://dx.doi.org/10.1109/TSMCB.2008.2006638
http://www.ncbi.nlm.nih.gov/pubmed/19150759
http://dx.doi.org/10.1007/s10115-015-0845-4
http://dx.doi.org/10.1145/3068335


Sensors 2023, 23, 3318 25 of 25

[CrossRef]
45. Ge, Y.; Xiong, H.; Zhou, Z.h.; Ozdemir, H.; Yu, J.; Lee, K.C. Top-eye: Top-k evolving trajectory outlier detection. In Proceedings of

the 19th ACM International Conference on Information and Knowledge Management, Toronto, ON, Canada, 26–30 October 2010;
pp. 1733–1736.

46. Usman, K.; Ramdhani, M. Comparison of Classical Interpolation Methods and Compressive Sensing for Missing Data Recon-
struction. In Proceedings of the 2019 IEEE International Conference on Signals and Systems (ICSigSys), Bandung, Indonesia,
16–18 July 2019; IEEE: New York, NY, USA, 2019; pp. 29–33.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1023/A:1009745219419

	Introduction
	Related Works
	Problem Definition
	Methodology
	Clustering-Based Anomalous Trajectory Detection Framework
	Similarity Measure for Indoor Human Trajectories
	Longest Common Subsequence (LCSS) Measure
	Longest Common Subsequence using Indoor Walking Distance and a Semantic Label (LCSS_IS)

	Parameter Determination for DBSCAN
	DBSCAN
	Determination for Eps Value


	Performance Evaluation
	Experiment Setup
	Datasets and Preprocessing
	Creating Anomalies for Evaluation

	Parameter Determination for Distance Metric and DBSCAN
	Parameter Determination for Distance Metric
	Determining the Eps Value for DBSCAN

	Result Analysis
	Anomaly as Pricing Group
	Synthetic Anomalies
	Effect of the MinPts Parameter on Performance
	Evaluation for Processing Time


	Concluding Remarks
	References

