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Abstract: Intelligent management of trees is essential for precise production management in or-
chards. Extracting components’ information from individual fruit trees is critical for analyzing and
understanding their general growth. This study proposes a method to classify persimmon tree
components based on hyperspectral LiDAR data. We extracted nine spectral feature parameters from
the colorful point cloud data and performed preliminary classification using random forest, support
vector machine, and backpropagation neural network methods. However, the misclassification of
edge points with spectral information reduced the accuracy of the classification. To address this,
we introduced a reprogramming strategy by fusing spatial constraints with spectral information,
which increased the overall classification accuracy by 6.55%. We completed a 3D reconstruction of
classification results in spatial coordinates. The proposed method is sensitive to edge points and
shows excellent performance for classifying persimmon tree components.

Keywords: hyperspectral LiDAR; spectral feature; classification; edge point; reprogramming

1. Introduction

The persimmon, cultivated in China for more than 3000 years, is a nutritious fruit
containing a large amount of sugar and various vitamins. The development of persimmon
farming has resulted in numerous orchards with high automation management, such
as fertilization, automatic fruit picking or package, and irrigation. In order to manage
persimmon trees precisely and intelligently, it is essential to have abundant and readily
available information that can record their growth stages based on the structural compo-
nents, including leaves, fruit, and wood. However, it is difficult to accurately measure and
describe these components due to their spatial variability and structural complexity of the
persimmon tree. Therefore, there is an urgent need for a method to separate and classify
persimmon trees’ components.

To detect and classify fruit trees’ components, researchers utilize different methods,
including visible cameras, multispectral/hyperspectral cameras, LiDAR, and these methods
in combination. Several methods have been developed to obtain information from trees
under various natural conditions with visible light image processing, such as fruit target
detection [1,2], segmentation of green object fruit under complex orchard backgrounds [3],
segregation of tomato phenotypes [4], and fast extraction of tree canopy areas from UAV
images [5].

The evolution of hyperspectral imaging technology has driven a more comprehensive
extraction of fruit tree data. Varga et al. established an evaluation model of hyperspectral
images combined with deep neural networks to discriminate and visualize different fruit
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ripeness levels [6]. The discrepancy in reflectance at specific wavelengths was used to
detect potentially damaged fruit [7,8]. The capabilities of hyperspectral imaging have also
been explored for applications such as fruit identification and detection [9], nondestructive
testing of dry matter [10], moisture content estimation [11], etc. However, the natural
defects of images and passive spectral information may be disturbed by factors such as
illustration condition, shadows, occlusion, complex branch structures and understory
layers, etc., which will inevitably lead to a reduction in wood, leaf, and fruit recognition
accuracy in the understory [12].

Time-of-flight measurement is used in pulsed LiDAR for range measurement. Thus,
LiDAR can obtain an accurate and instant distance image of the target, which drives
processing and learning for autonomous driving [13], while in precision agriculture
and smart forestry, LiDAR are used to monitor and reconstruct 3D models of fruit tree
components [14]. In existing studies, researchers have employed LiDAR to extract tree
height [15], tree branch topology [16], and fruit location [17]. LiDAR can measure dis-
tance accurately and obtain spatial information of fruit trees efficiently, but the laser’s
monochromatic nature limits its ability to provide abundant spectral information.

Combining several monochromatic laser sources or fusing LiDAR and multispec-
tral/hyperspectral data is an instant method used to obtain fine spatial-spectral informa-
tion. In a study, researchers fused different wavelengths of LiDAR to complete tree wood
and leaf component separation [18–20]. This general fusion strategy to meet quantitative
analysis requirements has only four to eight channels of spectra, and the spectral resolution
is insufficient [21]. Another option is fusing LiDAR and hyperspectral data to generate
spatial-spectral domain data for describing tree composition [22]. However, combining
too many laser sources is problematic in extending spectral band coverage and improving
spectral resolution, resulting in higher hardware costs and more complicated registration.
The latest developed active remote sensing system, hyperspectral LiDAR (HSL), can obtain
spatial and spectral information simultaneously without any external illumination [23].
Nevalainen et al. searched for two vegetation indices sensitive to nitrogen concentration
and verified the possibility of the 3D estimation of nitrogen with HSL data [24]. Bi et al.
established a partial least squares regression model to achieve the inversion of chloro-
phyll concentration at any vertical position in maize plants with HSL spectral and spatial
information [25]. To explore the potential of HSL applications in forestry development,
Hakala et al. presented the first scheme for modeling and assessing the three-dimensional
distribution of chlorophyll concentration and water content in Norway spruce based on a
full-waveform HSL [26]. After that, Vauhkonen et al. explored HSL’s feasibility for tree
species classification using similar techniques [27]. For the study of tree components’ classi-
fication, most previous studies have focused on wood-leaf classification [28] and neglected
undesirable fruit extraction. Therefore, the simultaneous monitoring of fruit, leaves, and
wood in precision agriculture and forestry has become an urgent problem to be solved.

This paper explores the feasibility of the classification of persimmon trees’ components
under laboratory conditions with a revised 101-channel HSL system. We proposed a
classification method with spectral and spatial characteristic parameters to classify four
components and indicate classification results with 3D reconstruction. Firstly, we extracted
nine characteristic parameters in the spectral domain based on persimmon tree HSL point
cloud data. Then, a preliminary classification of the fruit trees’ components was conducted
with characteristic spectral parameters. To solve the misclassification of edge points,
we propose an enhanced classification method for edge-points-based spatial constraint
relationships among point clouds. Finally, the results of tree component classification were
fused into spatial coordinates to accomplish 3D reconstruction of a persimmon tree.

2. Materials and Methods
2.1. Hyperspectral LiDAR System

Figure 1 shows the structure of a hyperspectral LiDAR system which consists of an
emission unit, an integrated scanning control unit, and a receiving unit. The emission unit’s
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acoustic-optically tunable filter (AOTF) provides a detection laser with a spectral resolution
of 5 nm from 550 nm to 1050 nm by filtering the outgoing laser from the super continuous
laser. The HSL system emits a 10 mm diameter laser beam with a divergence angle of
1 mrad, and the transmitted laser beam is collimated by a collimator with a focal length
of 33 mm, resulting in a 5–8.5 mm spot diameter of the emitted laser after collimation.
A two-axis rotator of a scanning control unit conducts precise scanning to generate final
colorful point cloud of a target. The laser echoes reflected from the target are focused on an
avalanche photon diode (APD) by the receiving optics, which are captured and stored by a
high-speed data acquisition card (AC) for subsequent processing.

Figure 1. Schematic of the HSL system: (a) installation and (b) system schematic; The red arrow
represents the optical signal, while the black arrow represents the electrical signal.

2.2. Experimental Samples

To evaluate and verify the performance of the classification method in the next section,
we acquired spatial–spectral point cloud data of tree samples from our HSL. The tree
samples include two species: persimmon (Diospyros kaki Thunb.) and lemon (Citrus limon
(L.) Burm. F.). The persimmon samples we used for the study included six branches with
unripe fruit and six branches with both ripe and unripe fruit. All fresh branches were
sawn off from persimmon trees in the South Campus of Anhui JianZhu University in
October 2021 and July, August, and September 2022. In addition, we selected three lemon
trees (bonsai trees), which were used to simulate tree samples for an orchard, to explore
the generalizability of our method to other fruit tree species. For persimmon samples,
the spectral characteristics of unripe and mid-ripe fruits are similar, while the spectral
characteristics of ripe and over-ripe fruits are similar [29]. Therefore, this study defines two
ripeness levels (ripe and unripe) to characterize fruit ripeness. The lemon samples were
from trees at the mid-ripening stage with unripe and ripe fruit. As illustrated in Figure 2,
the order numbers 1©, 2©, 3©, and 4© correspond to the components of the wood, ripe fruit,
unripe fruit, and leaves, respectively. All samples were hung vertically on a metal stand at
10 cm from the black cloth behind the sample.

2.3. Data Acquisition and Processing

Data acquisition was conducted in a laboratory environment where the samples were
placed at a horizontal distance of 5 m in front of the HSL system. We made the point
cloud cover the whole sample by setting appropriate pitch and horizontal steps for the
scanning unit. Figure 3a shows the zigzag scanning pattern, which starts at the start point
(the top left corner of the target). Scanning is accomplished at the endpoint following the
direction of the arrow, and the vertical and horizontal scanning step are both 0.05 radians
for generating a dense but evenly distributed point cloud. The HSL point cloud includes
spatial coordinates and full waveform signals of 101 wavelengths that are recorded and
stored in real time by a two-axis rotator actuator.
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Figure 2. Fruit tree samples. 1©, 2©, 3©, and 4© correspond to the components of the wood, ripe fruit,
unripe fruit, and leaves, respectively.

Figure 3. HSL scanning strategy and persimmon tree scan points. (a) The zigzag scanning pattern of
HSL; (b) preprocessed HSL point cloud of the persimmon tree.

Prior to data collection, a standard 99% reflectivity diffuse reflection whiteboard (TD-
MEB99-141Y-20) as a reference whiteboard in front of a black fabric with less stray light
was scanned using the HSL system. Samples placed at the same distance as the whiteboard
were scanned immediately. The intensity values of the sample and reference whiteboard
were used to calculate the reflectance of the sample [27], as shown in Equation (1). Here,
ρt(λi) is the reflectance value of each wavelength of the sample, I indicates the 101 spectral
channels of the HSL system, Vt(λi) and Vb(λi) are the peak voltage of the HSL echo signal
at wavelengths for the sample and the reference whiteboard, respectively, and ρb(λi) is the
reflectivity value of the reference whiteboard.

ρt(λi) =
Vt(λi)

Vb(λi)
· ρb(λi) (1)

To eliminate the interference of the background echo signal, we performed point cloud
segmentation. First, we used the difference in spatial coordinates between the background
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cloth point cloud and the sample point cloud on the Y-axis to separate the sample and the
background with a fixed distance value. The complete sample scan points were obtained
(Figure 3b).

3. Methods

Figure 4 shows a schematic diagram of the proposed classification method of per-
simmon trees’ components, which includes four parts: data preprocessing, preliminary
classification, enhanced classification, and 3D reconstruction.

Figure 4. Structure diagram of tree components’ classification and 3D reconstruction.

The data preprocessing part consists of point cloud segmentation and spectral re-
flectance calculation, which was discussed in Section 2.3. The preliminary classification
includes feature parameter extraction (refer to the analysis in Section 3.1 for details), mul-
tiple classifications, and misclassification of edge points analysis. In order to reduce the
misclassification of edge points, enhanced classification was conducted based on the spa-
tial constraint relationship of the HSL point cloud. Finally, the 3D reconstruction of the
classification results was completed by fusing the spatial coordinates.

3.1. Feature Parameter Extraction

In order to analyze the reflection properties of the persimmon tree samples across
different wavelengths, we plotted the average reflectance distribution curves for each of the
four components in Figure 5. The reflectance variation tendencies of the four components
are considerably different, as observed. The reflectance of the wood increases with the
wavelength. The leaf reflectance has a clear red-edge effect, with low reflectance in visible
bands and high reflectance in near-infrared bands [30]. In addition, the reflectance of unripe
fruit is similar to the leaves, with a clear red-edge effect, indicating that unripe fruit contains
a certain amount of chlorophyll. The ripe fruit reflectance distribution tends to stabilize at
20% in the spectral range from 600 to 900 nm without an obvious red-edge effect.

Feature parameter selection should be based on practical application and classification
performance considerations. We selected feature parameters based on the differences in
the spectra of the four components, which can effectively retain the physical information
of persimmon spectra while avoiding the information loss and computational complexity
issues that may arise from traditional dimensionality reduction algorithms [31]. Select-
ing vegetation indices as parameters can also eliminate errors caused by laser incidence
angles [32]. Considering the difference in the components’ spectral reflectance, we selected
five reflectance values as the feature parameters with the largest differences at typical
bands (700 nm, 730 nm, 780 nm, 850 nm, and 900 nm), defined as R700, R730, R780, R850,
and R900, respectively, based on the maximization of interclass variance. The R700 and
R730 bands, which are sensitive to chlorophyll, accentuate the contrast between compo-
nents with chlorophyll and those lacking chlorophyll. R780 is the reflectance of the band



Sensors 2023, 23, 3286 6 of 15

with the largest difference in reflectance between the four components. The reason for
choosing R850 and R900 was to reflect the difference in reflectance between wood and other
persimmon components. The average value (AVG R760–R930) of the reflectance in the range
(760 nm–930 nm) with the large spectral differences between these four components was
used as a feature parameter. The red-edge chlorophyll index (CI red edge) [33] was selected
as a feature parameter based on the red-edge effect due to chlorophyll’s absorption of
visible light. The normalized difference vegetation index (NDVI) [34] and the normalized
difference red-edge index (NDRE) [32] were selected to distinguish the wood, leaf, and
fruit components. The specific parameters are listed in Table 1.

Figure 5. The reflectance of persimmon tree components.

Table 1. Selected classification feature parameters.

Feature Parameters Description

R700 Reflectance in the 700 nm band
R730 Reflectance in the 730 nm band
R780 Reflectance in the 780 nm band
R850 Reflectance in the 850 nm band
R900 Reflectance in the 900 nm band

AVG R760–R930 Average reflectance in the wavelength range from 760 nm to 930 nm
CI red edge (R780/R710) – 1

NDVI (R800 – R670)/(R800 + R670)
NDRE (R790 – R720)/(R790 + R720)

3.2. Preliminary Classification

We focused on the random forest (RF), support vector machine (SVM), and BP neural
network (BPNN) methods, which are machine learning methods that have demonstrated
excellent classification performance in previous remote sensing studies [35–37]. After nine
feature parameters in the spectral domain were chosen, we investigated the performance
of the SVM, BPNN, and RF methods in the classification of persimmon trees’ components;
we selected the best one as a preliminary classifier.

Binary decision trees are used as the basic building blocks of RF [38], combined
with the basic building blocks for training and prediction to achieve the resultant output
of each decision tree, and, finally, they use voting for the plurality to obtain the final
classification result. Eight decision trees were selected to build the classification trees, and
four classes (wood, leaf, ripe fruit, and unripe fruit) were classified by sampling the data
with replacement.
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The central idea of the SVM classification algorithm is to maximize the optimal hy-
perplane as the decision function. The hyperplane used to separate the data is also known
as a support vector, and the optimal hyperplane is created by accurately separating each
data point and ensuring that the distance between classes is maximized [39]. We used
spectral features as the input to the SVM and four persimmon tree component labels as the
output vectors, and a common radial basis function was selected as the kernel function.
SVM parameters, including the kernel function and penalty parameters, were selected with
default values of 0.1 and 10, respectively.

The core idea of the BPNN method is to reasonably distribute all features into a
uniform feature space. The BPNN method accomplishes the corresponding clustering or
classification of data by constructing nonlinear functions and optimizing the loss function
to fit data cells in the target domain [40]. In this paper, we constructed a total of nine input
neurons and one hidden layer, and the number of hidden layer nodes was five according
to the empirical equation; the active function was the sigmoid function, and, finally, the
number of output neurons was four.

First, we selected six persimmon tree samples and three lemon tree samples as the
training samples for preliminary classification. We manually labeled the training point
clouds by compared with RGB images in CloudCompare (version 2.11.3, CloudCompare
SAS, F-34000, Montpellier, France). The labeled data were extracted from training point
cloud data and we completed preprocessing. Then, the labeled data were randomly divided
into two sets in the ratio of 7:3, i.e., a training set and a validation set. Finally, we input the
selected parameters of each point cloud as the training data.

3.3. Enhanced Classification

We used only spectral domain feature parameters in the preliminary classification,
causing the misclassification of edge points (we will analyze the reasons in detail in
Section 4.1). To enhance the accuracy of the classification, especially correcting the misclas-
sification points at the edges, we proposed an enhanced classification method based on
spatial distance, which reprograms the edge point class, according to the class consistency
of adjacent spatial points [41]; its block diagram is shown in Figure 6.

Figure 6. Enhanced reprogramming algorithm based on spatial distance.

First, spatial distances of all points were calculated to generate an initial distance ma-
trix, which, together with the preliminary classification results, was used as the input to the
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reprogramming algorithm. The initialized distance matrix S was calculated as Equation (2)
by the Euclidean distance between point i and point j in the sample point cloud.

S(i, j) =
√
(ix − jx)

2 + (iy − jy)
2 + (iz − jz)

2 (2)

The reprogramming algorithm consists of four steps, as shown in the blue box in
Figure 6.

Step 1—reprogrammed point selected: Take a sample point k that belongs to a class
decided by the preliminary classification results and sort the distance S(k, j) from k to any
other sample point j.

Step 2—adjacent points decision: Establish a matrix SN, which includes the N smallest
distance points in the point k neighborhood, where N is the empirical value obtained from
our multiple experiments.

Step 3—class statistics in the point domain space: Count the number of four classes
separately in SN, select the largest proportion of class labels as the point k label, and
complete the class rewriting of point k.

Step 4—point class reprogramming: After the k-point label has been rewritten, return
to step 1 and iterate through all of the sample points in the sequence until all of the points
are reprogrammed.

3.4. Three-Dimensional Reconstruction

The target point cloud includes spatial-spectral information, which provides the basis
for 3D reconstruction after classifying persimmon tree components. In this study, we
used color mapping to display the point cloud classification results, providing an intuitive
visualization of the spatial distribution of the different classes. By assigning unique color
to each class, we could differentiate and identify each point based on its classification.
Three-dimensional reconstruction of different sample trees’ components was accomplished
in the Python 3.6 environments.

3.5. Accuracy Evaluation

In previous point cloud classification studies, the correctness of validation sets has
often been used to evaluate the performance of classification algorithms. However, general-
ization errors often exist due to certain factors, such as insufficient data in the validation
set and overfitting of the model during classification. To evaluate the performance of our
classification method in the HSL point cloud, we proposed an accuracy evaluation method.
First, we manually annotated the sample point cloud in CloudCompare to create a real
dataset with spatial coordinate information and labeled values.

The real label dataset Q is built as Equation (3).

Q = {qi|i ∈ [1, n]}, qi =
{

Xqi, Yqi, Zqi, labelqj
}

(3)

n is the overall number of points in the sample point cloud, and Xqi, Yqi, Zqi are the
3D coordinates of point i. labelqj denotes class labels, j ranges from 1 to 4, and their
corresponding classes are {UnripeFruit, RipeFruit, Wood, Lea f }.

Similarly, we can build the predicted label dataset P, as shown in Equation (4).

P = {pi|i ∈ [1, n]}, pi =
{

Xpi, Ypi, Zpi, labelpj
}

(4)

Then, we calculate the correct prediction points. We set the number of correct classified
points for each class in the prediction set P as Tj0 and the number of correct classified points
for each class in the true set Q as Hj0. The initial values Hj0 and Tj0 are both 0. We loop
through the prediction set and the true set and compare their label values at the same
coordinate position, i.e., Xpi = Xqi, Ypi = Yqi, Zpi = Zqi is satisfied. If labelpj = labelqj is
satisfied, Tj0 = Tj0 + 1, Hj0 = Tj0 + 1, otherwise Tj1 = Tj0, Hj1 = Tj0 + 1. When all of the
points in P and Q are compared, we can obtain the final Tjn and Hjn.
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Finally, the classification accuracy of one class is defined as Equation (5).

Kj =
Tjn

Hjn
(5)

The overall classification accuracy (KOverall) is determined as Equation (6), which is
the quotient that divides all of the correctly classified points in the prediction set by all of
the sample points.

KOverall =

j
∑

i=1
Ti

j
∑

i=1
Hi

(6)

4. Results and Discussion
4.1. Preliminary Classification Performance

Figure 7 illustrates the reconstructed results of three classifiers for some of the persim-
mon samples (Figure 2). As we can observe, the SVM method has the lowest accuracy, as
it cannot classify the corresponding target class at the edge correctly, and it also presents
misclassification at some leaf and fruit nonedge areas, such as red boxes 0, 1, and 2. The
reconstructed image with the BPNN method can correctly classify most of the sample
points, although there are some misclassified points at the edges of the wood and the fruit
edges, as shown in boxes 3 and 4. Finally, the RF classifier has the highest accuracy as
four classes of the persimmon trees’ components can be distinguished, but there are some
misclassified points at the edges of the fruit, as shown in boxes 5 and 6.

Figure 7. Three-dimensional reconstruction of the preliminary classification of the persimmon sample.
(a) Support vector machine classifier; (b) backpropagation neural network classifier; (c) random forest
classifier; (d) real class labels of the persimmon samples.

Table 2 lists the classification accuracy of the nine spectral domain parameters by the
SVM, BPNN, and RF classifiers. All three classifiers demonstrate excellent classification
performance, with the RF classifier exhibiting the highest accuracy and the SVM classifier
showing the lowest accuracy. The three algorithms’ overall accuracy values are 84.6%,
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86.3%, and 88.6%, respectively. The mean accuracy of the leaf is greater than 87%. The
maximum accuracy of the ripe fruit is 85.5% with the RF classifier, the maximum accuracy
of the unripe fruit reaches 86.2% with the BPNN classifier, and the accuracy of the wood
is below 82% with all three classifiers. We selected the best one, RF, as the preliminary
classification classifier on all these counts.

Table 2. Comparison of the three classifiers’ accuracy.

Method
Accuracy (%)

Leaf Ripe Fruit Unripe Fruit Wood Overall

SVM 87.3 85.8 79.7 81.2 84.6
BPNN 96.7 80 86.2 67.8 86.3

RF 97.1 85.8 81.7 76.9 88.6

To analyze misclassification with the RF method at edge points, we manually ex-
tracted the edge and nonedge region points of the four components of the persimmon
tree samples (Figure 7c), selected more than half of the points, and calculated the average
spectral reflectance.

As shown in Figure 8, there are obvious reflectance differences between the edge and
nonedge points. The nonedge reflectance of unripe fruit is 10.36% higher than its edge
average, and there is a clear red-edge effect on the spectral reflectance of nonedge points,
while the spectral reflectance of edge points shows a slowly increasing trend. The nonedge
point reflectance of ripe fruit is 17.81% higher than that of the edge point on average, and
the spectral reflectance is more flatly distributed in the range of 600 nm–900 nm, while the
spectral reflectance at the edge shows a slowly increasing trend. The nonedge reflectance
of the leaf and wood are, on average, 18.18% and 11.06% higher than their corresponding
edge points, respectively, and their edge reflectance curves have a similar trend. The overall
reflectance curve trends similarly at the edge of the four component classes, while the leaf
edge spectral reflectance is higher. In summary, the spectral differences between the edge
points and nonedge are the main reason for the misclassification of the edge points with
reflectance as a feature for classification only.

Figure 8. Reflectance of the edge and nonedge of the persimmon components.

In the preliminary classification, the parameters were selected only from the spectral
data, which were calculated based on the peak value of the LiDAR echo signals [28]. How-
ever, when the HSL system collects data at fruit or wood edges, the calculated reflectance
often differs from the nonedge’s (the large incidence angle at the fruit’s edges can also
lead to abnormal reflectance). The reason is that part of the HSL signal spot falls on the
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background, covers multiple components, or even misses the target, causing error in the
collected echo signal [42].

4.2. Enhanced Classification Performance
4.2.1. Neighboring Point Decision

Table 3 lists the enhanced classification average accuracy of persimmon tree samples
with different numbers of neighboring points (N). The proposed method can obtain the
highest classification accuracy when N is 12, so we selected 12 as the N value in the
following sections.

Table 3. Enhanced classification accuracy with different N values.

N/Number 9 10 11 12 13 14 15
Overall accuracy (%) 95.4 95.8 96.4 96.6 96.5 96.3 96.2

4.2.2. Classification Performance

The accuracy of the persimmon components with preliminary classification versus
our enhanced classification is listed in Table 4. The overall accuracy of our classification
method increases to 96.6%, an 8% gain over the preliminary classification. Through the
spatial features, the gains of our classification method over preliminary classification are
12.9%, 12.4%, 12.2%, and 2.3% on the unripe fruit, ripe fruit, wood, and leaf, respectively.
Therefore, the proposed method outperforms classification that uses spectral features in
each component’s experimental conditions, which benefits from the fact that our method
can preserve the spatial structure and reveal the constrained dependencies between points
besides the spectral features.

Table 4. Comparison of classification accuracy of the persimmon sample.

Method
Accuracy (%)

Leaf Ripe Fruit Unripe Fruit Wood Overall

Preliminary Classification 97.1 85.8 81.7 76.9 88.6
Enhanced Classification 99.4 98.2 94.6 89.1 96.6

The classification results of the lemon trees by different methods is listed in Table 5. The
overall accuracy values of the SVM, BPNN, and RF methods in the preliminary classification
are 80.1%, 84.9%, and 88.3%, respectively. The BPNN classification accuracy values of the
wood and unripe fruit are 78.8% and 88.4%, respectively. The RF method has the highest
classification accuracy for the leaf and ripe fruit, with 89.3% and 83.3%, respectively, and the
SVM classifier has the worst classification accuracy. Following the enhanced classification
of the lemon sample, the accuracy of our method increased by 5.1% over the preliminary
classification and could reach 93.4%. Compared to the preliminary classification using
spectral features, the classification accuracy values of the leaf, ripe fruit, unripe fruit, and
wood with our method increased by 5.4%, 9%, 3.7%, and 17.4%, respectively. The overall
accuracy of the lemon sample was lower than that of the persimmon sample as the lemon
tree had a more complex spatial structure.

4.3. Reconstruction of the Classification Results

Figure 9a shows the classification result reconstruction of the two persimmon samples.
Our method can effectively distinguish different tree components; in particular, the point
class in the edge areas can still be corrected during preliminary misclassification. Compared
to Figure 7, the leaf and wood classification results are ideal, as shown in red boxes 1, 2, 3,
and 4, and most of the misclassified edge points of unripe and ripe fruit were corrected, as
shown in red boxes 5 and 6.
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Table 5. Comparison of classification accuracy of the lemon sample.

Methods
Accuracy (%)

Leaf Ripe Fruit Unripe Fruit Wood Overall

Preliminary Classification
SVM 87.2 64.5 56.1 69.9 80.1

BPNN 86.5 78.5 88.4 78.8 84.9
RF 89.3 83.3 82.3 75.5 88.3

Enhanced Classification 94.7 92.3 86 92.9 93.4

Figure 9. Reconstruction of classification results and changes in point cloud class. (a) Reconstruction
based on the proposed method and (b) class changes in the reprogramming strategy. The red boxes
are the areas misclassified in the preliminary classification.

Figure 9b shows the class change of the sample points in the enhanced classification
compared to the preliminary classification. The red points denote no component types
changed, and they were recorded as unchanged class points. The green points are the points
that show that the component type changed, and they were recorded as changed class
points. The points of the changed class are concentrated at the component edges, especially
at the unripe and ripe fruit edges. In addition, there are more class change points at the
leafstalk, whose diameter is smaller than the HSL footprint. Thus, inaccurate echo signals
resulted in inaccurate spectral reflectance values. In addition, using a reprogramming
strategy, the enhanced classification can correct edge misclassification points in persimmon
tree samples, effectively improving classification accuracy.

The classification results for the lemon components are shown in Figure 10. Figure 10a
shows the true class. Figure 10b shows the reconstruction of the preliminary classification
results; some misclassified points are at the edges of the ripe fruit. The class change points
(Figure 10c) show that most of the corrected points are located in the edge area of each class.



Sensors 2023, 23, 3286 13 of 15

Four classes are distinguishable by their spatial–spectral features through our method, as
shown in Figure 10d. Ripe fruit is clearly distinguished from leaves; however, unripe fruit
edges are still slightly misclassified, such as in box 1. There are two reasons for the poor
unripe component classification results: the low result of the preliminary classification of
unripe fruit, while the result is used as an input for enhanced classification that will affect
the accuracy; another is that the unripe fruit points are insufficient. In addition, chlorophyll
contained in the shoots at the end of branches, which have similar reflectance curves to the
leaves, is judged as a leaf in the preliminary classification, and the shoots were partially
corrected with the enhanced classification.

Figure 10. Reconstructed diagram of different algorithms for the classification of lemons.
(a) Reconstruction of the real classification; (b) reconstruction of the preliminary classification;
(c) class changes; and (d) reconstruction based on the proposed method results.

5. Conclusions

We proposed a method for separating and classifying the wood, ripe fruit, unripe fruit,
and leaves of persimmon trees with HSL measurements. Firstly, the spectral–spatial data of
persimmon trees were acquired by HSL, and we classified each component of the samples
via preliminary classification with spectral features. Then, based on understanding of edge
point misclassification, we proposed an enhanced classification method to increase classifi-
cation accuracy utilizing spatial information. Finally, we fused the classification results with
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3D coordinates to visually reconstruct persimmon tree samples. The experimental results
show that our method can be effectively used to classify the various components of fruit
trees, providing a reference for further application. Additionally, our efforts will be directed
towards integrating high-dimensional spectral and single-wavelength LiDAR spatial data
to address differences in data structure and density between HSL’s spectral–spatial data
and traditional 3D point cloud data. This will enhance the suitability of HSL data for 3D
point cloud processing models.

Our future work aims to design a classification method that satisfies different fruit tree
components in orchards and to develop a lightweight HSL system for more complex 3D
modeling cases on agriculture and pomology.
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