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Abstract: Structural damage detection using unsupervised learning methods has been a trending 

topic in the structural health monitoring (SHM) research community during the past decades. In the 

context of SHM, unsupervised learning methods rely only on data acquired from intact structures 

for training the statistical models. Consequently, they are often seen as more practical than their 

supervised counterpart in implementing an early-warning damage detection system in civil struc-

tures. In this article, we review publications on data-driven structural health monitoring from the 

last decade that relies on unsupervised learning methods with a focus on real-world application and 

practicality. Novelty detection using vibration data is by far the most common approach for unsu-

pervised learning SHM and is, therefore, given more attention in this article. Following a brief in-

troduction, we present the state-of-the-art studies in unsupervised-learning SHM, categorized by 

the types of used machine-learning methods. We then examine the benchmarks that are commonly 

used to validate unsupervised-learning SHM methods. We also discuss the main challenges and 

limitations in the existing literature that make it difficult to translate SHM methods from research 

to practical applications. Accordingly, we outline the current knowledge gaps and provide recom-

mendations for future directions to assist researchers in developing more reliable SHM methods. 

Keywords: machine learning; deep learning; structural health monitoring; damage detection;  

unsupervised learning; novelty detection; anomaly detection; outlier analysis; vibration-based 

methods; neural networks 

 

1. Introduction 

1.1. Background 

The integrity of civil structures gradually decreases due to use and operational con-

ditions while also being at risk of unforeseeable hazards such as seismic events. To avoid 

life and capital losses due to sudden and long-term damage, techniques and standards for 

structural inspection were put forward, such as visual inspection and nondestructive 

evaluation techniques. These traditional structural inspection techniques, however, can 

be expensive, time-consuming, and unsafe for human workers. Structural health moni-

toring (SHM) attracted the attention of researchers in the past decades due to its ability to 

provide real-time structural condition assessment and the progress made in hardware de-

velopment [1–3]. 

Farrar et al. [4] have put forward a statistical pattern recognition paradigm that split 

the SHM framework into four processes: operational evaluation, data acquisition, feature 

selection, and statistical model development for feature discrimination. While articles dis-

cussed in this review primarily focus on the latter two processes, we find that more stud-

ies give more attention to feature selection than model development. The statistical mod-

els attempt to identify the existence, location, and severity of damage [5]. There has been 

a steady development of SHM methods in the past decades that are vibration-based and 
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vision-based. Vision-based SHM benefits from the advances in computer vision technol-

ogy and unmanned aerial systems to provide autonomous visual inspections [6–8]. Vibra-

tion-based SHM uses recorded vibration data of the structures to identify structural dam-

age which could be difficult to identify via visual inspections. 

Two major types of vibration-based SHM are available: model-based and data-

driven. Model-based techniques involve system identification and model updating tech-

niques [9]. They rely on expert knowledge to build accurate, physics-based models of 

structures that are calibrated based on real structure measurements [10–13]. However, 

model updating techniques can be expensive, time-consuming, and prone to modeling 

errors, especially for complex structures [14,15]. 

Data-driven SHM uses either supervised or unsupervised learning methods to train 

a statistical model to identify damage and faults based on engineered damage-sensitive 

features. In supervised learning, the training data are labeled and include all structural 

states including undamaged and damaged conditions. Examples of supervised SHM 

methods include support vector machine (SVM) [16,17], decision trees [18], neural net-

works [19,20], and deep neural networks [21–24]. 

While supervised learning can be ideal for vision-based SHM, as training data are 

relatively attainable and transfer learning is feasible [25–27], the practicality of these meth-

ods are debated for vibration-based SHM [2]. The acquisition of the damage condition 

data needed for supervised learning is challenging. One possible way is by relying on a 

physics-based model, which can be nontrivial for complex structures. Another way is to 

acquire it from laboratory or field experiments, and this also can be impractical for most 

structures. Additionally, transfer learning research for SHM has not yet matured, as struc-

tures tend to have different properties and site conditions even if the structures them-

selves are similar. 

Unsupervised learning can offer a more practical alternative to supervised learning 

for SHM systems. The bulk of unsupervised learning methods for vibration-based SHM 

are novelty detection methods. In the context of SHM, the damaged state data is not 

needed for training in an unsupervised learning setting. Instead, models can be trained 

using data from the normal condition only, which are often available in abundance. Ad-

ditionally, unlike supervised learning, which trains models to detect damage types that 

are only considered in the dataset, unsupervised learning may detect any system change 

that can be picked up by the model. However, unsupervised learning is generally less 

accurate in localizing and quantifying damage compared to supervised learning [28]. 

A flowchart of an example unsupervised learning-based damage detection algorithm 

is shown in Figure 1. After data acquisition and cleansing, the sensor signals pass through 

three stages. First, the signal readings may undergo preprocessing to facilitate feature ex-

traction, such as data normalization. Second, damage-sensitive features are extracted from 

the input data using dimensionality reduction, signal decomposition, or other techniques. 

In some methods, multiple layers of feature extraction are proposed. For instance, some 

methods transfer the signals into the frequency domain and then reduce the dimensions 

using a machine-learning model. Third, a statistical inference process is proposed involv-

ing the estimation of one or multiple damage indicators and a form of a statistical test 

(e.g., hypothesis testing) to diagnose damages. The last decision-making part is occasion-

ally absent from the framework, and the users would need to manually inspect the dam-

age indicators for health assessment. Unsupervised learning-based SHM methods require 

establishing a reference (e.g., thresholding) and/or training the model parameters (ma-

chine learning models) using the undamaged structure data in order to assess structural 

health during operation. 
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Figure 1. An example flowchart of a data-driven structural damage detection system. 

A clear example of this process can be seen in the unsupervised learning damage 

detection methods introduced by Worden et al. [29,30]. Their feature extraction process 

involves signal processing methods (e.g., transmissibility), while multivariate outlier anal-

ysis and the Mahalanobis squared distance (MSD), as a discordancy measure, were used 

for decision-making. The basic principle in outlier analysis, or novelty detection in gen-

eral, is that after fitting a distribution to the normal condition data, observations that fail 

the outlier test are labeled novel or damaged. They also introduced a threshold estimation 

technique based on a Monte Carlo simulation, which takes into account the training data 

size. This damage detection framework would inspire the development of many subse-

quent novelty detection-based SHM systems. For example, Gul and Catbas [31] presented 

an MSD-based outlier analysis method for damage detection combined with features ex-

tracted from autoregressive (AR) models. 

Artificial neural networks were also used for unsupervised-learning SHM. Sohn et 

al. [32] presented an auto-associative neural network (AANN) for damage detection using 

features extracted from time series models showing good results under environmental 

variations. In later studies, damage detection methods based on self-organizing neural 

networks [33] and wavelet neural networks [34] were also introduced. While some nov-

elty detection methods can be considered as one-class classifiers, cluster analysis tech-

niques, such as k-means clustering [35] and fuzzy c-means [36], grouped the data in mul-

tiple clusters. 

1.2. Related Work 

Multiple studies have reviewed vibration-based SHM methods in the past, both su-

pervised and unsupervised learning. Doebling et al. [37] and Sohn et al. [38] jointly re-

viewed methods that were developed before 2001. Carden et al. reviewed vibration-based 

SHM research from 1996 to 2003 [39]. Fan and Qiao [40] provided a comprehensive review 

on damage detection methods using modal parameters. Many others have focused on re-

viewing signal processing techniques for SHM [41–45]. 

More recently, some studies have conducted updated literature surveys on SHM re-

search. Hou and Xia [46] reviewed vibration-based damage identification techniques 



Sensors 2023, 23, 3290 4 of 40 
 

introduced from 2010 to 2019, including methods that are based on Bayesian learning. Sun 

et al. [47] and Zinno et al. [48] have reviewed SHM methods for bridges. Gharehbaghi et 

al. [49] performed a critical review on different types of SHM methods and also high-

lighted some commonly-used SHM benchmarks. Gordan et al. [50] provided a compre-

hensive review on data mining techniques in SHM from classical to state-of-the-art meth-

ods. Cawley [51] discussed the potential reasons for delaying the application of SHM in 

the industry in contrast with machine condition monitoring. 

The rapidly advancing research in sensor technology and machine learning (ML) has 

positively impacted civil engineering research in multiple fields [52]. SHM research was 

no exception, as studies in recent years show an increasing number of SHM methods that 

rely on deep learning (DL) architectures (Figure 2) [53,54]. Flah et al. [55] summarized 

ML-based SHM methods including DL and reinforcement learning applications. Avci et 

al. [56] also reviewed ML and DL damage detection methods but only focused on vibra-

tion-based applications. Sony et al. have conducted a systematic review of SHM methods 

that are based on convolutional neural networks (CNNs) [57]. While some of these works 

briefly discuss unsupervised learning techniques as part of the SHM literature survey, 

there is a lack of review studies dedicated to unsupervised learning SHM methods as the 

primary focus. 

 

Figure 2. The number of reviewed unsupervised learning-based SHM studies using deep learning 

and the total reviewed articles over the years since 2012. 

1.3. Aim and Methodology 

This work aims to review the latest unsupervised learning vibration-based structural 

health monitoring techniques. We provide a review of 83 unsupervised learning SHM 

published between 2012 and 2023, which are summarized in Table 1. It should be empha-

sized that this is not an exhaustive list of all unsupervised learning-based SHM methods 

in this period, but rather a curated list of peer-reviewed articles that provide an overview 

of the state-of-the-art. The selection method of these articles can be summarized as fol-

lows: 

 Peer-reviewed articles from 2012 to 2023 were selected from well-established aca-

demic databases including Web of Science, Science Direct, ASCE Library, Wiley 

Online Library, IEEE Xplore Digital Library, and Sage. 

 The search was conducted using relevant keywords, including “structural damage 

detection”, “unsupervised damage detection”, “unsupervised structural health mon-

itoring”, “structural novelty detection”, “anomaly damage detection”, etc. 

 Two rounds of screening were performed. 

0

2

4

6

8

10

12

14

16

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

A
rt

ic
le

s

Year

Total articles

Deep learning methods



Sensors 2023, 23, 3290 5 of 40 
 

o In the first round, the titles, abstracts, and keywords of the articles were checked 

for relevancy to the search topic. 

o A large number of papers were selected for the second round. in which careful 

reading and analyzing of the complete article was performed. 

 Papers were given relevancy scores based on aspects such as the learning mode, 

method, objectives, feature types, application (structural or non-structural), the deci-

sion-making process, thresholding, and results. 

Finally, based on our search methodology, papers that were closely related to the 

review topic were selected. We also present some of the most commonly-used bench-

marks in validating the unsupervised SHM methods. These datasets are selected based on 

their recurrence in the reviewed list of articles. Furthermore, we discuss a number of the 

open issues for the practical implementation of unsupervised learning damage detection 

methods, as well as future research trends. The remainder of the article is organized as 

follows. The following section describes the popular experimental datasets used in the 

literature. Sections 3–5 provide a detailed review on the papers shown in Table 1, catego-

rized into conventional feature extraction techniques, artificial neural networks, and nov-

elty detection methods based on the key used unsupervised learning technique. Section 6 

discusses the challenges and future research in unsupervised learning SHM methods. Fi-

nally, a summary and closing remarks are presented in Section 7. 

Table 1. Applications of unsupervised learning, vibration-based SHM (List of abbreviations is pro-

vided in Table 2). 

Authors Year Feature Extraction Classifier Test Structure 

Eltouny and Liang [58] 2023 CNN-LSTM hybrid EVT-based test 
Numerical multi-story multi-bay 

structure 

Li et al. [59] 2023 
Power cepstral coef-

ficients, GAE 

MSD-based outlier analy-

sis 

Z-24 Bridge, numerical 8 DOF 

model 

Sadeghi et al. [60] 2023 VMD - Laboratory-scale bridge 

Soleimani-Babakamali et 

al. [61] 
2023 FFT GAN (CNN, LSTM) QUGS, IASC-ASCE benchmark 

Entezami et al. [62] 2022 
Empirical machine 

learning 
EVT-based test 

Z-24 bridge, Tianjin Yonghe 

bridge 

Fernandez-Navamuel et 

al. [63] 
2022 AE-PCA hybrid Percentile 

Beltran bridge, Infante Dom Hen-

rique bridge 

Giglioni et al. [64] 2022 
AE, ensemble learn-

ing 
Percentile Z-24 Bridge 

Kim and Song [65] 2022 
Flexibility matrices, 

CVAE 
- Numerical steel structure 

Lucà et al. [66] 2022 Modal frequencies GMM Tie-rods 

Meixedo et al. [67] 2022 ARX, PCA k-means Sado Bridge 

Shi et al. [68] 2022 ANN, CNN SVDD 
IASC–ASCE benchmark (numeri-

cal), three-story masonry frame 

Soleimani-Babakamali et 

al. [69] 
2022 FFT GAN (CNN, LSTM) QUGS, IASC-ASCE benchmark 

Sony and Sadhu [70] 2022 Multivariate EMD Significance test 
Z-24 bridge, numerical 10-DOF 

model 

Wang et al. [71] 2022 
NExT, sparse Bayes-

ian learning 
Bayesian hypothesis test Tianjin Yonghe Bridge 

Yan et al. [72] 2022 Transmissibility 
KL divergence, Bayesian 

inference 

S101 bridge, lab beams, numerical 

10-story building 



Sensors 2023, 23, 3290 6 of 40 
 

Zhang et al. [73] 2022 
WT, Convolutional 

VAE 
Significance test Laboratory-scale tunnel model 

Eltouny and Liang [74] 2021 CIM, PCA 
Bayesian-optimized 

KDME, EVT-based test 

Numerical RC frame, numerical 

high-rise structure, three-story 

masonry frame  

Jiang et al. [75] 2021 AE Predefined threshold 
QUGS, LANL three-story struc-

ture 

Li et al. [76] 2021 CNN-GCN hybrid Significance test Cable-stayed bridge 

Ma et al. [77] 2021 PPCA 
Q-statistic and T2-statistic 

anomaly detection 
Numerical auditorium 

Mao et al. [78] 2021 GAF, GAN, CAE CUSUM Cable-stayed bridge 

Mousavi et al. [79] 2021 VMD - Numerical beam 

Movsessian et al. [80] 2021 MD, ANN ROC Wind turbine 

Sarmadi and Yuen [81] 2021 KNFST EVT-based test Z-24 bridge, Wooden bridge 

Sarmadi et al. [82] 2021 

Sequential ensemble 

(UMD, MSD, local 

MSD) 

EVT-based test Z24 bridge, wooden bridge 

Silva et al. [83] 2021 Stacked AE GMM Z-24 bridge 

Son et al. [84] 2021 LSTM Significance test Cable-stayed bridge 

Wang and Cha [85] 2021 AE OCSVM 
Laboratory-scale steel bridge, nu-

merical shelf structure 

Yuan et al. [86] 2021 CVAE Elliptic envelope, OCSVM 
Laboratory vehicle-track, numeri-

cal vehicle-track 

Rastin et al. [87] 2021 CAE Significance test 

Tianjin Yonghe Bridge, numerical 

IASC-ASCE benchmark, numeri-

cal grid structure 

Entezami et al. [88] 2020 ARMA 
ESD-PKLD hybrid with 

nearest neighbor 
Tianjin Yonghe Bridge 

Entezami et al. [89] 2020 ARX MSD-PKLD hybrid Tianjin Yonghe Bridge 

Entezami et al. [90] 2020 ARMA, AE MD, EVT-based Tianjin Yonghe Bridge 

Ma et al. [91] 2020 CVAE - Laboratory steel bridge 

Mousavi et al. [92] 2020 HHT, ANN - Laboratory steel truss bridge 

Ni et al. [93] 2020 - CNN Suspension bridge 

Nie et al. [94] 2020 Fixed MPCA - 
Suspension bridge, laboratory 

beam, numerical beam 

Soman [95] 2020 EEMD POD analysis Laboratory offshore tripod 

Tomé et al. [96] 2020 Johansen test Hotelling T2 control charts Numerical Corgo Viaduct 

Tran et al. [97] 2020 SRIM 
Hierarchical clustering, 

univariate outlier analysis 

Laboratory bridge, Steel pedes-

trian bridge 

Xu et al. [98] 2020 WT EVT-based 
Numerical Xihoumen suspension 

bridge 

Bull et al. [99] 2019 Transmissibility 
MSD-based outlier en-

semble 
Z-24 bridge, Gnat aircraft 

de Almeida Cardoso et 

al. [100] 
2019 TF-IQRM  

k-medoids, student’s t-

test 

IASC-ASCE benchmark, PI-57 

bridge 

Entezami and Shari-

atmadar [101] 
2019 

EEMD, AR, ARX, 

DTW, PCA 

Hotelling T2 control 

charts, QRE, significance 

test 

IASC-ASCE benchmark 

Entezami et al. [102] 2019 AR PKLD, significance test 
LANL three-story structure, 

wooden bridge 
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Han et al. [103] 2019 TKEO, CEEMD - Scaled wind turbine 

Ozdagli and Koutsoukos 

[104] 
2019 NExT/ERA, PCA, AE Euclidean distance 

LANL three-story structure, nu-

merical beam 

Sousa Tomé et al. [105] 2019 
Multilinear regres-

sion, PCA 
Hotelling T2 control charts Numerical Corgo Viaduct 

Anaissi et al. [106] 2018 

CANDECOMP/PAR-

AFAC Tensor De-

composition 

OCSVM 
Cable-stayed bridge, laboratory 

replica of SHB jack arch 

Cha and Wang [107] 2018 CWT, crest factor 
density peaks-based fast 

clustering 
Laboratory-scale steel structure 

Entezami and Shari-

atmadar [108] 
2018 AR 

PAC, RRC, significance 

test 

LANL three-story structure, 

IASC-ASCE benchmark 

Rafiei and Adeli [109] 2018 SWT, FFT  Deep RBM 
Laboratory-scale 38-story concrete 

building 

Vamvoudakis-Stefanou 

et al. [110] 
2018 

MM learning (PCA, 

AR) 
KL-divergence Composite beams 

Zhou et al. [111] 2018 
Transmissibility, 

PCA 
- 

IASC-ASCE benchmark, numeri-

cal beam 

Alamdari et al. [112] 2017 Spectral moments k-means−− SHB 

Gres et al. [113] 2017 Hankel matrix, MD 
Significance test, Ho-

telling T2 control charts 

S101 bridge, numerical offshore 

support structure 

Gu et al. [114] 2017 
AE w/ temperature 

input 
Euclidean distance Steel grid structure 

Langone et al. [115] 2017 Modal frequencies Adaptive KSC Z-24 bridge 

Neves et al. [116] 2017 ANN MD, GP Numerical bridge 

Santos et al. [117] 2017 Modal frequencies GA-EM-GMM Z-24 bridge 

Xia et al. [118] 2017 EEMD - Jiangyin suspension Bridge 

Zhou et al. [119] 2017 Transmissibility Hierarchical clustering 
Numerical 10-story structure, La-

boratory beam 

Amezquita-Sanchez and 

Adeli [120] 
2016 SWT, FD Significance test 

Laboratory-scale 38-story concrete 

building 

Avci and Abdeljaber 

[121] 
2016 SOM - IASC-ASCE benchmark 

Diez et al. [122] 2016 FFT KNN, k-means SHB 

Mohammadi Ghazi and 

Büyüköztürk [123] 
2016 HHT 

MSD-based outlier analy-

sis 
Laboratory steel structure 

Santos et al. [124] 2016 ANN 
k-means, Gowda–Diday 

dissimilarity 

Numerical Guadiana International 

Bridge 

Silva et al. [125] 2016 Modal frequencies GA-clustering Z-24 Bridge, Tamar Bridge 

Tibaduiza et al. [126] 2016 PCA 
T2-statistic, Q-statistic, 

combined index, I2 index 
Wind turbine blade 

Ulriksen and Damkilde 

[127] 
2016 CWT, GDTKEO 

MSD-based outlier analy-

sis 

Numerical beam, Wind turbine 

blade 

Alves et al. [128] 2015 Symbolic analysis 
Dynamic clouds, FCM, hi-

erarchical clustering 

Laboratory steel beam, PI-57 

bridge 

Dervilis et al. [129] 2015 LTS MCD Z-24 Bridge, Tamar bridge 

Shahidi et al. [130] 2015 SVR, CR, AR, ARX Significance test Laboratory steel frame 

Döhler et al. [131] 2014 
Subspace identifica-

tion 
GLR 

Numerical mass-spring chain, nu-

merical truss, numerical beam 
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Figueiredo et al. [132] 2014 Modal frequencies 
MCMC-GMM, MSD-

based outlier analysis 
Z-24 Bridge 

Nigro et al. [133] 2014 

Time series model-

ing, CUSUM, 

EWMA, MSE 

Bootstrapping, Fisher Cri-

terion- MSD significance 

test 

Laboratory steel frame 

Figueiredo and Cross 

[134]  
2013 GMM 

MSD-based outlier analy-

sis 
Z-24 Bridge 

Kunwar et al. [135] 2013 HHT - Laboratory bridge 

Laory et al. [136] 2013 MPCA Significance test 
The Ricciolo viaduct, numerical 

concrete frame 

Sankararaman and Ma-

hadevan [137] 
2013 

Bond graph model 

residuals 
Bayesian hypothesis test Numerical frame 

Yu et al. [138] 2013 FRF, PCA, KPCA FCM Experimental truss bridge 

Kesavan and Kiremidjian 

[139] 
2012 WT, PCA k-means 

IASC-ASCE Benchmark (numeri-

cal) 

Meredith et al. [140] 2012 EMD - Numerical Euler–Bernoulli beam 

Table 2. List of Abbreviations. 

Abbreviation Definition Abbreviation Definition 

AE Autoencoder KNFST Kernel Null Foley–Sammon Transform 

ANN Artificial Neural Network KNN K-Nearest Neighbor 

ARMA Autoregressive Moving Average KPCA Kernel Principal Component Analysis 

ARX Autoregressive-Exogenous KSC Kernel Spectral Clustering 

ASCE American Society of Civil Engineering LANL Los Alamos National Laboratory 

CAE Convolutional Autoencoder LSTM Long Short-Term Memory 

CEEMD 
Complementary Ensemble Empirical 

Mode Decomposition 
LTS Least Trimmed Squares 

CIM Cumulative Intensity Measure MCD Minimum Covariance Determinant 

CNN Convolutional Neural Network MCMC Monte Carlo Markov Chain 

CR Collinear Regression MD Mahalanobis Distance 

CUSUM Cumulative Sum MM Multiple-Model 

CVAE Convolutional Variational Autoencoder MPCA Moving Principal Component Analysis 

CWT Continuous Wavelet Transform MSD Mahalanobis Square Distance 

DTW Dynamic Time Warping NExT Natural Excitation Technique 

EEMD 
Ensemble Empirical Mode Decomposi-

tion 
OCSVM One-Class Support Vector Machine 

EM Expected-Maximization PAC Parametric Assurance Criterion 

EMD Empirical Mode Decomposition PCA Principal Component Analysis 

ESD Euclidean Square Distance PKLD 
Partition-Based Kullback–Leibler Di-

vergence 

EVT Extreme Value Theory POD Probability of Detection 

EWMA Exponentially Weighted Moving Average PPCA 
Probabilistic Principal Component 

Analysis 

FCM Fuzzy C-Means QRE Q-Reconstruction Error 

FD Fractal Dimension QUGS Qatar University Grandstand Simulator 

FFT Fast Fourier Transform RBM Restricted Boltzmann Machine 

FRF Frequency Response Function RC Reinforced Concrete 

GA Genetic Algorithm RRC Residual Reliability Criterion 

GAE Generalized Autoencoder SHB Sydney Harbor Bridge 

GAF Gramian Angular Field SOM Self-Organizing Maps 
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GAN Generative Adversarial Network SRIM 
System Realization Using Information 

Matrix 

GCN Graph Convolutional Networks SVDD Support Vector Data Description 

GDTKEO 
Generalized Discrete Teager–Kaiser En-

ergy Operator 
SVR Single-Variate Regression 

GLR Generalized Likelihood Ratio SWT Synchrosqueezed Wavelet Transform 

GMM Gaussian Mixture Models TF-IQRM 
Time–Frequency Interquartile Range-

Median 

GP Gaussian Process TKEO Teager–Kaiser Energy Operator 

HHT Hilbert–Huang Transform UMD Univariate Mahalanobis Distance 

IASC 
International Association For Structural 

Control 
VAE Variational Autoencoder 

KDME Kernel Density Maximum Entropy VMD Variational Mode Decomposition 

KL Kullback–Leibler WT Wavelet Transform 

2. Popular Datasets for Unsupervised Learning-Based SHM 

Lack of training data has always been a significant challenge in the creation of struc-

tural damage detection systems. By recognizing the importance of structural health mon-

itoring over the long term, governments, organizations, and researchers have joined forces 

to provide training data that supports the development of technologies in this field. In this 

section, we will briefly describe the most common benchmarks that were used for training 

and testing of unsupervised learning SHM in recent studies. 

2.1. Z-24 Bridge 

The Z-24 bridge is a post-tensioned concrete bridge in which the main girder has a 

box cross-section with two vents. The middle span length is 30 m, and it has two symmet-

ric 14-m-long bays from each side, as shown in Figure 3. The Swiss bridge, which was 

constructed in 1963, is by far the most common test benchmark in the reviewed papers. In 

1998, the bridge was demolished to allow a new railway to be constructed. During its last 

year, accelerations and environmental conditions were continuously recorded. These con-

ditions included humidity, rain, wind speed, and directions and temperature. Then sev-

eral damage scenarios were applied to the bridge and recorded. The bridge dynamics data 

were collected using 16 accelerometers to record the accelerations at different locations 

and in different directions. A total of 48 sensors were used to collect the environmental 

parameters [141]. The bridge was suitable for testing methods’ environmental variability 

robustness, as the monitored data included the cold months. 

 

Figure 3. Bridge Z-24 schematic drawing (units are in meters; adapted from [142]). 
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2.2. Tamar Bridge 

Tamar bridge is a major suspension bridge located in Devon, UK to connect Saltash 

in Cornwall and Plymouth. With an overall length of 643 m, the main span is 335 m while 

the side spans are 114 m each. The concrete deck is suspended by cables carried by two 

73-m-high towers [143]. An upgrade took place in the late 1990s to comply with the new 

European Union directive to support vehicles up to 40 tons. Acceleration and environ-

mental sensors were installed to record data; however, as all of these observations were 

taken from the undamaged condition of the bridge, only false positive errors can be iden-

tified. 

2.3. Sydney Harbour Bridge 

The Sydney Harbour Bridge (SHB) is a steel through arch bridge in Australia that 

connects the northern suburbs of Sydney to the city center. The bridge has eight lanes for 

vehicles and two railway lines, and it is used by many vehicles daily. The structure of the 

SHB can be divided into three main sections: the southern approach. the northern ap-

proach, and the central main span with a length of 503. Lane 7 is made up of an asphalt 

surface on a concrete deck supported by a combination of concrete and steel jack arches, 

as shown in Figure 4. Along a total distance of 1.2 km, there are approximately 800 of these 

jack arches that have been equipped with three tri-axial MEMS accelerometers. One of 

these sensors is located at the bottom of the jack arch, while the other two are attached to 

each side (Figure 5). As some of the joints were known to be damaged, the data was col-

lected during operation before and after the repair. If all 2400 sensors were to operate 

continuously, they would generate approximately 1 TB of data per day. During the re-

cording period, two types of data were collected: event-based data and continuous data. 

For event-based data, a pre-determined threshold for acceleration was used to trigger the 

recording after vehicles, usually buses, pass above the sensors, and it lasts for 2 s. The 

continuous recording started only in 2015, when a 10-min continuous window of record-

ing was stored at five predetermined times in the day [112]. 

 

Figure 4. SHB schematic drawing (adapted from [112]). 

 

Figure 5. Sample of sensors set up on SHB [112]. 

2.4. S101 Bridge 

The S101 bridge, which crossed the A1 Westautobahn national highway in Reibers-

dorf in Austria (Figure 6), was a 6.6-m-wide prestressed concrete bridge. The bridge was 

built in 1960 and eventually demolished due to structural issues and to make room for 

additional lanes on the highway below. Demolishing the bridge provided an opportunity 

to conduct tests on the progression of structural damage, and fifteen tri-axial sensors were 

mounted on the bridge deck to record dynamic responses. The data was continuously 

recorded from 10 to 13 December 2008, with a sampling frequency of 500 Hz, resulting in 

714 data sets, each containing 165,000 samples. The bridge was closed to traffic during the 

damage testing, so the main sources of excitation were the wind and vibrations from the 

highway below the deck [144]. 
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Figure 6. Bridge S101 during testing [145]. 

2.5. Qatar University Grandstand Simulator 

The Qatar University grandstand simulator (QUGS) (Figure 7) is a steel frame sup-

ported by 4 columns and made up of eight girders, 4.6 m long, and 25 secondary beams, 

while the cantilevers are 1 m long and the others are 77 cm [146]. The simulator has 30 

accelerometers attached to the joints. While a shaker was used to simulate the excitation 

on the structure, 31 scenarios were conducted to gain the training data. Two scenarios 

represented the undamaged case and the other 29 scenarios represented different cases of 

joint damage. Dynamic responses were collected for 256 s at a sampling frequency of 1024 

Hz [147]. Due to its dense grid-like sensor layout, the dataset attracted multiple research-

ers seeking to validate their deep learning SHM methods in recent years [61,69,75]. 

 

Figure 7. Qatar University grandstand simulator [146]. 

2.6. Los Alamos National Laboratory Three-Story Frame Structure 

The Los Alamos National Laboratory (LANL) three-story frame structure consists of 

four aluminum plates and four aluminum columns, with the plates only permitted to 

move in the x- direction (Figure 8). Additionally, a central column that is connected to the 

top plate is added to simulate the damage to the structure as it induces nonlinearity to the 

structure’s behavior. The structure’s dynamic response is measured using four accelerom-

eters attached to the center of each plate. The testing scenarios can be mainly classified 

into four main groups. The first one represents the baseline where the structure is consid-

ered undamaged. The second one is set to simulate the environmental and operational 

conditions which are performed by changing the columns’ stiffnesses and masses. The 

damage is simulated in the third group by using the bumper to introduce the nonlineari-

ties to the structure. Finally, the last group is a combination of the last two groups together 

to simulate both the damage and the environmental change [148]. 
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Figure 8. Los Alamos National three-story frame structure [148]. 

2.7. IASC-ASCE Benchmark Structure 

The IASC-ASCE Benchmark Structure was designed by the IASC-ASCE Structural 

Health Monitoring Group. It has several numerical simulation studies [149] and was ex-

perimentally tested twice [150,151]. It is 3.6 m tall and has two 2.5-m-long spans in both 

directions (Figure 9). The structure is made up of four floors, and each floor has four steel 

plates, measuring 1.5 m by 0.65 m, that support the dead load. The frame is made of 300 

W steel with S75 × 11 beams and B100 × 9 columns. Each floor also has four 50 mm square 

steel tubes for in-plane stability and four pairs of 12 mm diameter steel rods for lateral 

stability. These rods are pretensioned with a torque wrench to ensure consistent force 

throughout the structure. The structure is equipped with 15 accelerometer sensors, 3 of 

which are placed on the base and 3 on each floor (north, south, west) of the structure. In 

addition, there is one temperature and one moisture sensor placed to consider the effects 

of the environmental effect on the detection process. Various levels of damage were intro-

duced to the structure by removing one or both braces on each floor, resulting in 15 dif-

ferent damage configurations. It is worth noting that testing the mentioned damage sce-

narios was conducted on four non-consecutive days. 

 

Figure 9. IASC-ASCE benchmark structure [152]. 
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2.8. Tianjin Yonghe Bridge 

This cable-stayed bridge has two towers, each 55.5 m long, and its main span is 510 

m long (Figure 10). After 19 years of the bridge’s operation, cracks up to 2 cm wide were 

found at the mid-span girder segment. It is suspected that these cracks were caused by 

vehicles exceeding the weight and volume limits of the bridge’s original design. Addi-

tionally, the cables had severely corroded. To adjust these issues, repairs were conducted 

from 2005 to 2007. During the rehabilitation and repair of the bridge, over 150 sensors on 

the bridge’s girders, cables, and towers, as well as data acquisition devices in the control 

room, were installed. There were 14 uniaxial accelerometers permanently attached to the 

deck and only one biaxial accelerometer installed on the top of one of the towers. To meas-

ure wind velocity in all directions and ambient temperature, a temperature sensor and an 

anemoscope sensor were also placed on the south tower. Additionally, the bridge deck 

had a weigh-in-motion system installed for all lanes [153]. 

 

Figure 10. Tianjin Yonghe Bridge [154]. 

2.9. The Corgo Bridge 

The Corgo Bridge, located in the Vila Real District of Portugal, is a long bridge con-

structed from prestressed concrete box-girders. It is 2796 m in total length and is divided 

into three parts: the East Sub-Viaduct, the West Sub-Viaduct, and the Central Sub-Viaduct, 

which is a cable-stayed bridge with a 300-m-long central span (Figure 11). It is held up by 

a suspension system made up of four semi-fans, each with 22 stay cables. The deck of the 

Central Sub-Viaduct is 28 m wide and is made of a 3.5-m-high box-girder. It has two car-

riageways with two traffic lanes each. The pylons of the bridge are about 193 m tall and 

are directly connected to the deck [96]. The system includes the measurement of various 

parameters such as bearing displacements, deflections, rotations, forces in the cables, con-

crete strains, and concrete temperatures. To measure these parameters during operation 

continuously, both fiber-optic and electric sensors were employed [155]. 

 

Figure 11. Schematic view of the Corgo Bridge [96]. 
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2.10. PI-57 Bridge 

The PI-57 bridge is a double-deck structure in France that carries the A1 motorway. 

It was built in 1965 but encountered issues with cracking and deflection due to insufficient 

prestressing. To address these problems, the bridge underwent a reinforcement procedure 

in 2009, which involved adding additional longitudinal prestressing. To determine the 

efficiency of the procedure and assess the structural behavior under thermal effects, vi-

bration-based monitoring took place. Two campaigns of measurements were carried out 

before and after the reinforcement, and sixteen piezoelectric accelerometers were used. 

The tests were performed relying on traffic as the excitation source, and dynamic tests 

were conducted between October 2009 and April 2010 [128]. 

3. Conventional Feature Extraction Techniques 

A summary of SHM methods that primarily rely on conventional feature extraction 

techniques is presented in this section. The methods are categorized based on the type of 

feature extraction techniques, which are grouped into two categories: dimensionality re-

duction methods and signal processing methods. All damage detection methods involve 

some form of a univariate or multivariate novelty detector, such as outlier analysis, but 

the methods with more emphasis on the feature extraction part are discussed in this sec-

tion. Some frameworks also may rely on multiple feature extraction techniques that are 

performed in series, which is especially the case for low-complexity machine learning 

methods. 

3.1. Subspace Analysis-Based Dimensionality Reduction 

Raw measurements often contain mixed signals from different sources, each having 

a different level of contribution. Subspace analysis techniques can be used to provide a set 

of linear combinations of the signals that best explain the underlying data, resulting in a 

reduction in dimensions. Principal components analysis (PCA) [156,157] is one of the most 

common dimensionality reduction techniques in SHM (Figure 12). Singular value decom-

position of the normalized data is often used to obtain the principal components, which 

are the eigenvectors with the highest eigenvalues (variance). While PCA and other linear 

subspace learning techniques are linear mapping methods, there are nonlinear dimen-

sionality reduction techniques, including PCA variants using the kernel trick (e.g., kernel 

PCA). 

Kesavan and Kiremidjian [139] presented an unsupervised damage detection method 

based on a hybrid of wavelet transform (WT) and PCA for feature extraction. Using k-

means clustering, damage can be hypothesized if more than one cluster is needed to 

model the features using gap statistics. When compared to features based on time series 

coefficients [158], the introduced method resulted in more separable observations, per-

suading the authors to opt for k-means instead of the more complex Gaussian mixture 

models (GMM) clustering. Additionally, the Euclidean distance between the two clusters 

can be used as an estimate for damage severity. The method is validated using the numer-

ical simulations of the IASC-ASCE benchmark structure [147]. Owing to the efficiency and 

practicality of PCA, many researchers preferred using it for dimensionality reduction 

compared with other methods [67,74,104]. For example, Zhou et al. [111] combined the 

use of transmissibility and PCA as a way to reduce the number of transmissibility func-

tions by selecting a few components of their projections into the principal components 

space. 

Tibaduiza et al. [126] used PCA mapping to determine four damage indices that can 

be utilized to detect the occurrence of damage in structural systems. The first two indices 

are T2-statistic and Q-statistic, which can be determined from residual data. Then, the 

combined index and I2 index can be calculated using the two indices. An airplane turbine 

blade and aircraft skin panel were tested for validation purposes. In addition, aiming for 

a practical SHM system, Sousa Tomé et al. [105] introduced a damage detection and 
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localization method that uses the residuals from a multilinear regression model of cable 

forces of cable-stayed bridges as damage-sensitive features. Their novelty detection ap-

proach was to use Hotelling T2 control charts based on PCA of the model residuals. In 

their case study of a numerically simulated Corgo Viaduct, their model was able to flag 

stay cables with area reductions smaller than 1%. Localization was also performed using 

the relative variation of the T2 statistic. In a latter study, however, a multivariate cointe-

gration analysis based on the Johansen test was used, replacing PCA [96]. 

 

Figure 12. Principal component analysis. 

Moving principal component analysis (MPCA) is a PCA variant that is best suited for 

continuous condition monitoring [159]. In MPCA, PCA is applied to a sliding window 

instead of the entire signal to reduce computational costs. Laory et al. [136] studied the 

impact of using MPCA with four regression methods for structural damage detection. The 

regression residuals were used as damage indices, which were tested for novelty using a 

confidence interval of six standard deviations. Upon validation on concrete bridge exper-

imental tests, they concluded that the addition of MPCA improves the damage detection 

accuracy and increases the computational efficiency. Focusing on real-time bridge moni-

toring applications, Nie et al. [94] introduced a damage detection and localization method 

based on fixed MPCA. The method is an improvement over MPCA as the length of the 

moving window is determined based on the convergent spectrum of cumulative contri-

bution ratio. The principal components’ vectors and eigenvalues are used as damage in-

dices. It was tested on a suspension bridge in Guangdong, China and the method was able 

to identify the occurrence of a minor non-damaging incident. The study, however, does 

not provide details on thresholding the damage indices for automated decision making. 

Motivated by the limitations of PCA in handling measurement uncertainty and miss-

ing data, Ma et al. [77] introduced an anomaly detection method based on probabilistic 

principal component analysis (PPCA). A probabilistic variant of PCA based on the Gauss-

ian latent variable model, PPCA is generally used when there are missing values in the 

input data matrix. Two anomaly statistics are used: Q-statistic and T2 statistic, while the 

residual in Q-statistic is used to localize damage. The method was tested in a dataset col-

lected from a revolving auditorium in China, with simulated damage showing high suc-

cess in identifying damage with and without missing data when compared to traditional 

PCA. However, damage in members with high redundancy can be challenging under 

moderate noise conditions. 

While PCA and its variants constitute the majority of commonly used dimensionality 

reduction techniques in SHM, there are other subspace learning methods used, such as 

tensor decomposition. In this regard, Anaissi et al. [106] presented a tensor analysis-based 

damage detection method that allows for learning sensors interdependence. In this 

method, the acquired data is structured into a three-dimensional array with axes 
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representing time, location, and frequency. A CANDECOMP/PARAFAC tensor decom-

position is then used to obtain three matrices for features extraction. Finally, a one-class 

SVM (OCSVM) model is fitted using the features to detect novelties. The method is vali-

dated using two experimental case studies including a cable-stayed bridge instrumented 

with an array of 24 sensors. The method resulted in a damage detection accuracy of 92.5% 

compared to 61.1% achieved using the wavelet packet energy approach. 

Döhler et al. [131] presented a subspace-based damage detection algorithm using re-

sidual vectors that are less susceptible to environmental changes combined with a gener-

alized likelihood ratio test for anomaly detection. In a later study, Gres et al. [113] used 

the Mahalanobis distance (MD) of the empirical block-Hankel matrices constructed by the 

structure acceleration response as damage indicators. The method was validated using a 

numerical offshore mono bucket foundation and the S101 bridge, showing high sensitivity 

to low levels of damage but also suffering from a high false positive rate. The best results 

were obtained when fusing this approach with other subspace-based damage detection 

techniques with the use of Hotelling T2 control charts. 

Sarmadi and Yuen [81] presented a one-class kernel null space algorithm based on 

the Foley–Sammon transform (FST), a linear subspace analysis method [160]. The damage 

index is the distance between the new observation null projection and the average of all 

training sample transformations in the kernel space. Based on extreme value theory (EVT), 

the generalized Pareto distribution (GPD) with a peak-over-threshold technique is used 

for threshold estimation. The kernel null FST-based novelty detector was tested on two 

bridges dataset, including the Z-24 bridge dataset, resulting in better damage detection 

performance compared to the OCSVM-MSD technique. It was also found that the inap-

propriate selection of the kernel and its parameters can impact performance by increasing 

the error rate. 

3.2. Signal Processing Techniques 

Signal processing techniques used in SHM involve time series analyses in the time 

domain, frequency domain, and time–frequency domain for extracting meaningful fea-

tures from sensor measurements. Time series modeling (e.g., autoregressive modeling) is 

one of the most commonly used techniques for extracting time domain features. There are 

extensive studies that rely on time-series models to extract damage-sensitive features for 

SHM [31,161–167]. In time-series modeling, models’ parameters are often used directly as 

representative features, or further reduced using a dimensionality reduction method such 

as PCA. In other cases, the reconstruction error, also known as the residuals, is used to 

indicate damage. One of the main challenges with time-series modeling is the selection of 

model order, which impacts the damage detection accuracy. Researchers often propose a 

model order selection method that is based on regression accuracy or the model simplic-

ity, such as the root mean square error or Akaike’s information criterion. 

To study the effectiveness of different models used in damage detection, Shahidi et 

al. [130] compared the results of four different models: the single-variate regression, col-

linear regression, AR models, and autoregressive with exogenous input (ARX) models. 

For verification, a scaled steel frame test bed was used. The author showed that although 

all the methods were able to detect the damage, the ARX model had the best performance 

in localizing the damage. 

Entezami and Shariatmadar [108] presented a damage detection, localization, and 

quantification method based on AR models’ parameters and residuals. An AR model was 

trained for each sensor record and the Ljung-Box Q-test was used as an iterative approach 

for model order selection. For the novelty test, they used the parametric assurance crite-

rion (PAC) and residual reliability criterion (RRC) as damage indices, along with a 95% 

confidence interval. However, there are no instructions on how to combine both indices 

into a single novelty detection scheme. They validate their method using datasets of two 

experimental structures: the LANL three-story laboratory frame and the IASC-ASCE 

benchmark structure. 
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In a later study by Entezami et al. [102], they opted for extracting the features based 

solely on AR models residuals while using Partition-based Kullback–Leibler Divergence 

(PKLD) as a damage index. By relying on online learning, these adjustments made the 

damage detection system computationally more efficient and reliable under different en-

vironmental and operational conditions. Another, yet similar, feature extraction method 

was presented by Entezami et al. [88] based on autoregressive moving-average (ARMA) 

models’ coefficients and residuals. They also used a hybrid distance-based measure based 

on Euclidean-squared distance and PKLD with the nearest neighbor rule to indicate dam-

age. More recently, Entezami et al. [89] trained an ARX model and used a nongraphical 

automatic model order termination method. The damage index in this framework is a 

hybrid distance-based measure combining PKLD with MSD using ARX model residuals. 

They validated their proposal on the Tianjin Yonghe Bridge, a cable-stayed bridge, and 

results showed that the method offers an improvement in efficiency over earlier methods. 

More researchers also favored time-series modeling for extracting the damage-sensitive 

features in the past decade [67,90,110,133]. 
Time–frequency domain representations are currently gaining more attention from 

SHM researchers as viable damage-sensitive features. Unlike frequency domain features, 

time–frequency features represent a signal record over both frequency and time. Short-

Time Fourier Transform and WT are common techniques for extracting such features. 

Amezquita-Sanchez and Adeli [120] suggested using synchrosqueezed wavelet transform 

(SWT) combined with fractal modeling for damage detection, localization, and quantifi-

cation. SWT was used to reduce signal noise, while fractal dimension (FD) is used to detect 

system changes using the median absolute deviation between the FD of training and new 

observations. The framework and three methods for estimating FD were tested on a la-

boratory-scaled 38-story building in Hong Kong [167], showing damage detection im-

provements by using SWT for denoising. 

Ulriksen and Damkilde [127] presented a damage detection and localization method 

based on continuous wavelet transform (CWT) and a generalized discrete Teager–Kaiser 

operator. For detecting damage, they first applied PCA followed by MSD outlier analysis 

to detect abnormalities. Two case studies of a numerical beam model and an experimental 

study of a wind turbine blade showed that their method was able to localize introduced 

cracks. However, the method depends on a dense array of sensors which could make it 

impractical in some applications. 

Xu et al. [98] introduced a two-level anomaly damage detection method based on 

WT, GPD, and moving fast Fourier transform (MFFT). WT was used to reduce the tem-

perature effects on the raw measurements. GPD was used to estimate a more reliable 

threshold that corresponds to a 95% true detection rate within 100 years. They also imple-

ment a threshold updating strategy to include traffic volume increase and structure deg-

radations. This anomaly test procedure is accompanied by anomaly trend detection that 

is based on MFFT. Their method was validated on a dataset from the Xihoumen Suspen-

sion Bridge with multiple numerically simulated anomalous and damage events. The 

method was successful in detecting most anomalies and a reduction in main cables stiff-

ness, but failed to detect a reduction in the girder stiffness. 

3.3. Signal Decomposition Techniques 

Another method that deals with non-stationary signals is the empirical mode decom-

position (EMD). Developed by Huang et al. [168], EMD is a data-driven method that iter-

atively decomposes the signal into simpler components, called the intrinsic mode func-

tions (IMFs), which correspond to different oscillation modes. By examining the resulting 

IMFs, information regarding the signal, such as amplitudes and frequencies, can be ob-

tained. Combined with Hilbert spectral analysis, more insights regarding the signal, and 

also a spectrogram, can be gained in a process known as the Hilbert–Huang transform 

(HHT). Several studies have conducted reviews and comparisons of different signal de-

composition techniques in the context of fault and damage diagnosis [169–171]. 
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Meredith et al. [140] examined the use of EMD for detecting and localizing damage 

in numerical beams based on the acceleration response of a moving load by detecting re-

sponse discontinuity from the IMFs. They found that EMD can detect multiple cracks, but 

applying a moving average filter prior to EMD can make results easier to interpret. In 

another study, Kunwar et al. [135] explored bridge damage detection using a variety of 

output data from the HHT process also under a moving load. The experimental test struc-

ture was a small-scale single span-bridge instrumented with 10 wireless sensor nodes sub-

ject to three different levels of connection damage simulated by bolts removal. Results 

showed that the marginal Hilbert spectrum from a sensor in the proximity of damage can 

indicate a reduction in peak frequency compared to far away sensors. Additionally, 

changes in instantaneous phase values were more sensitive to simulated damage. Mo-

hammadi Ghazi and Büyüköztürk [123] presented a damage diagnosis system based on 

HHT-based normalized cumulative energy distribution (NCED) and MSD-based hypoth-

esis testing. Their framework combines four damage indicators estimated by comparing 

NCEDs of baseline and monitored structures with different methods, such as Kolmogo-

rov–Smirnov distance. Although less efficient, the HHT-based approach provided better 

results when compared to a power spectral density-based method on a three-story labor-

atory steel frame. Striving for incorporating inter-channel information, Sony and Sadhu 

[70] propose using multivariate EMD for localizing structural damage. The absolute per-

centage change in energy from the baseline at each sensor is used as a localization indica-

tor while the mean value among all sensors is used as an adaptive threshold. The method 

was capable of localizing damage in a numerical 10-DOF model and the Z-24 bridge de-

spite limiting the number of sensors and observations. 

EMD, however, suffers from the notorious mode mixing issue. Mode mixing occurs 

when the EMD process produces IMFs containing multiple frequencies, which should 

have been separated into individual IMFs. A number of modifications were proposed to 

solve this problem, resulting in ensemble EMD (EEMD), complete EEMD with adaptive 

noise (CEEMDAN), and variational mode decomposition (VMD). Xia et al. [118] used 

EEMD to separate temperature-induced strain from the raw strain measurements of a sus-

pension bridge to identify damage. The temperature-induced strain was later used to form 

a matrix of Euclidean distance-based indices to facilitate damage diagnosis. However, the 

method does not involve a decision-making process. Soman [95] presented a semi-auto-

mated damage diagnosis framework for offshore wind turbine structures using EEMD 

and a sensitivity analysis-based thresholding method. The relative energy change in IMFs 

is used as a damage index, while the ratio of the individual sensors’ damage index to the 

mean of all sensors is used as a localization index. The method, however, is not entirely 

automated, as user input is needed at multiple stages in the framework, including the 

thresholding process, which may need access to historical damage data, making the 

method not fully unsupervised. Hybrid approaches involving EEMD for SHM were also 

developed, such as the EEMD-AR-ARX method proposed by Entezami and Shariatmadar 

[100] for damage-sensitive feature extraction accompanied by dynamic time warping for 

providing a dissimilarity measure. 

Nevertheless, EEMD has some limitations, especially when the white noise ampli-

tude is too low or excessive. Complementary EEMD (CEEMD), an extension of EEMD, 

alleviates this problem by using pairs of complementary white noise for signal decompo-

sition. Tian et al. [103] combined the use of the Teager–Kaiser energy operator and 

CEEMD for bearing fault diagnosis. They argued that the proposed method is tailored to 

applications with weak vibration signals, as the Teager energy operator can enhance the 

signal’s strength before CEEMD can decompose the signal into a set of IMFs. An IMF is 

then manually selected and is further analyzed through envelope analysis to detect faults. 

It can be considered a feature extraction approach as no decision-making policy was pro-

posed. Complete EEMD with adaptive noise (CEEMDAN) is also a variant of EEMD that 

relies on adaptive noise, which is updated based on the residue signal [172]. Mousavi et 

al. [91] explored combining the use of CEEMDAN and artificial neural networks for 
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structural damage detection and localization. They trained a 20-layers deep network to 

predict four IMF features using IMFs as input. Three damage indices, estimated using the 

percentage error between healthy and new observations features output, are used to as-

sess and locate damage. 

An alternative method to EEMD that also does not suffer from the mode mixing prob-

lem, yet can be more efficient, is VMD [173]. Mousavi et al. [79] developed a VMD-based 

bridge damage diagnosis method under moving load by combining the instantaneous fre-

quency and amplitude of the first IMF into a damage indicator. By testing their method 

on a numerical beam, they showed that VMD successfully localized damage when EMD 

could not. Similar conclusions were obtained by Sadeghi et al. [60], who compared the use 

of VMD to EMD for localizing shear connectors damage in composite beams based on 

shear slip data. The change in energy in the second mode center frequencies is used as a 

damage indicator. A laboratory-scale bridge fitted with slip sensors was used for evalua-

tion, and the damage was simulated by unscrewing the shear connectors. 

4. Unsupervised Learning SHM Based on Artificial Neural Networks 

This section provides a summary of key studies in the past decade for using artificial 

neural networks (ANN) for SHM trained in absence of damage data. Basic ANNs have 

long been used for SHM. but there is currently a general trend toward leveraging deep 

learning techniques and architectures in building SHM. Like the feature extraction meth-

ods described in Section 3, ANNs are used to learn representations of the data and often 

reduce the dimensions. Deeper networks can even be used to extract representative fea-

tures from raw vibration measurements without any preprocessing. A novelty detector is 

used for detecting system changes. which are usually simple tests depending on the net-

work depth and the sensitivity of the learned features. In the field of SHM, some networks 

rely on supervised learning tactics for training. However, the labeling process is automat-

ically performed through the available normal condition data only. Additionally, these 

methods incorporate representation learning and novelty detection strategies. We can 

therefore categorize them as unsupervised learning methods in the context of SHM, as per 

the categorization by Farrar and Worden [2]. Common learning goals include input re-

construction (e.g., autoencoders), forecasting (e.g., recurrent neural networks), and gener-

ative learning (e.g., generative adversarial networks). Examples of some of the commonly 

used ANN architectures are shown in Figure 13. 

4.1. Classical Neural Networks 

Classical ANNs are networks with relatively low parameter counts and no more than 

two hidden layers (Figure 13a). They are mostly used as dimensionality reduction tech-

niques akin to those discussed in Section 3.1 (e.g., PCA). Avci and Abdeljaber [121] pre-

sented a structural health monitoring algorithm based on self-organizing maps (SOM). 

SOM are a type of ANN that can map high-dimensional input data onto a representative 

lower dimensional grid, often called topology maps, while preserving the topological 

structure of the data. The acceleration readings are used to construct the input matrix and 

the root mean squared error (RMSE) based on the topology maps of the baseline, and test 

data is used to identify damage. Their approach was tested on the phase II IASC-ASCE 

benchmark, showing a correlation between the damage index and the level of damage. 

However, no anomaly detection or thresholding methods were proposed. Gu et al. [114] 

proposed using an ANN for response reconstruction, which takes the temperature meas-

urements as additional input in an attempt to reduce temperature variations effects. The 

proposed method uses the Euclidian distance between the predicted and target responses 

as an indicator of novelty. For verification, an experimental steel grid structure was tested 

under different temperature levels. The proposed method showed a good performance in 

differentiating between temperature changes and structural changes. 

ANNs can also be used for forecasting to detect damage in structures. Neves et al. 

[116] proposed using an ANN trained to predict the upcoming acceleration values based 
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on the structural acceleration response of passing trains. Then, the Gaussian process is 

used to provide a discordancy measure by categorizing the errors in the network predic-

tions at each train speed. While the authors did not provide a clear-cut thresholding 

method, they suggested selecting the threshold based on the receiver operating character-

istic (ROC) curves and false detection costs. ROC curves, however, are not easily obtained 

without access to damage observations. In a different damage detection approach, 

Movsessian et al. [80] proposed training an ANN which predicts the MD of the damage-

sensitive features based on these features as input. Another damage indicator was pro-

posed based on the network’s prediction error. They tested their method on a dataset cap-

tured from a wind turbine relying on the cross-covariance between the acceleration re-

sponse as features. 

 

Figure 13. Examples of neural networks used in unsupervised SHM methods. 

Recently, Fernandez-Navamuel et al. [63] debated that traditional PCA is not ideal 

for data compression as it uses linear mapping, while kernel function selection for kernel 

PCA is challenging in an unsupervised setting. Therefore, they introduced an autoen-

coder-PCA hybrid that mimics the linear mapping of a PCA in addition to nonlinear re-

sidual connections between the low and high-dimensional feature layers. The reconstruc-

tion error of this hybrid network is used as a damage index and is tested against a thresh-

old based on the 99th percentile of the baseline index values. The method was validated 

on two numerically simulated bridges calibrated with real-world measurements, and the 

results showed more accurate detections compared to linear PCA. This method is also 

capable of localizing damage if it was in proximity to one of the utilized sensors. 

Different from autoencoders (AE), generalized autoencoders (GAE) make each input 

instance reconstruct a group of instances, not just itself. Li et al. [59] argued that GAE can 

better learn the basic structure of the original data while reducing noise effects compared 

to traditional AE. Therefore, they developed an SHM framework based on a modified 

GAE network which was trained to model power cepstral coefficients extracted from the 

structure response. The GAE was used to produce two damage indices in the form of 
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normalized RMSE and the standard deviation ratio. For decision-making, they opted for 

MSD along with the 0.95 quantile of an F-distribution using training data. The method 

was validated using the Z-24 bridge dataset along with a numerically simulated dataset. 

Compared to traditional AE and PCA, the introduced GAE had a higher detection accu-

racy in the numerical case study. 

4.2. Deep Dense Neural Networks 

Multiple researchers opted for deeper architectures for their neural network models 

as advances are made in artificial intelligence and hardware technology (Figure 13b). With 

the added depth, the pre-network feature engineering steps can be further reduced, or 

entirely eliminated, by using direct acceleration measurements as input. These networks 

can also directly produce effective damage indices which facilitate the use of simpler nov-

elty detection algorithms. Dense neural networks are used to refer to standard neural net-

works where all nodes in contiguous layers are connected forming a dense mesh of con-

nections. 
Ozdagli and Kooutsoukos [104] examined two unsupervised learning models; one 

relies on a dense AE to learn representation, and the other uses PCA. They used the Eu-

clidean distance between the actual measurements and their model reconstruction as a 

damage indicator. Interestingly, temperature measurements can be added as an input pa-

rameter to both frameworks. They validated their methods via three case studies which 

showed that their method can detect and localize damage under temperature variability, 

especially when mode shapes are included as input parameters. Entezami et al. [90] pre-

sented a deep learning-based damage detection method with a focus on handling large 

quantities of high-dimensional data. The method combines ARMA coefficients and resid-

uals as features, a deep AE as a dimensionality reduction mechanism, and MD as a novelty 

detector into a single framework. A final prediction error function is used to optimize the 

number of nodes in the deep autoencoder layers. Generalized extreme value (GEV) dis-

tribution with block maxima technique is used for thresholding. The method was able to 

accurately detect damage cases in the Tianjin Yonghe cable-stayed bridge dataset. In an-

other study that also advocates for automatic feature extraction, Jiang et al. [75] intro-

duced two deep AE architectures for learning damage-sensitive features from raw accel-

eration measurements. The first provides features from the bottleneck layer while the 

other uses the reconstruction error as features. Multiple AE networks are trained in par-

allel, one for each sensor. The learned features are then tested for detecting structural 

damage against a predefined threshold, which they suggest setting according to the struc-

ture’s importance. Localization is also possible based on which sensor the anomalous fea-

tures were extracted from. These methods are validated using both the LANL three-story 

frame structure and QUGS. 

Silva et al. [83] introduced a damage-sensitive feature extraction method using 

stacked AEs. They used natural frequencies as input to their network and used the output 

of the bottleneck layer as a more compressed damage-sensitive feature vector, often two 

features only. While their proposal did not include a novelty detection method, they used 

Gaussian mixture models (GMM) based on expectation-maximization as an example. A 

comparison with other representation learning techniques including PCA, AANN, and 

kernel PCA was performed using the Z-24 bridge dataset. Their model provided the best 

damage detection results, which were slightly better than kernel PCA while requiring 

fewer parameters for the features vector. However, the explainability and the physical 

interpretation of the introduced method are low compared to raw modal parameters and 

other classical methods. 

Exploring deep-learning solutions for unsupervised learning SHM, Wang and Cha 

[85] introduced a deep dense AE network to automatically extract features from raw ac-

celeration. Three metrics are used to produce the features: MSE, original-to-reconstructed-

signal ratio (ORSR), and Arias intensity. Two or more of these metrics are fed into an 

OCSVM model for novelty detection. However, it requires predefined hyperparameters 
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which control the shape of the decision boundary, affecting the decision-making process. 

The method is validated using two case studies, including a laboratory-scaled steel bridge 

where the method detected a 10% stiffness reduction. It is, however, not suitable for dam-

age localization and quantification. Using the same metrics, Giglioni et al. [64] introduced 

an ensemble-based damage detection and localization method for large-scale structures 

based using AE models. An AE network is trained for each sensor based on raw measure-

ments and MSE and ORSR metrics are obtained from each model, forming a binary deci-

sion matrix. A value of 1 is given at a sensor and index when it passes a threshold based 

on the 90th percentile; otherwise, it remains zero. A summation-based ensemble inference 

method can then be used to assess global damage in addition to localization capabilities. 

The method was validated using the Z-24 bridge dataset showing promising damage de-

tection performance with fair localization ability. 

4.3. Convolutional Neural Networks 

A convolutional neural network (CNN) is a type of deep neural network that relies 

on convolution operation using learned filters that allow for weight (Figure 13c). This 

makes CNNs demand fewer parameters than deep dense neural networks, making them 

ideal for deeper networks. CNNs are generally best suited to grid-like structured data 

with local spatial correlation, such as images. Therefore, to use vibration data for CNNs, 

researchers often propose a data organization method to make full use of CNN’s capabil-

ities [58]. 

Focusing on data compression for SHM, Ni et al. [93] introduced two deep convolu-

tional autoencoder models for detecting measurement anomalies and compressing the 

recorded data. Both networks rely on 1D-CNN autoencoder architectures. The first is used 

for anomaly detection and is trained in a supervised fashion, while the second is for data 

compression and reconstruction. The method was tested using a dataset from a suspen-

sion bridge showing good compression and reconstruction performance when the com-

pression rate is 0.1. Shi et al. [68] developed two forecasting dense-based and CNN-based 

neural networks for real-time SHM. A noteworthy feature in their framework is the use 

of model pruning to make their networks more efficient by eliminating some of the re-

dundant connections between neurons with insignificant loss to model accuracy (Figure 

14). The prediction errors of their models are used as features and deep support vector 

domain description (SVDD) generates a decision boundary and is used as a novelty de-

tector. Their method is tested using two case studies of frame structures, including an 

experimental study, showing its real-time damage detection performance. Rastin et al. 

[87] presented a damage detection framework based on a convolutional AE (CAE) trained 

on a matrix formed of stacked acceleration measurements. They use the Euclidean dis-

tance between the latent vectors of baseline and unknown structural states as damage in-

dicators after normalized them to unit vectors. Novelty detection is performed by setting 

a threshold, typically 1.6 or 1.4 standard deviations away from the mean. The Tianjin 

Yonghe Bridge and two numerical case studies are used for evaluation. 

Variational autoencoder (VAE) is a type of variational inference-based generative 

model that treats the latent features as random variables with a prior distribution. The 

network learns the latent distribution during training which can be later used to generate 

new samples. Ma et al. [91] proposed a bridge damage localization approach based on a 

one-dimensional convolutional variational autoencoder (CVAE) as a dimensionality re-

duction method. The model input and output are the acceleration response to a moving 

load, and the Euclidean distance between the latent features at different time steps is used 

as a localization index. However, since this approach only localizes damage, no thresh-

olding strategy was proposed. Another one-dimensional CVAE architecture was pro-

posed by Yuan et al. [86] to identify light rail squat damage, and they combined it with 

either an MSD-based elliptic envelope or OC-SVM as an anomaly detector. When tested 

on a laboratory full-scale track platform, they concluded that the elliptic envelope was the 

better choice, as it makes full use of the Gaussianity of the latent variables. Kim et al. [65] 
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presented a CVAE-based damage localization system that encodes the structures’ flexibil-

ity matrices obtained by operational modal analysis. A flexibility disassembly method is 

then used to localize damage by comparing the input and output of the CVAE model. 

Estimating the flexibility matrix, however, can be challenging for complex structures. 

Zhang et al. [73] developed an unsupervised tunnel damage detection method using 

wavelet packet energy of trains’ dynamic response data, which are fed into a CVAE. The 

RMSE is used as a damage index, while the relative entropy of wavelet packet energy is 

used to localize damage. The method was tested on a laboratory-scale tunnel, resulting in 

91.5% accuracy. It was not, however, tested using data with a low signal-to-noise ratio. 

 

Figure 14. Model pruning. 

4.4. Other Deep Learning Architectures 

There are different other types of neural network models used for unsupervised 

learning SHM beside those discussed earlier. A restricted Boltzmann machine (RBM) is a 

stochastic neural network that can be used for dimensionality reduction. Rafiei and Adeli 

[109] introduced a damage detection and localization method tailored to high-rise build-

ings based on a deep RBM architecture. The hidden nodes of the RBM are used to estimate 

a structural health index. The building is split into multiple parts, which are used for train-

ing parallel models to localize damage. Their method is validated using the dataset of the 

laboratory-scaled 38-story building in Hong Kong [167]. Based on the results, they provide 

recommendations for health index ranges corresponding to different damage levels. 

However, it does not seem that the method incorporates a thresholding scheme based 

solely on undamaged data. 

Graph convolutional network (GCN) is a generalized version of CNNs where node 

connectivity is predefined (or learned) via a global adjacency matrix instead of the stand-

ard local connections. It is also a part of the graph neural networks family. Li et al. [76] 

argued that it is not ideal to represent vibration data in image structure form and that the 

sensor’s spatial correlation is not easily learned by CNNs. Instead, they proposed using a 

spatiotemporal GCN for sensor fault detection to learn both the spatial and temporal de-

pendencies of the sensor measurements. The network adopts GCNs with trainable adja-

cency matrices in addition to temporal 1D-CNNs. The framework was tested on a dataset 

of cable forces from a cable-stayed bridge, and it used the learned adjacency matrices and 

the model residuals to detect faulty sensors in a novelty detection scheme. 

A long short-term memory (LSTM) network is a type of recurrent neural network 

that is commonly used to learn complex temporal patterns from time-varying data 

[174,175]. Son et al. [84] proposed a two-stage anomaly detection framework, relying on 

an encoder-decoder LSTM network, for identifying abnormalities in the collected SHM 

data. Since their focus was on monitoring cable-stayed bridges, the input to their two-

layered LSTM network is the raw cable tension time series, and the reconstruction error 

is used for estimating an anomaly score. While their method provided an ROC of 0.99, it 
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did not identify the anomaly source, which could be structural damage, sensing malfunc-

tions, or environmental effects. Eltouny and Liang [58] presented a spatiotemporal com-

posite autoencoder network for detecting and localizing damage in systems with a large 

sensor array (Figure 15). The network is a CNN-LSTM hybrid network with a dual output 

providing both a signal reconstruction and a forecast, making it suited for learning spatial 

and temporal dependencies in the data. Raw accelerations are organized into a grid-like 

structure incorporating the sensor’s location and the time-domain, which are then used as 

an input to the network. Damage indices are obtained from the latent features, and the 

output residuals and novelties are identified using an EVT-based threshold. The frame-

work achieved accuracies of 93.1% and 85.2% for damage detection and localization, re-

spectively, when tested on a numerical multi-bay, multi-story structure. The case study 

also showed that results were not significantly impacted by the reduction in available sen-

sors. 

 

Figure 15. The spatiotemporal composite autoencoder network [58]. 

Generative Adversarial Networks (GAN) are generative models composed of a gen-

erator and a discriminator neural network that compete against one another during train-

ing (Figure 13d). The generator learns to generate synthetic samples that are realistic 

enough that the discriminator fails to identify them as synthetic. The weights of the two 

models are updated iteratively based on their performance. Mao et al. [78] proposed an 

anomaly detection algorithm for structural health monitoring, which combines a convo-

lutional GAN and a CAE into a single model. The vibration data are converted into 

Gramian Angular Field images, to be better suited for the CNN layers, and are used as 

input to the hybrid network. After training the GAN model, the trained generator is set 

as a decoder for the CAE. For evaluation, the latent features and cumulative sum control 

charts are used to detect anomalous data in a cable-stayed bridge, achieving more than 

94% accuracies for all channels. With a focus on the sensitivity to sensors’ configurations, 

Soleimani-Babakamali et al. [69] introduced three GAN models to be used in a damage-

detection framework (Figure 13d). The three models share the same dense generator ar-

chitecture but have different discriminators, including dense-based, CNN-based, and 

LSTM-based models. All GAN networks use normalized FFT amplitudes as input and 

provide a discriminator score which is used as a damage index. One of the interesting 

aspects of this method is the threshold tuning and adaptive thresholding, making it capa-

ble of detecting recurrent novelties. Their models were tested using both QUGS and the 

IASC-ASCE benchmark structure, and it was concluded that the LSTM-based GAN pro-

vided the best damage detection results. In a later study, Soleimani-Babakamali et al. [61] 
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investigated the effects of dimensionality reduction on the damage detection results using 

the models proposed in [69] after applying techniques such as PCA, kernel PCA, and AE. 

It was found that reducing the dimensions of the input vector had a negative impact on 

the detection accuracy, but regularization of nonlinear methods can reduce this effect. 

5. Novelty Detection Techniques 

The majority of vibration-based unsupervised-learning SHM methods rely on nov-

elty (or anomaly) detectors for detecting system changes based on damage-sensitive fea-

tures (Figure 16). Sometimes more than one novelty detector is used in a stacked fashion 

to further compress the input features, or in an ensemble learning framework. Most nov-

elty detection techniques theorize that the normal condition forms a single class (or a clus-

ter), and points outside the class’s boundary are flagged as novelties, anomalies, or outli-

ers. This makes this type of novelty detection a one-class classification problem, and ex-

amples of this approach include outlier analysis and OCSVM. If the data forms multiple 

groups, due to multiple normal or damaged conditions, then cluster analysis is preferred. 

In this section, we provide a summary of key studies in the last decade with a focus on 

the novelty detection aspect of the unsupervised-learning SHM framework. 

 

Figure 16. One-class and multi-class novelty detection. 

5.1. One-Class Novelty Detection 

One-class outlier analysis is by far the most common novelty detection technique 

used in the unsupervised learning SHM literature. Even when performing cluster analysis 

or processing the features using complex deep learning techniques, a simple significance 

test is often performed to the estimated damage index for a deterministic decision. In one-

class novelty detection, all obtained damage indices from the training data are used to fit 

a distribution, most commonly the Gaussian distribution, representing the normal class. 

Damage cases are detected when the index exceeds a certain threshold, which is set using 

various statistical techniques. 

For univariate outlier analysis, a statistical significance test (e.g., z-test or t-test) is 

commonly used. A threshold can be set using confidence intervals [83,108,130,136], sig-

nificance [62,73,88,102,120], percentiles [58,63,64,66,74], or other data statistics. For multi-

dimensional features, MD, or MSD, is often used [59,67,72,82,89,90,99,116,132]. There are 

different techniques for selecting a threshold for MSD-based outlier detection. One popu-

lar method is based on Monte Carlo simulation, which is described by Worden et al. 

[29,72,99,130]. One advantage of this technique is that it takes into account the size of the 

data and the feature dimension besides the chosen percentile. Another way is to assume 

that the data follows a Chi-square distribution with degrees of freedom corresponding to 

the feature dimension [67]. Related to the MSD-based outlier analysis, Hotelling T2 control 

charts are also used for detecting novelties [96,105]. For outlier analysis in both its 
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univariate and multivariate modes, some researchers rely on EVT for selecting the thresh-

old [58,62,74,81,82,90]. 

Nigro et al. [133] provided a comparison of different damage detection statistics with 

a focus on damage localization. Three statistics were inspected: the cumulative sum indi-

cator, the exponentially weighted moving average, and a modified MSE metric which is 

normalized according to data variance. For each metric, they proposed an outlier detec-

tion based on a confidence interval produced via a bootstrapping process. They also sug-

gested combining all metrics into a multivariate feature using MD with the Fisher Crite-

rion to provide the localization threshold. 

Besides outlier analysis, other one-class novelty detection methods were adopted for 

unsupervised learning damage detection frameworks. OCSVM is a novelty detection 

method used in SHM frameworks that attempts to learn a decision boundary around the 

training data [85,106]. It first maps the data into a higher dimension using a kernel func-

tion, then finds the maximum marginal hyperplane which separates the data from the 

origin [176]. A further one-class classifier that is being used for damage detection is SVDD, 

which tries to find the hypersphere with the minimum radius that encloses the training 

data [68,177]. 

5.2. Cluster Analysis 

Clustering is a statistical modeling technique that aims to sort observations with sim-

ilar features in groups or clusters. Commonly used clustering techniques are classified 

into partition-based (e.g., K-means), hierarchy-based, distribution-based (e.g., Gaussian 

mixture models), fuzzy theory-based (e.g., fuzzy c-means), and density-based (e.g., den-

sity peaks) [178]. In SHM, clustering is typically used as a decision-making algorithm in 

which models extracted damage-sensitive features to detect abnormalities. Examples of 

using clustering for novelty detection include testing if a new observation does not belong 

to any of the modeled clusters and if a group of new observations can instead form their 

own cluster. Nevertheless, it is sometimes used for feature extraction and reduction fol-

lowed by a one-class novelty detector. 

K-means clustering is a partition-based clustering technique and one of the simplest 

and most widely used in SHM. In this method, each data point is assigned to one of the k 

number of clusters with the closest centroid. Its simplicity and efficiency are what attract 

many researchers to apply it in unsupervised learning-based SHM frameworks. However, 

it may need advanced feature engineering in the earlier stages of the framework before 

clustering. Diez et al. [122] suggested performing the FFT algorithm on the collected dy-

namic response data to improve efficiency. Moreover, they removed the outliers first, us-

ing the k-nearest neighbor algorithm. Then by applying the k-means algorithm to the ex-

tracted features, the abnormal conditions can be detected. The proposed method was ver-

ified by the Sydney Harbour Bridge benchmark. Santos et al. [124] also used k-means clus-

tering to detect stiffness reductions from a cable-stayed bridge. They used the global sil-

houette index for cluster validity and the Gowda–Diday dissimilarity measure as a dam-

age index. More recently, Meixedo et al. [67] introduced a clustering-based SHM method 

that relies on the transient response from train passing to detect bridge damage under 

environmental conditions. The damage-sensitive features are the parameters of ARX 

models reduced by PCA and further processed by MD. The resulting features are fitted to 

clusters by k-means and the average dissimilarity between clusters is used as a damage 

index. 

There are many other variants of the k-means algorithm which attempt to address 

the method’s shortcomings. The k-means—algorithm is a clustering algorithm modified 

from the k-mean clustering algorithm [179]. Where the conventional k-means is sensitive 

to outliers, the k-means—method overcomes this limitation by removing the clusters that 

have only one member. Alamdari et al. [112] proposed using a modified k-means−− algo-

rithm for detecting damage. The verification was performed using the Sydney Harbour 

Bridge benchmark, and it was found that the proposed method was able to detect the 
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abnormal responses in the damaged arches. Another method that is related to k-means 

clustering is the k-medoids algorithm. Unlike k-means, k-medoids uses an actual data-

point as a cluster center and minimizes the dissimilarities between points within a cluster, 

making it more robust to outliers. De Almeida Cardoso et al. [100] used the interquartile 

ranges and the medians in both time and frequency domains (obtained using FFT) as dam-

age-sensitive features. They then used the k-medoids clustering method to detect novel-

ties based on the distances between all possible medoids. A threshold is set based on the 

99.9th percentile of a t-student distribution measured from the novelty index median. 

Both the IASC-ASCE benchmark structure and the PI-57 bridge were used as experimental 

case studies. The results showed that, with tuned hyperparameters, the method is suc-

cessful in detecting low levels of damage under environmental and operational condi-

tions. However, these hyperparameters may be difficult to tune in an unsupervised learn-

ing setting. 

FCM, also known as soft clustering, is a fuzzy theory-based clustering algorithm that 

shares a lot of similarities with k-means. Instead of assigning each data point to a unique 

cluster, FCM provides a grade of membership ranging from 0 to 1 to all clusters. In this 

case, data points can potentially belong to multiple clusters to a certain degree. FCM was 

first proposed by Dunn [180], improved by Bezdek [181], and was applied to SHM appli-

cations in the past few decades [36]. In 2013, Yu et al. [138] introduced a damage detection 

approach based on reduced frequency response function and fuzzy c-means clustering. 

They also suggested using either PCA or kernel PCA for dimensionality reduction. Their 

method was validated on a steel truss bridge subject to different damage scenarios simu-

lated by loosened bolts. Alves et al. [128] suggested a monitoring method using symbolic 

signals and clustering techniques. First, he manipulated the raw dynamic response data 

using symbolic analysis, and then applied three clustering techniques: dynamic clouds, 

FCM, and hierarchical clustering. The proposed methodology was verified using data col-

lected from the PI-57 bridge, showing better results achieved by FCM compared to the 

other two clustering methods. 

Hierarchical clustering is a greedy clustering algorithm that establishes a hierarchy 

of clusters for data points based on their inter-similarity. This can be performed either in 

a bottom-up manner (agglomerative) where each point starts as its own cluster and merg-

ing is performed at each step, or in a top-down manner (divisive). In 2017, Zhou et al. 

[119] proposed a hierarchical clustering model to detect damage in structures. The pro-

posed model takes transmissibility as an input feature. Two similarity measures were 

adopted for damage indication: cosine similarity and distance similarity. In a later study, 

Tran and Ozer [97] introduced a bridge health monitoring framework using modal pa-

rameters along with hierarchical clustering. They used a univariate anomaly detection 

method based on the gaussian distribution as a discriminant test and validated their 

method on a laboratory bridge experiment and a steel pedestrian bridge. However, they 

argued that it is difficult to properly select the clustering threshold as cross-validation is 

not easily performed with the absence of damaging data. 

GMM is a probabilistic model that assumes all the data points are generated from a 

mixture of a finite number of Gaussian distributions with unknown parameters. 

Figueiredo and Cross [134] compared MSD-, PCA-, auto-associative neural networks-, 

and GMM-based novelty detection methods for bridge damage detection under the influ-

ence of operational and environmental variabilities. When evaluating these methods us-

ing the Z-24 bridge, they found that the MSD of GMM parameters as a damage indicator 

provides the least errors among the other three methods. They also conclude that linear 

methods, such as PCA and plain MSD, struggle to remove the nonlinear patterns caused 

by the operational and environmental effects, leading to a high number of false positives. 

Santos et al. [117] used GMM for clustering with the expectation-maximization (EM) al-

gorithm to detect the anomalies. EM is dependent on the initial guess of the parameters. 

Thus, the authors used the genetic algorithm along with EM to improve the overall per-

formance of the system. Using the Z-24 bridge benchmark as a validation, it was shown 
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that introducing the genetic algorithm improved the stability of the EM method, espe-

cially in minimizing type 2 errors. Addressing tie-rods evolutive damage, such as corro-

sion, Lucà et al. [66] proposed a tie-rod damage detection method by fitting a GMM using 

eigenfrequencies. The existence of damage can be detected based on the likelihood values 

of two GMM hypotheses, which are single versus double Gaussian densities. An experi-

mental setup of tie-rods was used to validate this method and it was concluded that the 

GMM-based method outperformed the MSD-based one in detecting evolutive deteriora-

tive phenomena, but MSD could be more suitable to sudden damage scenarios. 

There are many other variations of clustering algorithms. For example, Silva et al. 

[125] presented a genetic algorithm-based clustering method for unsupervised learning 

bridge health monitoring. Selecting the number of clusters is often challenging, and thus 

they rely on a concentric hypersphere algorithm to optimize the number of clusters. The 

minimum Euclidean distance between new observations and cluster centroids is used as 

a damage index. The method outperformed GMM and MSD-based outlier analysis for 

damage detection when applied to two case studies: The Z-24 bridge, and the Tamar 

bridge. Spectral clustering (SC) is a clustering technique based on graph theory that uti-

lizes the eigenvalues of the similarity matrix. Kernel spectral clustering (KSC) is the ker-

nel-based variant of spectral clustering, making it a useful algorithm for clustering data 

that is not linearly separable. It is also useful for handling large data sets, as the computa-

tional cost of SC can be reduced by using an appropriate kernel function. Langone et al. 

[115] proposed a damage detection method based on an adaptive KSC algorithm and val-

idated it using the Z-24 benchmark dataset. The calibration of the model is performed 

during the undamaged case, and then it can be applied to detect the anomaly. Density-

based clustering algorithms generate clusters that are characterized by centers of high ob-

servation density in the feature space. Cha and Wang [107] modified the density peaks-

based fast clustering algorithm to train under an unsupervised learning setting for dam-

age detection and localization. They used features based on continuous wavelet transform 

(CVT) and the crest factor. In the testing phase, observations with a local density below a 

predefined cut-off are considered novel. Using a laboratory-scale steel structure, the 

method was able to outperform OCSVM in damage localization. However, it was found 

to be computationally expensive, and recommendations were given to increase its effi-

ciency. 

5.3. Bayesian Methods 

Bayesian analysis relies on the Bayes theorem to update probabilities based on prior 

information. Bayesian methods interpret probability as a degree of belief and can often be 

used to incorporate uncertainty in parameter estimation. Sankararaman and Mahadevan 

[137] focused on quantifying the uncertainty for the detection, localization, and quantifi-

cation of damage using Bayesian approaches. For damage detection, they used Bayesian 

hypothesis testing of the model residuals to estimate the Bayes factor. Then the limits set 

by Harold Jeffreys [182] were used to assess damage based on the Bayes factor. The Bayes 

factor can later be used to estimate the probability for each of the two scenarios which can 

be treated as an uncertainty measure. They also quantified the uncertainty for both dam-

age localization and quantification using the concepts of likelihood and Bayesian infer-

ence. They also presented a strategy for updating the uncertainty with the acquisition of 

new measurements.  Wang et al. [71] also used Jeffreys–Bayes factor hypothesis testing to 

detect the structural damage in the Tianjin Yonghe cable-stayed bridge. They proposed a 

damage index obtained from the Natural Excitation Technique, which has both real and 

imaginary parts. A sparse Bayesian learning regression model was then trained to predict 

the imaginary part given the real part as input. The relative change between the two parts 

was used to assess the structural health condition. They also proposed using Bayes factor 

as an indicator of damage severity. 

Yan et al. [72] introduced an unsupervised method for damage detection which also 

attempts to accommodate uncertainties, such as data randomness, measurement error, 
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and environmental variability. Damage is detected by estimating the symmetric KL diver-

gence between the transmissibility function (TF) of a baseline condition and the TF of an 

unknown condition. They use a statistical threshold estimation process involving Bayes-

ian inference and Monte Carlo discordancy testing [29] to account for the measurement 

uncertainty. This framework is validated through four case studies, one of which uses 

experimental data from the S101 bridge. Results show satisfactory performance in detect-

ing global damage and quantifying its severity. However, damage localization was not 

possible, as the locations of anomalies-producing sensors do not necessarily correspond 

to the damage location. 

Bayesian approaches can be used for parameter estimation. For example, Figueiredo 

et al. [132] introduced a Bayesian approach based on Markov-Chain Monte Carlo for 

GMM clustering instead of the conventional EM method. The novelty test was carried out 

using MSD-based outlier detection. While results on the Z-24 bridge dataset showed com-

parable performance to the EM-based clustering method, the Bayesian approach offered 

some insights for the model which, for example, aided in the selection of the number of 

components. In another study, and aiming to avoid predefined data distributions, Eltouny 

and Liang [74] used Bayesian optimization to build a probabilistic model based on the 

kernel-density maximum-entropy (KDME) method for localizing damage. Bayesian opti-

mization is a global optimization technique often used to tune machine learning models’ 

hyperparameters without assuming the form of the objective function. To train a multi-

variate KDME, they relied on independent component analysis as a preliminary step. Joint 

probabilities of new observations are used as a damage index, and a threshold is set based 

on EVT. The method was validated using three case studies of a three-story concrete 

building, a high-rise structure, and an experimental masonry frame, achieving an average 

accuracy of 92.6%. It was also found that Bayesian optimization significantly accelerated 

the tuning of the KDME model compared to the genetic algorithm. 

5.4. Other Methods 

In addition to the aforementioned machine learning techniques for detecting system 

changes, other methods are discussed here including robust regression, ensemble learn-

ing, and empirical machine learning. Robust regression is a method to estimate mathe-

matical model parameters while minimizing the effect of outliers. Dervilis et al. [129] ap-

plied robust regression using the least trimmed squares (LTS) and the minimum covari-

ance determinant (MCD) algorithms on the Z-24 and Tamar bridges datasets to detect 

structural damage. The author suggested that future research can study moving from lin-

ear LTS to non-linear robust regression. 

Ensemble learning is a machine learning technique that combines a set of models in 

a way that promotes diversity to improve and stabilize predictions. There are many ways 

to create an ensemble, such as bootstrap aggregating and stacking. Inference can also be 

performed in different ways, such as voting or averaging. Multiple researchers used en-

semble learning for improving the damage detection performance of novelty detectors. 

For example, Bull et al. [99] presented an ensemble of MSD-based novelty detection mod-

els for SHM to reduce the masking effects produced by inclusive outliers. The ensemble 

models were generated using the bootstrap sampling technique and the models’ averages 

were used as the ensemble output. For thresholding, they used the Monte Carlo simula-

tion thresholding method [29]. When compared to MCD [128] using the Z-24 bridge da-

taset, the outlier ensembles provide comparable results with a significant reduction in 

computational cost. Both the presented method and the MCD benchmark, however, pro-

duced false positives for the Z-24 bridge during the cold weather monitoring period. The 

method was also tested on an aircraft wing for damage localization, achieving 95.85% de-

tection accuracy in an unsupervised learning setting. 

Another ensemble learning-based unsupervised learning damage detection tech-

nique was presented by Sarmadi et al. [82]. They aimed to benefit from the computational 

efficiency of ensemble learning while also mitigating environmental variability effects on 
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the SHM system. Their sequential learning framework included three different MD vari-

ants. A set of nearest neighbors of the features are obtained at each level using the distance 

participation factor. The local MSD values at the final level are used as damage indices, 

and a threshold is set based on EVT. The method was validated using two experimental 

case studies, including the Z-24 bridge, and it successfully detected damage under strong 

environmental variations. It also produced a lower error rate when compared to a selec-

tion of traditional techniques, such as PCA, k-means clustering, and MSD. 

Multiple-model (MM) learning is a method closely related to ensemble learning 

where more than one statistical model is used to analyze or make predictions about a 

dataset. Vamvoudakis-Stefanou et al. [110] compared two AR methods based on MM 

models with two other conventional autoregressive models. They used MM to represent 

the undamaged dynamics of a structure with a set of conventional models using estimated 

parameter vectors and Gaussian probability density functions. For assessment purposes, 

ROC curves were used to represent the accuracy of each model. The study included a 

population of 31 composite beams subjected to impact damage at two different energy 

levels. The results showed the MM-based models achieved significantly improved results, 

especially for low-energy-level damage, where all damage is correctly detected at an error 

rate of 5%. 

Some methods opt for the more flexible non-parametric methods which do not im-

pose prior assumptions on the data. Empirical machine learning only relies on the obser-

vations and the relative distance between them for building models [183]. Using this con-

cept, Entezami et al. [62] introduced a damage index obtained by multiplying the empiri-

cal local density by the minimum distance of each sample to all other samples. This non-

parametric novelty detection approach was inspired by the density peak clustering 

method [107]. When applied to both the Z-24 and Tianjin Yonghe bridges, the method 

outperformed a selection of other non-parametric novelty detection techniques in damage 

detection and computational efficiency. 

6. Challenges and Future Trends 

While unsupervised learning offers a more practical approach for applying vibration-

based SHM compared to its supervised counterpart, some limitations and challenges are 

delaying widespread industrial use. Most of these difficulties stem from the concept of 

unsupervised learning SHM, that is, the absence of classes of both damaged and undam-

aged conditions. The section summarizes the current challenges in unsupervised learning 

vibration-based SHM applications as well as future research observed from the reviewed 

literature. 

6.1. Parameters Selection 

With the absence of damaged and some undamaged classes, performing cross-vali-

dation for parameter tuning is challenging. This is especially true for thresholding, as the 

selection of a significance level for outlier analysis, the parameter “ν” in OCSVM, or the 

number of clusters is nontrivial in an unsupervised learning setting [97,99]. Instead, they 

are often selected based on engineering judgment, which would not necessarily provide 

the optimal SHM model. In novelty detection, it is mainly a problem of balancing the false 

positive and false negative rates according to the design objective. Before testing, a bound-

ary can be established to fit the available normal data with the assumption that the train-

ing data is a representative sample of the normal condition. Nevertheless, the size of the 

data may not be large enough to establish the boundary, especially if there are no available 

observations for other normal classes or if there is an overlap with the unknown damaged 

class. The damage detection performance of some models can be less sensitive to param-

eter selection, yet post-test sensitivity analysis may show superior attainable models [74]. 

Multiple attempts have been made to provide a more robust threshold via Monte 

Carlo sampling techniques [72,99,129,133], while others implemented an EVT-based 

threshold selection procedure [81]. Stochastic and EVT-based thresholding methods, 
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however, may also need selecting parameters, such as the sample size or the block maxima 

window size. Others have provided threshold selection guidance based on case study re-

sults of post-test ROC curves [116]. On the other hand, most proposed SHM methods are 

structure-specific and suffer from a generalization problem. Adaptive thresholding meth-

ods have also been proposed such that the novelty detector can identify future damage 

scenarios when the system was already subject to change [67,69]. The threshold selection 

strategy is expected to remain an open area of research in the future. 

6.2. Environmental and Operational Variability 

Environmental and operational variations pose a major challenge to the development 

of SHM methods in general, and unsupervised learning-based methods in particular 

[184]. Novelty detection attempts to detect deviations from normality in the system based 

on damage-sensitive features. These deviations could be attributed to structural damage 

or other system changes such as variations in the temperature or operational conditions. 

For example, model parameters, which are commonly used as damage-sensitive features, 

can drastically change due to temperature variations [185]. In the past decade, many re-

searchers focused on developing damage-sensitive features and novelty detection tech-

niques that are less sensitive to environmental variability [66,67,81–83,96,105,125]. Others 

considered a probabilistic novelty detection method that would incorporate uncertainties 

including environmental variations and measurement noise [72,132]. In addition, expand-

ing the training dataset such that it includes a wider range of environmental conditions is 

important to reduce these effects and the resulting false positives [74,186]. Additionally, 

including measurements other than vibration to the SHM model input, such as tempera-

ture, wind speed, and loads, can add valuable information to the model and help reduce 

the uncertainty associated with damage identification [104,114]. 

Recent literature suggests that mitigating the effects of environmental and opera-

tional variability remains a key topic in SHM systems development. We expect that future 

unsupervised learning SHM research attempts to tackle this challenge by (1) utilizing the 

advances in sensor technology and the internet of things to collect long-term monitoring 

data to decrease the data uncertainty; (2) relying more on unsupervised learning methods 

that can learn highly nonlinear and nonstationary patterns, especially deep learning meth-

ods (see Section 6.5); (3) incorporating environment monitoring systems (e.g., tempera-

ture, humidity, and wind speed sensors) and performing a fusion of data from different 

sources, which can add extra layers of information. 

6.3. Benchmarking Standards 

While there are various types of unsupervised learning SHM frameworks, it appears 

that there is no standard practice for establishing a direct comparison between them. 

Benchmarking practices often exist in domains with other machine learning applications, 

such as using ImageNet [187] for computer vision models or Human3.6m [188] for human 

sensing models. While some benchmarks are available in the literature (as described in 

Section 2), comparisons with previously introduced methods are lacking because authors 

often test their methods using different metrics and partitions of the dataset [184]. Taking 

the Z-24 Bridge dataset as an example, some authors use the undamaged state period from 

11 November 1997 to 4 August 1998 for training, while the damaged state period from 5 

August to 10 September 1998 is used for testing [83]. Others use 75% of the undamaged 

state period for training while adding the rest to the testing set [81]. Some alternative 

methods are including the first month, the first three months, or the last undamaged state 

month of the record for training, in addition to different sets of testing [59,115]. In addi-

tion, making the model source code available for the community, which would facilitate 

the comparisons or the building of a Model Zoo, is still not a common practice in SHM 

research. Standardized benchmarks, in general, can provide a quick overview of the state-

of-the-art and may accelerate the development of SHM machine-learning models. There-

fore, it is encouraged that this practice is adopted in the SHM future research. 
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6.4. Datasets Availability 

As per the reviewed literature, there are multiple available datasets that can be used 

for the validation of the proposed methods. However, most of these datasets fail to repre-

sent real cases of damaged structures. Figure 17 shows the percentage of datasets used 

from field studies with real observed damage, laboratory tests, and numerical simula-

tions, based on the reviewed literature in Table 1. Many of these methods are based on 

numerical simulations and laboratory experiments, with the latter being an improvement 

over the former. Datasets based on real structures which suffered damage, such as the 

commonly used Z-24 bridge dataset, would often record damage cases without consider-

ation of real-life operational conditions (e.g., passing traffic). The collection of datasets 

that include structural states under realistic conditions and uncertainties while being large 

enough to train deep learning models remains desired for developing advanced unsuper-

vised learning SHM methods. 

 

Figure 17. Percentage of the reviewed papers using datasets from field studies, laboratory tests, and 

numerical simulations. If a paper involves multiple types of datasets, it counts towards field studies, 

if it has one. Otherwise, it counts towards laboratory tests. 

6.5. Deep Learning 

Deep learning-based SHM methods have gained considerable attention in the last 

few years, as demonstrated in Figure 2. Nevertheless, they require a significant amount of 

training data, and the limited availability of experimental data can be an inhibiting factor 

for the development of more complex architectures. This is especially the case for super-

vised learning methods, but obtaining large quantities of training data for unsupervised 

learning SHM frameworks can be easier. It is expected that more deep learning-based un-

supervised learning SHM methods will emerge in future studies with the advent of big 

data benchmarks. 

6.6. Model Generalization 

While unsupervised learning offers a more practical solution to SHM compared to 

supervised learning, it still suffers from limitations that are slowing the transition to in-

dustrial practice. Compared to machine condition monitoring, which benefits from relia-

ble statistics obtained from similar applications, unsupervised learning SHM methods are 

mostly structure specific, as civil structures often have unique characteristics [51]. The 

generalization of vibration-based SHM methods is therefore needed. In recent years, some 

researchers have attempted to address this problem by proposing methodologies based 

on the concept of transfer learning (or domain adaptation) [189–192] and self-supervised 

learning [193]. It is expected that interest in this topic will keep increasing in future re-

search, especially with the rapid advancements in deep learning research. 
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7. Conclusions 

SHM is an important asset for autonomous, real-time structural condition assess-

ment. Unsupervised learning could be the key to closing the gap between academia and 

industry for vibration-based SHM. This study provides a detailed review of the state-of-

the-art unsupervised-learning SHM applications in the past decade. These methods in-

volve different types of unsupervised learning techniques, including conventional feature 

extraction techniques (e.g., PCA, AR models), deep learning methods (e.g., AE, GAN), 

novelty detection, and cluster analysis. Additionally, a selection of common benchmarks 

used in unsupervised learning SHM were described. Challenges, such as thresholding, 

environmental variability, and model generalization, were discussed based on the re-

viewed literature. In summary, it is expected that more unsupervised learning SHM tech-

niques will be developed in the upcoming years that will attempt to address the described 

challenges with practicality as a primary objective. 
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