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Abstract: In recent years, there have been increased demands for aggregating sensor information
from several sensors owing to the spread of the Internet of Things (IoT). However, packet communi-
cation, which is a conventional multiple-access technology, is hindered by packet collisions owing
to simultaneous access by sensors and waiting time to avoid packet collisions; this increases the
aggregation time. The physical wireless parameter conversion sensor network (PhyC-SN) method,
which transmits sensor information corresponding to the carrier wave frequency, facilitates the
bulk collection of sensor information, thereby reducing the communication time and achieving a
high aggregation success rate. However, when more than one sensor transmits the same frequency
simultaneously, the estimation accuracy of the number of accessed sensors deteriorates significantly
because of multipath fading. Thus, this study focuses on the phase fluctuation of the received signal
caused by the frequency offset inherent to the sensor terminals. Consequently, a new feature for
detecting collisions is proposed, which is a case in which two or more sensors transmit simultaneously.
Furthermore, a method to identify the existence of 0, 1, 2, or more sensors is established. In addition,
we demonstrate the effectiveness of PhyC-SNs in estimating the location of radio transmission sources
by utilizing three patterns of 0, 1, and 2 or more transmitting sensors.

Keywords: PhyC-SN; frequency offset; window function; SVM

1. Introduction

In recent years, wireless sensor networks (WSNs) have become popular because of
the development of wireless communication technology. Consequently, the present time
is now considered the Internet of Things (IoT) era [1]. In addition, sensor networks have
attracted attention from both academia and industry, and the number of deployed sensors
has increased exponentially [2–4]. WSNs, which collect and utilize diverse sensor infor-
mation from multiple sensors, have shown tremendous potential for various applications
such as security and safety monitoring, disaster management and prevention, industrial
automation, traffic management, health management, and smart appliances [5]. In these ap-
plications, WSNs must recognize events in a short period of time and take countermeasures
during the occurrence of events that cause environmental changes [6–8]. Thus, to realize
these applications, access control technology that enables WSNs to aggregate information
reliably and in a short time is essential to realize these applications.

In packet access, which is an access control technique for WSNs, information is lost
because of packet collisions owing to simultaneous access by many sensors [9]. However,
carrier-sense multiple access (CSMA), which avoids simultaneous access by detecting
multiple potential wireless accesses, has been proposed [10]. Nevertheless, in the case
of the widespread deployment of WSNs, packet collisions may still occur because of the
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hidden terminal problem, wherein the carrier sense cannot detect the other transmitting
terminal [11]. In addition, the latency required to avoid packet collisions causes a delay
in information aggregation. Meanwhile, non-orthogonal multiple access (NOMA) [12]
uses the received signal power difference and interference cancellation. However, stable
information aggregation is difficult when the received power fluctuates owing to multipath
fading and shadowing.

This study focuses on physical wireless parameter conversion sensor networks (Phyc-
SNs) [13]. In this access control technique, a receiver analyzes the frequency spectrum of
the received signal by using a fast Fourier transform (FFT). Subsequently, it estimates the
transmitted sensor information based on its center frequency. Because the carrier wave
has a narrow bandwidth frequency spectrum, the receiver can still detect each carrier
wave as a different frequency component if multiple sensors transmit different types of
information. This enables simultaneous recognition of sensor information from multiple
sensors. However, the receiver cannot identify the source of the information because the
carrier wave does not contain an identifier for the sensor. Therefore, the use of a PhyC-SN
enables the distribution of sensor information, which is the relative relationship of sensor
information notified simultaneously. Moreover, a method has been proposed that uses
the distribution of sensor information obtained by a PhyC-SN to position the source of
radio emission [14]. Consequently, a PhyC-SN can be used to recognize the distribution
of the entire sensor information at low latency, and it can achieve both low-latency sensor
information aggregation and a high aggregation success rate.

However, if multiple sensors attempt to notify the same information via a PhyC-SN,
each sensor transmits the same carrier wave. In this case, the receiver must detects the
number of sensors. The receiver can utilize the received signal energy to estimate the
number of simultaneously accessed sensors. A method exists to identify the number of
transmission sources based on the evaluation of the amount of energy at each frequency
and setting a threshold value according to the number of sensors [15]. However, if the
received signal power fluctuates because of multipath fading, the identification accuracy
deteriorates significantly. Consequently, a method has been proposed to identify the distri-
bution of sensor information using an on-off decision, which indicates when one or more
sensors have been notified, without identifying the number of sensors [14]. However, this
method lacks sensor information, which results in a deterioration in the accuracy of sensor
information distribution. Therefore, there is a need for a method capable of identifying
sensor information, even when multiple sensors report the same sensor information.

In this study, we established a collision detection method for PhyC-SNs that can
precisely identify cases where more than one sensor reports the same sensor information.
When each sensor is equipped with an inexpensive radio frequency (RF) radio, a frequency
difference occurs between the transmitter and the receiver in the local oscillator. This is
referred to as the frequency offset [16] and is unique for each sensor. If a single sensor
transmits a carrier wave, the phase varies owing to multipath fading. The carrier wave is
detected twice consecutively at fixed time intervals to detect the phase difference. Thus,
this process is equivalent to a delayed detection. However, if fading does not vary between
the two detection intervals, the phase variation due to fading is eliminated, and only
that due to the frequency offset can be detected. In general, this process is similar to the
method used to estimate the frequency offset using delayed detection [17]. As the estimated
frequency offset is independent of fading, it determines the phase variation, which can
be estimated from the received signal at each antenna. Moreover, the phase variation
remains the same even when multiple receiving antennas are arranged, such that the fading
correlation remains uncorrelated. However, when more than one sensor transmits the
same carrier wave, one carrier wave is subject to interference from another carrier wave at
the receiver. When received simultaneously by multiple receiver antennas, the amplitude
and phase variations owing to such interference are different, as the effects of fading are
independent. Consequently, regardless of the phase difference estimated by delay detection,
each receiving antenna has a different phase difference owing to interference. Although
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the phase difference in delay detection at each antenna is different when more than one
sensor transmits the same carrier wave, the same phase difference can be detected at each
receiving antenna in the case of transmission by a single sensor. The variance value, which
is the average of the absolute value of the phase change between the receiving antennas, is
larger when two or more sensors are transmitted on the same channel than when only one
sensor is transmitting. Therefore, the phase-variance value of the received signal between
the receiving antennas can be used as an identifier to detect collisions. Thus, this study
establishes a method to identify whether one, two, or more sensors access the same channel
based on the phase dispersion values of multiple antennas coupled with the amount of
received power. We evaluate the effectiveness of the proposed method and show that
it can achieve a collision detection accuracy that is higher than that of the conventional
energy detection method [15]. Furthermore, the method was applied to the PhyC-SN radio
wave monitoring system and achieved better detection accuracy than the conventional
method [14] in terms of the location estimation of the radio wave source.

The contributions of this study are as follows: 1. A scheme based on the average
phase of differences for distinguishing between two or more accessing sensors, which is
equivalent to the collision detection of simultaneous access from two or more sensors, is
proposed. 2. To improve the detection accuracy, we propose antenna selection, long-term
window function, and two-dimensional detection based on a support vector machine. 3.
When we used a PhyC-SN with the proposed three-level detection for gathering the RSSI
measured by the radio sensor, we evaluated the accuracy of the localization. We clarified
the effect of the proposed scheme in terms of the localization accuracy.

The basic principle of the proposed method was presented at an international con-
ference [18], wherein the improvement in aggregation efficiency through the suppression
of the effect of intercarrier interference using long-interval FFT was clarified. However,
the identification accuracy of the collision detection identifier using the phase difference
fluctuations due to noise was not discussed. Thus, to clarify the issue of noise robustness,
we enhanced the detection accuracy by improving antenna selection. The application
of information aggregation in PhyC-SNs has not yet been discussed. In this study, we
demonstrated that when using PhyC-SNs to estimate the location of a radio transmis-
sion source [14], the proposed method improves information aggregation and estimation
accuracy.

2. Related Studies

Theoretical analysis using the statistical trends of signals has been presented as a signal
detection method [15]. In [15], a multistate detection method was proposed; however, the
identification accuracy deteriorated with an increase in the number of detected states.
In CSMA, an access method using collision detection was considered [19]. For collision
detection, signals from other sensors were detected using the access suspension period.
In addition, assuming frequency sharing, a method using the guard time of time-division
duplexing (TDD) has been proposed to detect other signals during access by the system [20].
However, both methods require a certain stop time, which increases the detection time.
Thus, a method for detecting the stop time is necessary.

Energy [21], matched filters [22], and periodic stationarity detection [23] have been
proposed as methods for capturing signal features. However, the accuracy of energy
detection deteriorates with the occurrence of power fluctuations, owing to multipath
fading. In particular, when multiple signals are detected, the power difference according to
the number of sensors decreases owing to fading, which results in a significant degradation
in the detection accuracy. Matched filter detection does not improve the detection sensitivity
because of poor matching accuracy in environments where multiple signals are mixed.
Periodic stationarity detection exhibits good performance when multiple signals are mixed,
and there exists an inherent periodicity; however, the generation of signals with different
periodicities depending on the number of signals has not been considered.
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In a nonorthogonal multiplexing scheme [12], where individual signals are detected
via interference cancellers and maximum likelihood detection methods in an environment
accessed by many terminals, several methods for detecting the presence of signals have
been studied. For signal detection before canceller operation, a signal detection method
using a support vector machine (SVM) [24] and an active user detection method using the
alternating direction method of multipliers (ALM) [25] have been proposed. These methods
are based on the premise that the modulation of the transmitted signal does not affect
signal detection. Because a PhyC-SN is an unmodulated signal, its features are extremely
limited, and the derivation of features for using these methods remains challenging.

In addition, the RF fingerprint, wherein the unique signal fluctuation caused by RF
individual differences is identified, has been considered [26]. To realize the RF fingerprint,
an RF signal fluctuation unique to each sensor is required; however, the detection of stable
signals is challenging owing to the uncertainty of the RF signal. The arrival wave estimation
method based on null beam formation in an adaptive array antenna enables the individual
separation of simultaneously accessed signals [27]. However, the number of antennas
required increases in the case of many signals, resulting in a considerable increase in the
complexity of the receiver.

In signal detection in a PhyC-SN, which is the focus of this study, the transmitted
signal is unmodulated; thus, the signal possesses few features. Therefore, to improve
detection accuracy, identifiers that vary with the number of sensors must be established.
In situations where unmodulated signals are mixed, this method detects signal mixing.
However, to the best of our knowledge, there are no methods for detecting collisions; thus,
a method using phase differences established in this study is proposed as a new method.

We consider the specification of the information source based on a particular frequency
offset in a PhyC-SN [28]. However, the proposed scheme requires time continuity of the
sensing information; thus, it is not available in the initial data gathering or non-time contin-
uous sensing data. We also considered the application of PhyC-SNs to localization [14]. To
counter the impact of multipath fading, on-off detection is proposed. When two or more
sensors send the same sensing data to the receiver via the PhyC-SN, the sensing data are
deleted. This resulted in localization errors [14]. In this paper, to avoid the deletion of
sensing data, we propose a three-level detection, which is none, informed by a sensor, and
informed by two or more sensors. In addition, to improve the detection accuracy, antenna
selection, long-term window, and two-dimensional detection based on a support vector
machine are considered.

3. Physical Wireless Parameter Conversion Sensor Networks(PhyC-SNs)

In this study, we assume a radio sensor that observes the received signal strength
indicator (RSSI) of radio waves [8]. Each sensor notifies the aggregation station of the RSSI
observed as sensing data. Figure 1 presents an overview of the information notified by a
PhyC-SN. The RSSI is quantified at regular intervals. The mth quantized RSSI value is pm.
Let m = 1, 2, . . . , Nr, where Nr denotes the total number of quantized RSSI values. In this
study, the available bandwidth was divided, and multiple channels were set up. The total
number of channels was equal to the total number of quantized RSSI values Nr, where the
PhyC-SN correspondence table assigns the mth quantization number to the mth channel. A
correspondence table was created relating the channel number and the quantized sensing
data and was shared between the transmitter and receiver before communication began.

Each sensor transmits a carrier wave with the frequency of the channel number
corresponding to the sensing data. An inverse fast Fourier transform (IFFT) was used to
generate the carrier wave, which was equivalent to an OFDM subcarrier wave and was
unmodulated.
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Figure 1. Physical Wireless Parameter Conversion Sensor Networks(PhyC-SNs).

At the receiver, the carrier waves transmitted by all the sensors were detected over a
fixed time length. The frequency spectra of all the channels were detected simultaneously
using a fast Fourier transform (FFT) of the detected signals. A threshold value was set for
the power dimension of the frequency spectrum for each channel. When the power of the
frequency spectrum exceeded the threshold value, the sensor was identified as transmitting
a carrier wave through that channel. The RSSI reported by the sensor can be recognized
from the correspondence table between the channel number and sensing data.

However, if multiple sensors detect the same RSSI quantization number and transmit
the same channel carrier, multiple power thresholds are established to identify the number
of sensors. This was realized by exploiting the tendency of the average power to increase
in proportion to the number of carrier waves. However, because the ID that identifies the
sensor is not assigned to the notified RSSI, identifying the sensor that notifies the RSSI is
impossible. Therefore, when a PhyC-SN is used, the receiver can identify the frequency
distribution of the RSSI for all sensors.

Figure 2 shows a case of radio signal notification by a PhyC-SN in an actual wire-
less transmission channel. The received power fluctuated owing to multipath fading. In
addition, because the carrier waves of multiple sensors were accessed asynchronously,
carrier waves of the same frequency were asynchronously synthesized at the receiver.
Consequently, power fluctuations occurred in the composite signal. These power fluctua-
tions caused sensor identification errors in the threshold judgment of the receiver, which
misidentifies the number of sensors from the actual number of sensors.

Figure 2. Detection Problem to Multiple Sensors in a PhyC-SN.

Another cause of misidentification of the number of sensors is frequency offset. The
frequency offset is the difference in the center frequency of the transmitter between the
transmitter and receiver [16]. They are particularly likely to occur in the inexpensive radios
used for sensors. When a frequency offset occurs, the power of the carrier wave is reduced,
and there is a leakage of power to adjacent channels [28]. In the case of leakage in a channel
with no station-emitted carrier waves, false detection occurs, where the carrier wave is
recognized as having been transmitted from a channel that has not actually emitted any
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waves. However, the occurrence of leakage into a channel where a carrier wave has been
transmitted results in power fluctuations in the carrier wave, leading to the misrecognition
that a carrier wave does not exist.

In a PhyC-SN, multipath fading, asynchronous compositing between carriers, and
frequency offsets result in identification errors in the number of carriers (which is equivalent
to the number of carriers transmitted by the sensor).

4. Proposed Sensor Number Identification Method Using PhyC-SNs

In this study, we established a method for identifying three states in each channel. The
first was when no sensor transmitted a carrier wave, that is, the number of sensors was 0.
The second was when one sensor announces a carrier wave, and the number of sensors
was one. The third was when the number of sensors was two or more, with two or more
sensors notifying the carrier wave. We defined a collision as a situation where the number
of sensors was two or more because this is a state in which multiple sensors access the
same channel simultaneously. Therefore, our proposed method was a collision-detection
method that identified cases when the number of sensors was two or more.

4.1. Collision Detection Method Using the Average of Phase Differences

The collision-detection method proposes a new identifier that exploits the frequency
offsets and uses both the amount of energy and the proposed identifier to detect collisions.

Figure 3 shows the frequency offset estimation process for a single channel. This
process is similar to delay detection, wherein a complex conjugate is applied to the received
signal after one symbol interval, and is multiplied by the received signal. In a PhyC-
SN, an unmodulated carrier wave is transmitted. If a frequency offset, which is the
frequency difference between the receiver and transmitter, occurs at each sensor and
receiver, the phase of the received carrier wave is shifted. Therefore, the frequency offset
can be estimated equivalently by estimating the phase transition in one symbol interval
using delay detection [16].

Figure 3. Delayed detection processing.

Figure 4 shows the transmitter processing using the proposed method. On the trans-
mitter side, the received sensing data are mapped to the corresponding channel, and IFFT
is performed. The signal in one symbol section obtained by IFFT was duplicated, and
multiple symbols were transmitted by frequency upconversion.

Next, the characteristics of the amount of phase transition corresponding to the number
of sensors that select the same channel are explained.

Consider the case where the ith sensor transmits a carrier wave on a certain channel
and detects the signal at the kth receiving antenna from time t.

The received signal Ak and the received signal Bk delayed by one symbol time are
described as follows:

Ak = hi,ke−jωit (1)

Bk = hi,ke−jωi(t+T), (2)

where T is one symbol length, ωi is the frequency offset at the ith sensor, and hi, k is the
fading coefficient of the kth receiving antenna at the ith sensor. The station-generating
transmitters of each receiving antenna were synchronized using wired or other techniques.
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Therefore, the received signals of each receiving antenna were assumed to have the same
frequency offset magnitude. The transmitted signal did not influence this process and was
omitted for simplicity. In addition, noise is omitted to simplify the equation.

Figure 4. Transmitter side processing.

The following equations were obtained by multiplying the received signals Ak and Bk
by the two variables to which the complex conjugation was applied.

θ̂k = arg(A× B∗) = arg(|hi,k|2ejωiT), (3)

where θ̂k is the amount of phase transition estimated by delayed detection at the kth
receiving antenna.

In the case of a single sensor, the phase components of θ̂k and hi,k are canceled by the
delay detection. Therefore, the phase components are estimated to be the same for each
receiving antenna.

Next, the case in which the two sensors transmit carrier waves in the same channel is
described.

The received signal Ak and the received signal Bk delayed by one symbol are described
as follows:

Ak = hi,ke−jωit + hl,ke−jωl t, (4)

Bk = hi,ke−jωi(t+T) + hl,ke−jωl(t+T), (5)

where is the amount of frequency offset ωl at the lth sensor, and is the fading coefficient hl,k
for the kth receiving antenna at the lth sensor. The carrier waves of the ith and lth sensors
are synthesized at the receiver.

The received signals Ak and Bk were multiplied by two variables coupled with complex
conjugation. The result of the delay-detection process is

θ̂k = arg(A× B∗) = arg(|hi,k|2ejωiT + hi,khl,kejωi(t+T)e−jωl t

+ hi,khl,ke−jωitejωl(t+T) + |hl,k|2ejωl T). (6)

When two sensors transmit carrier waves on the same channel, phase fluctuations
due to fading appear in the second and third terms of the above equation. If the fading
coefficients of each receiving antenna are statistically independent, then the phases of the
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phase transients obtained at each antenna are different. Thus, the phase of the phase transi-
tion of the composite signal varies from antenna to antenna owing to mutual interference
between carrier waves. Therefore, if the phase transition obtained at each receiving antenna
exhibited the same phase, it could be assumed that only one sensor transmitted a carrier
wave on that channel. However, if the phase of the phase transition was different at each
receiving antenna, then it could be assumed that two or more sensors transmitted a carrier
wave on that channel, and we could assume that a collision had occurred.

In this study, to detect the presence of phase differences between antennas, the average
of the following phase differences was derived as an identifier for collision detection.

Figure 5 shows the phase difference between the points estimated by the two antennas
using the delayed detection. The blue points in Figure 5 are the estimated points, and the
phase difference between the received points is indicated in red. The phase difference is
always calculated at an inferior angle and does not exceed 180 degrees.

Figure 5. Calculation of the phase difference.

The phase difference is expressed as follows:

ω =
1
2

n

∑
i=1

n

∑
j=1

(θ̂i − θ̂j)
2 (7)

θ̂a − θ̂b =

{
θ̂a − θ̂b (θ̂a − θ̂b < 180)
360− θ̂a − θ̂b(θ̂a − θ̂b ≥ 180)

φ =
ω

K(K− 1)
, (8)

where K is the number of receiving antennas and ω is the squared value of the phase
difference estimated at each receiving antenna and averaged per antenna. The average
value of the phase difference is φ averaged from ω, and is used as an identifier for collision
detection.

If two or more sensors transmitted a carrier wave on the same channel, the phase of
the received signal of each antenna fluctuated because of the mutual interference of the
carrier waves; thus, the identifier φ for collision detection was larger than the case when a
single sensor transmitted a carrier wave. Hence, the average value of the phase difference
φ was the normative value for the collision detection.
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4.2. Application of a Long-Section Window Function

The frequency offset causes the subcarrier orthogonality to break down, resulting
in spectral leakage to the other channels [29]. This spectral leakage causes significant
degradation of the detection accuracy [28]. This study considered the application of a
long-interval window function as a countermeasure to spectral leakage.

The transmitter transmits a carrier wave over a time interval of multiple symbols. The
receiver continuously detects the time intervals of multiple symbols. In an actual wireless
transmission channel, the arrival timing of signals differs because of the signal delay spread
caused by multipath fading and access timing errors of each sensor. Various schemes of
timing synchronization for sensor networks have been considered thus far [30] and these
are not our research targets. In this case, by transmitting multiple symbols, the leading and
trailing one-symbol intervals perform the same function as the guard interval in OFDM,
thereby avoiding the loss of frequency orthogonality owing to symbol-timing errors [31].
For simplicity, we assumed that all signals arrived simultaneously and that there was no
delay spread.

At the receiver, the weights of the window function were multiplied by the time
widths of the multiple symbols.

Figure 6 shows the difference between short and long intervals. In the long section, an
FFT was applied with the number of samples matching the multisymbol time-length.

Figure 6. Application of the window function.

In the long-interval FFT, there are multiple symbols in the detection signal. Conse-
quently, the periodicity of the carrier wave increased, and the frequency spectrum was
concentrated at the carrier frequency. Simultaneously, sidelobes, which spread to other
frequencies, were suppressed, thus reducing the spectral leakage owing to frequency offsets.
As shown in Figure 6, the application of a window function to each FFT in the short interval
causes distortions in the forward and backward directions of each symbol. However, in the
case of the long-interval FFT, the signal distortion caused by the window function is limited
to the first and last symbols among multiple symbols. Thus, the long-interval FFT reduced
the effect of distortion owing to the window function and suppressed the spectral leakage.

4.3. Antenna Selection Methods for Improved Detection Sensitivity

Figure 7 shows the received signal points of each antenna in the I-Q plane when one
sensor transmits a carrier wave. The magnitude was normalized to one symbol and the
average power was set to one. Furthermore, there were no collisions, and the received
signal points of all antennas exhibited the same amount of phase transition. However,
received signals with low power were susceptible to noise. Therefore, the received signal
point with a high power that was tolerant to noise was selected, and the identifier φ for
collision detection was calculated. The receiver was equipped with multiple received
antennas, and thus, multiple received signal points are detected. The sensing data can
be detected at any received signal point, and thus the receiver can select the signal point
with a large signal power to improve the accuracy of detecting the sensing data. Because
each signal point is derived from each receiving antenna, the selection of the signal point is
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equal to the selection of the antenna. For antenna selection, we used a certain threshold.
If the power of the received signal point derived from the receive antenna is greater than
the threshold, it is used for detecting the sensing data; otherwise, it is deleted. The larger
the selected threshold value, the fewer the number of received signal points exceeding the
threshold value. Consequently, the number of signal points for calculating the average
phase difference and the noise reduction effect by averaging were reduced. However,
for a small threshold, the number of received signal points that exceeded the threshold
was reduced. Furthermore, when the threshold was reduced, the phase components were
calculated even for received signals with low received power; thus, they were strongly
affected by the noise for the collision detection identifier φ. Therefore, an appropriate
threshold must be set to enhance the effect of noise reduction.

Figure 7. Receiver-side processing ("D" indicates the received signal point).

The threshold value of t was calculated as follows:
In the case of rectangular windows

t = EW. (9)

For the case of BHW
t = EW/4. (10)

Let E be the average power of a received signal. The threshold ratio W was determined
based on the average power. The application of the window function attenuates the
amplitude of the received signal. In this study, the threshold applied to the BHW(Blackman-
Harris window) was one-fourth that applied to the rectangular window.

The red circles in Figure 7 indicate the power levels at W = 0.5, which were normalized
to the average power.

The receiver process, which involves a combination of antenna selection, window
function, and phase difference averaging, is shown in Figure 8. The receiver calculated two
features for each channel: the energy value and average of the phase difference. Thereafter,
these two features were used to identify the number of sensors.
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Figure 8. Receiver-side processing.

4.4. Collision Detection Method

Figures 9 and 10 show the scatter plots of the average values of the energy and phase
difference when there are one and two transmitting sensors. Red and blue indicate the
detection values when the number of transmitting sensors was one and two, respectively.
The average values of the energy and phase differences tended to differ depending on
the number of sensors. Therefore, a machine-learning support vector machine (SVM) was
used to identify the number of sensors [32]. The various parameters of the SVM were
determined through the automatic optimization of hyperparameters in MATLAB provided
by MathWorks [33]. Figures 9 and 10 show a scatterplot of the energy values and the
average of the phase differences. Here, SVM determines the threshold that distinguishes
between one or two sensors.

Figures 9 and 10 show the scatter plots with and without antenna selection, respectively.
Here, W = 0.5 was applied as the threshold ratio for antenna selection. Antenna selection
was considered to improve the identification accuracy because the scatter plots of sensors 1
and 2 were concentrated, and the distance between them increased.

Figure 9. w/o antenna selection.
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Figure 10. w/ antenna selection.

5. PhyC-SN Use Case for Estimating the Number of Sensors

Herein, we applied this method to positional fingerprinting, which is an application
of PhyC-SNs for estimating the number of sensors. In the position fingerprinting method,
sensors that can observe RSSI values are uniformly placed. The radio source was the
positioning target. Each sensor measured the RSSI while radio waves were emitted, and
the measured RSSI was reported to a central station. The RSSI was then reported to a single
aggregation station that used a PhyC-SN as the method for reporting the RSSI from each
sensor [14].

5.1. Aggregation Method

Figure 11 shows a diagram of the aggregation of sensor information by a PhyC-SN. As
in [14], a PhyC-SN defines areas within a certain range of sensor locations, and the sensors
in each area are simultaneously notified by the PhyC-SN. However, slots are defined as
time divisions, and each area is notified at a different time slot. Let b be the number of areas
(b ∈ 1, 2, . . . , B), where B is the total number of areas.
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Figure 11. Aggregation Process

5.2. Calculating the Similarity of Estimation Criteria

The position fingerprinting method has two phases: pretraining and positioning. In
the pre-training phase, the locations of the radio transmission sources are known, and the
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radio source sensors are placed uniformly within the deployed area. Let l be the location
number of the source in advance (l ∈ 1, 2, . . . , Nl), where Nl is the total number of radio
transmission sources deployed in the pretraining phase.

The RSSI was quantized at regular intervals, and the quantization number was trans-
mitted corresponding to the subcarrier number [14]. Furthermore, an on-off decision where
the receiver compared the power of each subcarrier with a threshold value and determined
that the sensor had been notified when the power was above the threshold value was
proposed [14]. Although the threshold decision eliminates power fluctuations during
propagation, it identifies a single sensor as transmitting a subcarrier wave, even when
multiple sensors transmit the same subcarrier wave. This results in the loss of information
regarding the number of sensors that have been notified.

Next, the RSSI was obtained from the frequency components of the channels deter-
mined to be above a certain threshold value, based on a conversion table. Consequently,
the RSSIs detected from the channels above the threshold were sorted in descending order
to obtain a feature vector that indicates the characteristics of the radio source. Thus, to
compensate for the fact that the number of RSSIs reported by the sensors was reduced
by the reception process [14], a feature vector with a size equal to the total number of
sensors in the area was generated by adding noise-level RSSIs to the aggregate result. Thus,
when the bth area was identified using the PhyC-SN, the following RSSI aggregation vector
was obtained:

p̃l,b = [ p̃l
1, p̃l

2, . . . , p̃l
Nb
]. (11)

Let p̃l,b
b be the RSSI aggregate vector formed when a sensor in the bth area notifies the

location l of the radio source. Furthermore, let Nb be the total number of radio sensors in
the b-th area, and let p̃l

n be the nth largest RSSI value in the aggregate vector.
The aggregate vector is formed when a sensor in the bth area reports an RSSI during

the positioning phase.

p̃∗,b = [ p̃∗1 , p̃∗2 , . . . , p̃∗Nb
]. (12)

In the literature, [14] calculated the squared Euclidean distance between the aggregate
vector obtained in the positioning phase and that obtained in the pre-training phase for the
location of the radio source. Furthermore, the position of the pre-training point with the
shortest distance, l?, was used as the location estimation point. l? is expressed as follows:

l? = arg min
∀l

B

∑
b=1

(p̃∗,b − p̃l,b)(p̃∗,b − p̃l,b)T (13)

5.3. Proposed Method: Environment Recognition Using 3-Level Detection

In the proposed method, the PhyC-SN can recognize the number of sensors at three
levels: 0, 1, and 2 or more. When applying the proposed method to positional fingerprinting,
the number of sensors was judged to be two if two or more sensors were recognized. This is
because the possibility that there were two sensors was higher than those of other numbers
of sensors. In [14], more information on the number of sensors was obtained than in the
case of detection with a single-threshold decision.

Figure 12 shows the difference in the aggregated RSSI results between the three-level
identification of the proposed method and the conventional on-off identification when
the RSSI was notified by the PhyC-SN. The RSSI values received by each sensor are color
coded. The histogram shows the RSSI value when it was aggregated by the PhyC-SN from
a sensor and the number of sensors that received it. In the conventional method, which is
an on-off decision, even if two or more sensors inform the receiver of the same RSSI, the
receiver recognizes that one sensor informs the RSSI. Therefore, some RSSI data are lost. In
the proposed method, if two sensors provide the same RSSI, the receiver recognizes that
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the number of sensors forming the RSSI is two. If three or more sensors indicate the same
RSSI, it recognizes that the number of sensors forming the RSSI is two. Here, the vector
size was maintained even when sensor information was lost via the addition of noise-level
RSSI, as in the literature [14]. The proposed method is expected to improve the accuracy of
position estimation because less information is lost from the sensors.

-80 -70 -60 -50
RSSI
(dBm)

Number of 

sensor

-90

-80 -70 -60 -50
RSSI
(dBm)

Number of 

sensor

-90

Loss Sensor

Conventional method

two-level identification

Proposal method

three-level identification

PhyC-SN

HIGH

LOW

RSSI

Sensor Radio transmission source

Receive Sensor

Loss Sensor

Receive Sensor

−50 dBm

−60 dBm

−70 dBm

−80 dBm

−90 dBm

Figure 12. Comparison of missing sensor information

6. Simulation Evaluation
6.1. Numerical Results Part 1 (Aggregate Accuracy of a PhyC-SN)

As in [14], we used data from outdoor sensors and radio-wave sources. The thirty-five
radio sensors measuring the RSSI values were placed in an area of approximately 300 m
× 300 m. The number of position patterns in the radio transmission source was assumed
to be 124 and arranged in a mesh-like manner. We used LoRa aggregation stations in
the 920 MHz band as the radio source. However, each sensor was assumed to be a LoRa
sensor terminal, and the LoRa terminal periodically transmitted signals including sensor
information. The sensor was an LHT65 provided by DRAGINO. The aggregation station
was LPS8 provided by DRAGINO. The aggregation station calculates the RSSI from the
signals sent by the sensor, which is equivalent to the RSSI of the sensor in the signal sent by
the aggregation station owing to the radio wave coverage [34]. From this objectivity, the
RSSI observed from the signal transmitted by each sensor was used as the RSSI observed
by each sensor, and this RSSI was sent to the aggregation station using a PhyC-SN.

The RSSI was quantized in 6 dB intervals in the range −136 dBm∼−40 dBm, each
corresponding to each subcarrier. In this case, an RSSI below −136 dBm was assumed to
be below the noise, and sensors below the noise were not transmitted to the aggregation
station. There were 16 subcarriers.

6.2. Simulation Parameters for Evaluation of the Aggregation Accuracy

We constructed a baseband simulation of the wireless communication using MATLAB.
The simulation parameters are listed in Table 1. In a Rayleigh fading environment, the
number of receiving antennas was four. The number of subcarriers was set to 16, and the
maximum number of sensors to be aggregated was 35. Thus, if all the sensors notified the
PhyC-SN, a collision would occur in one of the channels. The frequency offset was modeled
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as a uniform random number in the range [−0.4 0.4], and the normalized frequency offset
was normalized by the channel bandwidth.

Table 1. Simulation parameters.

Type of Data Data

Number of receiving antennas 4
Fading environment Rayleigh fading

Number of subcarriers 16
Frequency offset [−0.4 0.4] independent

uniform random numbers
Window functions rectangular windows,

Blackman-Harris windows
Number of sensors 35

Number of pre-training data for each sensor 60
Number of data for validation for each sensor 64

Two types of window functions were used: rectangular and BHWs functions. To
evaluate this experiment, a method using energy detection was considered the conventional
method. Conversely, the proposed method uses energy detection and the average phase
difference by the frequency offset.

6.3. Aggregate Accuracy Results

Figure 13 shows the threshold ratio W and the error rate due to antenna selection.
The error rate was defined as the number of errors divided by the number of estimation
attempts, where the error was defined as the number of sensors identified as different from
the number of sensors that were actually transmitted.
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Figure 13. Aggregate accuracy results.

In this figure, we can see that the proposed scheme achieves a smaller error rate than
the conventional scheme of energy detection. This is because energy detection suffers
from fluctuations in the received signal power caused by multipath fading. In the pro-
posed scheme, the average phase of difference can mitigate the phase distortion caused by
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multipath fading, and it is effective in distinguishing the collision of accessing multiple
sensors.

The figure shows that the error rate tends to be convex downward with a value
of W. When calculating the average phase difference, a small threshold value selected
the antennas receiving signal power with low noise tolerance, thereby degrading the
identification accuracy. However, a high threshold value reduces the number of selected
antennas and the noise reduction effect of the averaging process. Therefore, there exists an
optimal W in the window function. In the following evaluation, W = 0.5 is used.

In addition, BHW achieved a smaller error rate than the rectangular windows. BHW
can suppress the spectrum leak to the other subcarriers, and thus, the error decision caused
by the spectrum leak is avoidable.

The error rate for different numbers of transmitted symbols is shown in Figure 14
where a 20 dB SNR was assumed. In this figure, “Energy & phase dispersion detection”
uses a short FFT whose size is one symbol. When the number of symbols increases, short
FFTs are iteratively performed, and then the detected signal components are combined.
In the “Proposal method” and “Proposal method (BHW),” the size of the FFT is equal to
the number of symbols, and it is long. In the case of identification with the addition of the
mean value of the phase-difference feature, the error rate did not change with a change in
the number of transmitted symbols when the FFT size was one symbol. In contrast, in the
case of FFT over a long section, the identification accuracy was improved by increasing
the number of transmitted symbols, thereby increasing the FFT size, concentrating the
frequency spectrum at the center frequency of the carrier wave, and suppressing its spread
to other frequencies. When the number of symbols was eight, the rectangular window
achieved the lowest error rate, whereas for more than 10 symbols, the BHW achieved the
lowest error rate. When the number of transmitted symbols was small, a rectangular win-
dow with low noise immunity and a sharp main lobe can increase the detection power and
improve the error rate. However, the detection power of the main lobe could be improved
by increasing the number of transmitted symbols. Furthermore, the BHW suppressed the
sidelobes, which suppressed other frequency spectral leakages, thus resulting in improved
identification accuracy.
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Figure 14. Aggregate accuracy results.

Figure 15 shows the results of the relationship between the SNR and error rate for
different window functions. The number of symbols is set to 20. Regardless of antenna
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selection, for SNRs lower than 8 dB, the rectangular window was superior because of its
weak noise immunity and small power leakage owing to the frequency offset. Conversely,
in the case of SNR higher than 8 dB, the BHW was superior because it was more noise
tolerant and the power leakage owing to the frequency offset was larger.
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Figure 15. Aggregate accuracy results.

Figure 16 presents a comparison of the relationship between the SNR and error rate
for conventional energy detection and the proposed method. Although the error rate was
lower than that of the conventional method owing to the addition of the average phase
difference, the identification accuracy was saturated because the FFT size was one symbol.
Therefore, in addition to antenna selection, an FFT was performed over a long interval,
which increased the FFT size, and the identification accuracy was improved.
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Figure 16. Aggregate accuracy results.
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The error rate of the conventional energy detection method saturated at approximately
10−1 did not improve with SNR expansion. In contrast, the proposed method with BHW
achieved an error rate of less than 10−2 and superior identification accuracy. Furthermore,
it suppressed the spectrum leakage through the application of the long interval FFT and
BHW, and achieved excellent discrimination performance using a combination of the phase
variance and energy amount.

7. Numerical Results Part 2 (Positioning Accuracy)

Location estimation using a PhyC-SN used data generated by the Wireless InSite radio
propagation analysis tool. The environment for generating data is presented in Table 2. A
total of 136 sensors were placed in an urban space measuring 800 m × 800 m. There were
eight divisions for the aggregation. To identify the source of the radio waves, 37 points
were placed at the source of the radio waves as preliminary training, with the source of the
radio waves known. Subsequently, 25 radio transmission sources were placed as location
estimation points, and their locations were unknown. The location estimation error is the
error between the estimated location points and coordinates derived from the location
estimation. The sources used LoRa, which is an LPWAN standard, with a center frequency,
bandwidth, and transmission power of 920.6 MHz, 0.125, and 10 dBm, respectively. In
addition, they emitted radio waves uniformly in all the directions. This study evaluated the
positioning error of the position estimation when the number of channels was aggregated
to 16 and 64.

Table 2. simulation parameters part2.

Type of Data Data

Size 800 m × 800 m
Number of sensors 136

Number of area divisions 8
Preliminary study points 37
Location Estimation Point 25

Central frequency 920.6 MHz
Bandwidth 0.125 MHz

Transmission power 10 dBm

Position Estimation Error

Table 3 presents the identification errors for the number of sensors when a PhyC-
SN aggregates the number of sensors to three levels:0, 1, and 2 or more. A low error
rate was achieved by increasing the number of channels. This can be attributed to the
increase in the number of channels, which reduces the probability of collisions via the
distribution of channels over which the sensors transmit their carrier waves. Regardless of
the number of channels, the proposed method achieved identification errors approximately
one order of magnitude lower than those of conventional energy detection. Figure 17 shows
the cumulative distribution function (CDF) of the positioning error when the number of
channels was 16. “Ideal” is the error when the nearest radio source was selected from
the radio transmission source used in the pre-training phase of the location fingerprinting
method, and represents the upper boundary of the estimation error when using the location
fingerprinting method [14]. Furthermore, “Packet Communication” is the case in which
information is aggregated using conventional packet access. However, it was assumed
that no identification errors occurred during packet access. In “PhyC-SN,” we provide the
results of three-level identification using only energy detection and three-level identification
using the phase variance of the proposed method. For comparison, we provided positioning
results using the on-off detection method [14], which can identify the presence of a sensor.
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Table 3. Comparison of identification errors.

PhyC-SN (Number of
Sensors is 0, 1, 2 More) 16 Channels 64 Channels

Error Rate (Energy Detection) 0.1254 0.0380
Error Rate (Proposal method) 0.0136 0.0026
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Figure 17. Positioning error at 16 channels.

The figure shows that the on-off detection method yielded a positioning error greater
than 100 m in approximately 16% of the cases, whereas the 3-level detection with the
PhyC-SN’s energy identification method yielded a positioning error of approximately
8%. Furthermore, three-level detection using the proposed method reduced the error by
approximately 1%. Therefore, a high positioning accuracy was achieved using the proposed
method. This is because the proposed method can discriminate three-level detections with
high accuracy. Moreover, owing to the expansion of the number of discrimination levels,
the amount of lost sensor information is reduced, which improves the positioning accuracy.
However, the proposed three-level detection method achieved positioning accuracy close to
that of “Packet Communication,” although it exhibited a degradation of approximately 0.05
in the CDF. The number of times required for sensor information aggregation in “Packet
Communication” and “PhyC-SN” was 136 slots for both, with the access time of one
sensor defined as one slot. The number of times required to aggregate sensor information
was 136 slots for the former and eight slots for the latter, when the access time of one
sensor was defined as one slot [14]. As “PhyC-SN” has an area division of 8, we assumed
that one slot was allocated to each area to aggregate sensor information. Consequently,
“PhyC-SN” required approximately 1/17 of the time required for aggregation compared
to “Packet Communication” thus significantly reducing the aggregation time. Therefore,
“PhyC-SN” and the proposed method achieved positioning accuracy approaching that of
“Packet Communication” while achieving fast positioning. Figure 18 shows the CDF of the
positioning error when the number of channels was 64.

The figure shows that “Packet Communication” and “PhyC-SN” with the proposed
method achieved approximately the same positioning accuracy when CDF = 0.9 or higher.
This can be attributed to the improvement in identification accuracy due to increasing the
number of channels coupled with the reduction in the probability of three or more sensors
selecting the same channel simultaneously owing to the increase in the number of channel
selections by the sensors. This reduces the possibility of loss of sensor information. There-
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fore, the proposed method can achieve a positioning accuracy equivalent to that of "Packet
Communication" and fast positioning by allowing the required frequency bandwidth to
increase owing to the increased number of channels.
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Figure 18. Positioning error at 64 channels.

8. Conclusions

In this study, we propose a new identifier, referred to as the phase variance value,
focusing on the sensor-specific frequency offset, to identify the number of sensors that
select the same channel in the PhyC-SN method. In addition, to improve the accuracy of
identification, we established a long-interval fast Fourier transform and a window function
for signal detection. Consequently, an antenna selection method based on a detection-power
criterion was proposed. The evaluations performed through computer simulations showed
that the proposed method could discriminate the number of sensors with higher accuracy
than the conventional energy detection method, which discriminated the number of sensors
as 0, 1, and 2 or more. As an application of PhyC-SNs, we applied the proposed method to
the position fingerprinting method, which measures the position of a radio source using
the observation results of many sensors. A PhyC-SN coupled with the proposed method
achieved better positioning accuracy than the conventional energy detection method owing
to the improved accuracy in identifying the number of sensors. Moreover, the proposed
PhyC-SN achieved a positioning accuracy close to that of the packet-based wireless access
method and significantly reduced the time required for complete positioning. Therefore,
the proposed method achieves fast positioning.

As the number of sensors and subcarriers in the proposed method increases, the
computational process of pre-training becomes more time consuming. Therefore, it is
necessary to reserve the time for pretraining when using the proposed method on an actual
embedded platform. Because the propagation state changes over time, the number and
timing of the pre-training should be investigated. These are important topics for future
research.

Currently, identification is possible when there is no access, and the number of sensors
is one, two, or more. Consequently, the improvement of the identification method for a
larger number of sensors is also an important issue for future research.
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