
Citation: Sharif, M.S.; Raj Theeng

Tamang, M.; Fu, C.H.Y.; Baker, A.;

Alzahrani, A.I.; Alalwan, N. An

Innovative Random-Forest-Based

Model to Assess the Health Impacts

of Regular Commuting Using

Non-Invasive Wearable Sensors.

Sensors 2023, 23, 3274. https://

doi.org/10.3390/s23063274

Academic Editors: Wee Ser and

Sharad Sinha

Received: 30 January 2023

Revised: 12 March 2023

Accepted: 15 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

An Innovative Random-Forest-Based Model to Assess the
Health Impacts of Regular Commuting Using Non-Invasive
Wearable Sensors
Mhd Saeed Sharif 1,* , Madhav Raj Theeng Tamang 1 , Cynthia H. Y. Fu 2, Aaron Baker 2,
Ahmed Ibrahim Alzahrani 3 and Nasser Alalwan 3

1 Intelligent Technologies Research Group, ACE, UEL, University Way, London E16 2RD, UK
2 School of Psychology, UEL, Water Lane, London E15 4LZ, UK
3 Computer Science Department, Community College, King Saud University, Riyadh 11437, Saudi Arabia
* Correspondence: s.sharif@uel.ac.uk

Abstract: Regular commutes to work can cause chronic stress, which in turn can cause a physical and
emotional reaction. The recognition of mental stress in its earliest stages is very necessary for effective
clinical treatment. This study investigated the impact of commuting on human health based on
qualitative and quantitative measures. The quantitative measures included electroencephalography
(EEG) and blood pressure (BP), as well as weather temperature, while qualitative measures were
established from the PANAS questionnaire, and included age, height, medication, alcohol status,
weight, and smoking status. This study recruited 45 (n) healthy adults, including 18 female and
27 male participants. The modes of commute were bus (n = 8), driving (n = 6), cycling (n = 7), train
(n = 9), tube (n = 13), and both bus and train (n = 2). The participants wore non-invasive wearable
biosensor technology to measure EEG and blood pressure during their morning commute for 5 days
in a row. A correlation analysis was applied to find the significant features associated with stress, as
measured by a reduction in positive ratings in the PANAS. This study created a prediction model
using random forest, support vector machine, naive Bayes, and K-nearest neighbor. The research
results show that blood pressure and EEG beta waves were significantly increased, and the positive
PANAS rating decreased from 34.73 to 28.60. The experiments revealed that measured systolic blood
pressure was higher post commute than before the commute. For EEG waves, the model shows
that the EEG beta low power exceeded alpha low power after the commute. Having a fusion of
several modified decision trees within the random forest helped increase the performance of the
developed model remarkably. Significant promising results were achieved using random forest with
an accuracy of 91%, while K-nearest neighbor, support vector machine, and naive Bayes performed
with an accuracy of 80%, 80%, and 73%, respectively.

Keywords: EEG sensors; stress assessment; blood pressure; commuting; wearable sensors;
predictive models

1. Introduction

Commuting to work or school is often a daily activity that comprises a significant
amount of time and effort. Full-time workers in England spend an average of one hour per
day commuting, and one in seven workers spends at least two hours commuting. People’s
commuting ways are influenced by their personal characteristics and life circumstances [1].
The commuter’s daily commute may affect them in both objective and subjective ways
while traveling, after traveling, and over time. Commuting can be time-consuming, costly,
and unpleasant, and it can have an impact on mood both during and after the journey.
The effect that commuting will have on your health will probably depend on how long
you commute, what kind of transportation you use, and the weather you encounter [1].
Recent research analyzed commute stress among commuters who used various modes of

Sensors 2023, 23, 3274. https://doi.org/10.3390/s23063274 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063274
https://doi.org/10.3390/s23063274
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4008-8049
https://orcid.org/0000-0003-1368-984X
https://orcid.org/0000-0001-5903-7383
https://doi.org/10.3390/s23063274
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063274?type=check_update&version=1


Sensors 2023, 23, 3274 2 of 22

transportation and discovered that those who walked or cycled to work experienced the
least stress and those who drove experienced the most stress [2].

The human brain reacts to various moods and emotions. The brain is like a control
center, and it usually uses electrical impulses to control how the body works. Numerous
environmental factors, including exercise, anxiety, sleep, and stress, affect the heart rate.
According to Peter et al., stress in any form in humans can cause a change in heart rate
and BP [3]. It has been shown that cutting down on free time and sleep makes people less
productive because it throws off their daily schedules. Commuters reported higher levels
of mental stress, more health issues, the majority of which were psychosomatic in nature,
and more sick days taken from work [4].

According to Milner, Kavanagh, Badland, and LaMontagne, there is a threshold
relationship that governs how much time is spent commuting, for more than 6 h per week
is linked to declining subjective mental health outcomes. Job control and job security are
moderating factors in this relationship [5]. The study discovered that when commuting time
exceeded 6 h per week, people who were considered to demonstrate low levels of control
in their professional function received negative ratings on a mental health questionnaire.
Longer commutes resulted in higher stress levels for commuters, depending on how much
their travel was affected, for example, by unreliable public transportation and traffic,
according to O’Regan’s findings [6]. More evidence has shown that the degree of control a
commuter has over their travel affects how much of an impact longer commutes have on
stress [7]. It has been proposed that traffic congestion, rather than necessarily the amount
of time spent traveling, is the mediator of stress during commutes due to their strong
correlation, especially in urban regions [8].

Research used body mass index, hip circumference, waist circumference, and waist–
hip ratio to predict high blood pressure [9]. This investigation was carried out using a
machine learning technique called classification trees. Machine learning techniques are
widely employed in many fields for a variety of purposes [10]. Similarly, research was
conducted to detect stress in working people using ECG and galvanic skin response (GSR).
According to a study, stress is a mental health issue that can induce depression, loss of
clarity at work, bad working relationships, socio-financial issues, and in some extreme
situations, suicide. EEG signals were recorded using sensor equipment, they were pre-
processed and used to investigate the stress level using the machine learning techniques
SVM and KNN. Datasets included both sensor data and information on the stress of the
workplace, such as email interruptions and deadline pressure [11]. A new method for
evaluating stressed and depressed people’s psychophysiology has emerged in recent years
because of the measurement and objectification of stress [12]. Researchers collected data
from a diverse range of users in around 100 nations using a well-known meditation app,
including heart rate variability (HRV) and heart rate (HR), besides the self-assessment
of stress [13]. Those data were recorded using a mobile camera as a standalone or as a
voluntary pair before and after the assessments.

Our daily lives are significantly impacted by stress because it is linked to the various
tasks we complete daily. Our body responds to outside events in several ways, both directly
and indirectly. Monitoring bio signals such as pulse rate, blood pressure (BP), and others
can teach us about what is happening to our body. Any abnormalities from the previously
mentioned factors lead to illness. An individual experiences stress when engaging in any
kind of physical or mental effort. Based on bio signals and questionnaire-based surveys,
mental stress can be predicted. In a study, stress was detected with machine learning and
deep learning using multimodal physiological data [14].

In the present context, there are several technologies to monitor stress levels. These
technologies are based on different bio signals: heart rate, heart rate variability, electroen-
cephalograms, blood pressure, skin conductance, cortisol, and pupil diameter. Out of these
bio signals, most of the research is based on EEG signals to monitor stress [15]. The emo-
tional and physical health of long-distance commuters is negatively impacted. Additionally,
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it may cause depression and increased anxiety [16]. Stress can also occur when people have
high expectations for someone, but that person is unable to meet those expectations.

Currently, the only people who can tell if someone is stressed or not are medical and
physiological professionals. Using a questionnaire is one of the conventional methods for
determining stress [17]. This approach solely relies on the participants’ reactions; whether
they tremble indicates whether they are under stress. Stress can be found automatically,
which can improve social well-being and reduce the risk of health problems. It is important
to make a smart model that can predict stress levels using the bio signals. This study uses
machine learning to predict how a commute will impact a person’s health, so they can use
active or alternative commuting methods to avoid health risks such as high blood pressure
or worry.

We aimed to investigate the subjective and objective experiences of the commute.
This study examines the social and neurophysiological impacts of real-time commuting. It
accomplishes this by utilizing machine learning to analyze brain waves and bio signals.
Today’s society has made commuting a necessity and unavoidable part of every day. In
this research, we will create an innovative model that investigates the health impacts of
commuting using bio signals and an intelligent approach.

2. Related Literature Review

Stress is what happens to our bodies when changes in the environment upset the
balance of our bodies, minds, or emotions. Positive and negative stress are referred to as
eustress and distress, respectively [18]. Stress over a prolonged period can be the cause
of several mental health issues. Stress can cause a variety of health problems, including
cardiovascular disease [15]. The recognition of mental stress in its earliest stages is very
necessary for effective clinical treatment [18]. Most people commonly feel stress in their
everyday lives as a typical physiological reaction to their environment [16]. People typically
experience it when they feel intimidated or challenged. People get the impression that it is
challenging to balance and adjust to both internal and external situations. Several wearable
technologies, such as Olive, Spire, and Breath Acoustics, can detect the degree of tension in
the user [19].

Standard surveys or questionnaires are the foundation of most stress detection studies.
Such a technique requires a significant amount of time and resources, as a specialized
individual must evaluate the stress in each one [16]. Recently, bio-signal-based stress
analysis has been developed, which can help by saving time and effort [18]. Bio signals
such as HRV, galvanic skin reaction, electrocardiogram, electromyography, blood pressure,
and finger and skin temperatures are used for real-time stress identification [20].

Similarly, a study was conducted to identify stress while driving using medical data,
including heart rate, ECG, breathing, and EMG under different circumstances. Biodata
such as respiration, GSR from the hand and foot, heart rate, and EMG were analyzed in this
study utilizing a machine-learning-based technique. The information was then divided
into time periods of 100, 200, and 300 s for varying degrees of stress. The segmented data
was then used to create statistical characteristics, which were then given to the chosen
classifier. Stress levels were labelled based on their intensity as high, medium, and low.
SVM exceeded KNN with an accuracy of 98.41% for time intervals of 100 s and 200 s and
99.1% for intervals of 300 s [21]. Cho et al. also investigated how deep neural networks and
ECG data might identify stress levels [22]. They used a cross-validation method to evaluate
their model.

A questionnaire was used to classify the stress of university students using various
machine learning techniques: linear regression, SVM, naïve Bayes, and random forest [23].
In this research, the support vector machine performed well compared to other techniques.
Rizwan et al. used ECG signals to detect stress levels [18]. Various SVM methods were
applied to alter the feature number and types of kernels. With an accuracy of 98.6%, the
gaussian cubic SVM produced a very promising result.
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Pascual et al. made a portable device that can measure how stressed a person is [24].
This device uses different bio signals as input parameters, such as body temperature, heart
rate, and galvanic skin responses. Those bio signals were classified using an artificial neural
network algorithm, which performed very well, with an accuracy of 91.67% [25].

The EEG data were analyzed offline with a LabView-based algorithm to monitor the
degree of stress that was being experienced [26]. In that model, EEG was recorded using a
one-channel EEG headset, and the recorded EEG signals were obtained from the headset
using the EEGID mobile application. According to their findings, when people are under
stress, the EEG beta band will be greater than the alpha band. In a similar study, Jaun
and Ioannis assessed emotion, mood, personality, and social situation using EEG data and
the PANAS form (individual vs. group setting) [27]. This was completed with an SVM
technique in which the characteristics of each EEG band’s differential entropy and fractal
dimension were found. According to their study, these characteristics were connected to
participants’ emotional reactions. They addressed the two situations that served as the
labels for their dataset. According to their findings, employing SVM with a radial basis
function for their arousal scenario resulted in an accuracy of 68%, while using SVM with a
linear kernel function for their emotional valence scenario delivered an accuracy of 61%.

Using an end-to-end learning approach for the time and spatial dimensions related to
EEG data, a novel EEG classification network was developed in the research to enhance
classification performance [22]. The techniques described an architecture with 77.9%,
89.91%, and 88.31% accuracy in motor imagery and emotion classification, respectively.
Similarly, a group of researchers developed a non-invasive brain–computer interface to
identify and categorize human mental states using EEG data [28]. In that study, the
continuous decoding of EEG data was used to classify the flying-related mental states
of pilots. Various simulated flying scenarios were used to collect the EEG data from
seven pilots.

In past studies that tried to build models to predict stress levels, blood pressure and
HRV were the two most important factors. Compared to bio signals, physiological charac-
teristics are given less thought. Aside from artificial neural networks, the most popular
machine learning applications are support vector machines and K’s closest neighbor. In this
research, we are predicting that systolic BP will be higher when the EEG beta low power
exceeds alpha low power after the commute.

3. Data Collection and Research Hypothesis

The employed data in this study were collected from 45 individuals who were in
generally good health and who travelled to London each day for their jobs for five days in
a row. Each participant completed an informed consent form after being cleared medically
to take part in this study. According to the demographics in Table 1, participants in
this data-gathering procedure came from various parts of London, worked at various
places, and travelled to work using a variety of modes, where frequency refers to the
number per category. In this study, multimodal data were used, including responses from
a questionnaire as well as numerous human bio signals including blood pressure, heart
rate, and EEG signals (PANAS). Bio signals were collected using non-invasive wearable
biosensor technology. As shown in Figure 1, the MySignals device was utilized to capture
the user’s blood pressure as well as their heart rate both before and after the journey. Blood
pressure was collected from the upper arms before and after the commute. We can monitor
more than 20 bio signals with this device, including heart rate, BP, ECG, oxygen levels in the
blood, pulse, and breath rate. Similarly, EEG signals were captured from many points on
the head while the subject was travelling from their house to their workplace. Additionally,
the individuals’ heart rates and blood pressures were measured and recorded. Through the
collection and analysis of bio signal datasets that were gathered throughout the journey
from home to work, we were able to examine the effects that commuting within Greater
London had on the participants’ mood and stress levels. These datasets were collected
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during the commute from home to work. The recording of bio signals was an extremely
risk-free process that posed no danger to the participants in the study.

Table 1. The demographic information of the study population.

Category Sub-Category Number (N)

Sex
Male 27

Female 18

Age
Less than 25 7

Between 25–45 30
45+ 8

Location

North London 11
Southeast London 21

East London 11
Southwest London 2

Mode of Commute

Bus 8
Driving 6
Cycling 7

Train 9
Tube 13

Bus and Train 2
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Figure 1. MySignals with sensors.

The major steps in the data collection were as follows:

• While travelling to work, participants had to wear an EEG headset, and a sensor arm
and ear clip.

• For five working days, bio signals were recorded when they commuted to work.
• They were instructed to initialize the devices and fill out an online health questionnaire

as a part of the pre-experiment process.
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• The wearable devices captured the bio signals when the participant was travelling to
and from work.

• When the participant arrived at their place of work, they took three to four minutes to
complete an online survey that documented their experience during their commute.

• Please keep in mind that all the information or data that was recorded was made
anonymous and kept secret.

Similarly, the participants in this study consisted of people who lived in London, were
employed, and often commuted there for five consecutive working days. To calculate the
necessary sample size for this study, we utilized a simple random sampling approach.
This method gave each person an equal chance of being selected for this research. Daniel
WW utilized the technique to determine the sample size for this research presented in [29].
Using the simple random sampling method, the sample size for our research was found
to be 42. Additionally, similar research was conducted with a much smaller number
of participants compared to our research. The research was conducted to detect levels
using machine learning and deep learning using multimodal physiological data from only
15 subjects [3]. Similarly, another study, in which machine-learning-based signal processing
using physiological signals was used for stress detection, was conducted successfully using
data from only 17 drivers [21].

Every participant’s blood pressure and heart rate were taken for five days in a row
using the MySignals device. Blood pressure is made up of two numbers: the first is
systolic BP and the second is diastolic BP. The pressure that is present while the heart
contracts is known as systolic pressure, while the pressure that is present when the heart
relaxes in between beats is known as diastolic pressure. Blood pressure is measured in
millimeters of mercury (mmHg). The ideal blood pressure ranges from 90/60 mmHg to
120/80 mmHg. The top number is systolic, and the bottom number is diastolic blood pres-
sure. Similarly, heart rate and EEG power spectrum are expressed as beats per minute (BPM)
and hertz (Hz), respectively. The value of the EEG band in Figure 2 is plotted with a sam-
pling rate of every 10 s. These data were collected from the participants pre commute
and post commute. The observed patterns of bio signals show that heart rate and blood
pressure are generally higher post commute than pre commute, as shown in Figure 2.
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Similarly, EEG data were acquired using a mobile EEG headset throughout the journey
to work, as illustrated in Figure 3. This headset measures and securely produces EEG
power spectrums. A headset, an ear chip, and a sensor arm were all included in this set of
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equipment. The reference and ground electrodes of the headset were attached to the ear
clip, as shown in Figure 3, and the EEG electrode was attached to the sensor arm, which
was placed on the forehead above the eye (FP1 position). One AAA battery was all that
was needed for its eight hours of operation [22].
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The data collection stages also involved the collection of other subjective factors and
parameters from every participant including age, height, gender, weight, medication intake,
smoking and alcohol status, location, weather temperature (degree Celsius), and medical
health. Blood pressure can vary or rise for a variety of causes, such as when people consume
excessive alcohol or medication with a high sodium/protein content, or when they have
low levels of calcium, potassium, or magnesium [30]. A PANAS questionnaire form was
used to collect the responses from the participants before and after the commute [31]. The
PANAS questionnaire was created in 1988 based on research work from the University of
Minnesota and Southern Methodist University. This questionnaire comprises a scale of
words that, according to a person’s surroundings, indicate their feelings and emotions [32].
The PANAS scale ranges from 1 to 5, as shown in Tables 2 and 3.

Table 2. Positive and Negative Affect Schedule (PANAS) scale.

1 2 3 4 5

Very Slightly or Not at All A Little Moderately Quite a Bit Extremely
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Table 3. Positive and Negative Affect Schedule (PANAS) scorecard.

1. Interested
2. Distressed
3. Excited
4. Upset
5. Strong
6. Guilty
7. Scared
8. Hostile
9. Enthusiastic
10. Proud

11. Irritable
12. Alert
13. Ashamed
14. Inspired
15. Nervous
16. Determined
17. Attentive
18. Jittery
19. Active
20. Afraid

In this research, two datasets were formed using the main data. The first dataset
comprised objective parameters (BP and EEG), while the second dataset comprised both
objective parameters (BP and EEG) and additional parameters including age, gender, height,
medication intake, weight, and smoking and alcohol status. We had to pre-process the
data before applying the chosen machine learning algorithms. Pre-processing of data was
conducted based on the hypothesis. The data analysis was conducted to visualize and
identify any null values or missing data. There were 225 rows, which comprised the data
collected from 45 participants over 5 days (45 × 5). Similarly, there were 11 columns,
which represented the different objective parameters. To employ the chosen algorithms,
the data for each algorithm was pre-processed to evaluate the study hypothesis. Based on
the characteristics, each dataset was classified as “X” or “Y” (training data or target data).
Datasets were split into training and test sets at a ratio of 80:20. Samples were labelled as
zero (class 0) and one as positive (class 1). The samples were labelled as positive (class 1) if
the EEG beta low power was higher than the EEG alpha power and the systolic BP had
increased after the commute; otherwise, they were labelled as zero (class 0).

To employ the different machine learning algorithms, the pre-processed data for each
method was used to evaluate the following research hypotheses: After the commute, if the
EEG beta low power is greater than the alpha low power, systolic blood pressure will be
higher. In this research, the hypothesis was tested to detect stress levels after commuting.
EEG and blood pressure were acquired from the participants during the commute. The
EEG signal may be utilized to detect and track stress levels in humans [26]. EEG data
consists of five distinct bands: delta, theta, alpha, and beta. In this research, we only
used alpha and beta bands, as the alpha band is associated with when we are relaxed,
while the beta band is active when we are actively thinking, alert, or stressed. Similarly,
systolic pressure was selected from the collected BP, as it occurs when the heart contracts to
pump blood out. Additionally, it is regarded as a stronger predictor of stress compared to
diastolic pressure [33,34].

4. Implementation

A machine-learning-based approach was designed to implement and execute the data
analysis. A comprehensive experiment was performed to come up with the best machine
learning approach’s structure that was suitable for the data in question. The machine
learning techniques chosen in this research are SVM, naive Bayes, KNN, random forest,
and MLP neural network. Measures for evaluating the performance of the model included
the area under the curve (AUC) and the receiver–operator characteristic (ROC) curve [35].
ROC curves illustrate a classification model’s performance at each categorization level.
Equations (1) and (2) show how these two variables, false positive rate (FPR) and true
positive rate (TPR), are represented:

TPR =
TP

TP + FN
(1)
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FPR =
FP

FP + TN
(2)

The effectiveness of all the chosen machine learning approaches was summarized
using a confusion matrix [36]. The confusion matrix’s main job was to show with count
values and by class how many predictions were right and how many were wrong. The
confusion matrix shows the effectiveness or precision of a classification model.

In the same way, cross-validation was used to avoid making decisions that were biased
because the model was tested with all the empirical data [37]. It is the process of folding
data into K folds, where K stands for the maximum number of folds that may be achieved.
The test set for each partitioned dataset was used, while the training set was used for the
other partitions. The divided data was then used as a test set at least once for each part.
Performance was assessed using the mean value. Compared to the conventional method of
splitting data into training and test sets, it showed less variability.

4.1. Performance Metrics for Classification
4.1.1. Confusion Matrix

For machine learning classification issues, this performance assessment metric is most
frequently utilized. This matrix measures M by M, where M is the total number of classes
and labels [36]. A confusion matrix presents a table layout of the different outcomes of the
prediction and the results of a classification problem and helps visualize its outcomes. It
plots a table of all the predicted and actual values of a classifier. Calculating predictive
accuracy is made possible by comparing actual and expected results. True positives are
described as situations where the predicted and actual class values are equal (1, 1). False
positives are described as situations where the predicted class value is 1 while the actual
class value is 0. When the predicted result is 0 but the actual value is 1, this is referred to as
a false negative. A real negative situation is one in which the actual and predicted numbers
are the same (0, 0).

4.1.2. Classification Accuracy

The model’s classification accuracy is the percentage of correct predictions it makes [38].
TP, TN, FP, and FN stand for true positive, true negative, false positive, and false negative,
respectively. According to Equation (3), it is the proportion of all accurate predictions (true
negatives with true positives) to all guesses.

Accuracy =
(TP + TN)

(TP + TN + FP + FN)
(3)

4.1.3. Precision

This is the proportion of all positive instances that are correct out of all positive
instances that were expected. In many instances, we cannot rely on accurate categorization,
such as when we have an unbalanced dataset in which one class is more prevalent than
the others. In such a scenario, a model’s accuracy will be high if it predicts just the most
common class for all outputs. This sort of categorization is ineffective since the model
does not acquire any knowledge. As illustrated in Equation (4), precision is computed to
determine the fraction of valid positive predictions [39].

Precision =
TP

TP + FP
(4)

4.1.4. Recall

The rate at which true positives are classified is often referred to as the true positive
rate. According to Equation (5), support measures each label’s actual replies [40].

Recall =
TP

TP + FN
(5)
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4.1.5. F1 Score

The F1 score includes both recall and accuracy [40]. It may be determined using the
harmonic mean of both measurements. It is the calculation of the classifier’s precision and
robustness in label classification. It ranges from 0 to 1 and corresponds to low and high
scores, as demonstrated by Equation (6).

F1 Score = 2 × Precision × Recal
Precision + Recall

(6)

4.1.6. The Area under ROC Curve

It is the region that the ROC curve covers [41]. The classifier with the largest area
under the curve performs the best. Another statistic that illustrates the trade-off between
recall and precision is the area under the accuracy-recall curve. Its values range from 0 to 1,
with 1 being the highest attainable score.

5. Results and Discussion
5.1. Approach 1: Using Only EEG, and BP Data
5.1.1. Support Vector Machine

The support vector machine is a well-known tool for machine learning because it can
deal with both regression and classification problems. In the SVM classifier, we used a
medium-gaussian SVM as the kernel function. The kernel scale used was 5.2, as it gave the
highest accuracy. One-vs-one was used as a multi-class method. We did compare using the
different values, When the kernel value was increased or decreased from 5.2, the accuracy
of the model decreased. After applying the SVM to classify whether systolic BP will be
high or low when the EEG beta low power exceeds alpha low power after the commute, we
obtained an accuracy of 80%. Applying that algorithm, 32 of the 41 predicted values were
correctly classified, while nine were misclassified. Similarly, four out of four objects in the
second class were accurately categorized. The total accuracy obtained from this algorithm
is shown in the following Figure 4.
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Similarly, ROC curves were also created to assess the effectiveness of algorithms. In
contrast to most other measures, they offer a graphical picture of a classifier’s performance.
The performance of the SVM utilizing the ROC curve is shown in Figure 5.
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5.1.2. K-Nearest Neighbor

A supervised learning technique called KNN is commonly applied to regression and
classification problems. A given input is categorized using this non-parametric technique
based on its neighbors. This model determines the separation between the supplied data
point and each training input. The test input is subsequently allocated to the class of
the K-nearest neighbors. In classification and regression issues, KNN—which classifies
an input based on its nearest neighbor—is frequently utilized. The distance between the
provided data point and all training inputs is computed by this model. The test input is
subsequently assigned to the class of its K-nearest neighbor. For this classifier, we used the
weighted KNN with a value of K = 10. In that model, the distance metric was Euclidean,
and distance weight was squared inverse. We tried the model with different values of K;
we obtained the highest accuracy for K = 10. Using this algorithm, we obtained an accuracy
of 80% for the first dataset. The confusion matrix as shown in Figure 6 reveals that the
classifier correctly predicted 30 out of the 37 right values, while seven were misclassified,
whereas for the second class, six out of eight values were properly categorized. Similarly,
Figure 7 depicts a graphical depiction of this classifier’s performance using the ROC curve.

5.1.3. Random Forest

Each decision tree in the collection predicts the specified class. The outcome of the
model is determined by considering the outputs of all decision trees. This algorithm
combines many models to improve performance. An accuracy of 91% was the greatest
result achieved by the random forest. Figure 8 illustrates the operation of the random
forest method.

The following stages provide a detailed explanation of the random forest algorithm:

• Select samples at random from a data or training set.
• This algorithm will produce a decision tree for each training set.
• Voting will use an average of the choice tree.
• Choose as the final prediction outcome the one that has received the most votes.

5.1.4. Naive Bayes

The classifier naive Bayes is a Bayes-theorem-based supervised learning method. The
underlying premise is that the presence of one character in one class has no bearing on the
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existence of another feature in a different class. The probability of occurrence is computed
using all possibilities, regardless of their interdependence. This classifier is optimal when
the dataset contains several characteristics and has a high dimensionality. We have used
the Gaussian naïve Bayes algorithm in this research as we have continuous data and
data with a normal distribution, for example, age, height, and weight. It is a basic and
quick classification algorithm capable of making rapid predictions. Using this method, we
obtained an accuracy of 77%.
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5.1.5. Multi-Layer Perceptron Neural Network

MLP is an additive neural network for feedforward. The data for processing are pro-
vided to the neural network’s input layer. The output layer is responsible for categorization
and prediction. Given that there is a probability range of 0 to 1, the sigmoid activation
function was utilized in this neural network.

A neural network’s input layer receives data to analyze, while the output layer predicts
and categorizes the data. The initial hypermeter to adjust the neural network is the number
of neurons in each hidden layer. Three layers make up the MLP classifier, one of which
is hidden. In the MLP classifier, the sigmoid activation function is used in the ANN.
The sigmoid activation function was used in this neural network as the probability exists
between 0 and 1. It is especially used for models where there is a designed model that
must predict the probability. There were 28 epochs, and the best performance was received
at epoch 22. Using this technique, we achieved an accuracy (Acc) of 73%. Similarly,
implementation was carried out with and without cross-validation. Then, the results
obtained were compared, as shown in Table 4.

Table 4. Comparison of different algorithms with and without cross-validations.

Approach Accuracy Acc with 10-Fold Cross Validation Score Acc with 5-Fold Cross-Validation

SVM 80 80 80
KNN 80 80 79

Random Forest 91 91 90
Naïve Bayes 77 77 76

MLP 73 71 64

5.2. Approach 2: Using EEG, BP, and Personalized Parameters

Similarly, we used all the chosen machine learning algorithms on the second dataset
to create a model that predicts the physiological impact of commuting. The second dataset
contains both primary parameters (heart rate, blood pressure, and EEG) and subjective
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parameters (age, weight, height, gender, any medicine consumed, smoking, alcohol intake,
location, weather temperature (degrees), and medical health).

5.2.1. Random Forest

Gini was utilized as a splitting criterion in this strategy. The nodes were expanded
until all leaves were pure or had fewer than the minimum samples with a 100-tree estimator
number and a 0-maximum depth. As pruning is a suitable approach to reducing overfitting,
we used the cross-validation method to check for overfitting. We compared this with
different combinations of the above parameters and obtained the best result with Gini
as the splitting criterion, none as the maximum depth, and 100 as the number of trees.
Random forest performed very well with an accuracy of 91%, as shown in Figure 9.
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Similar to this, ROC curves were employed to evaluate the effectiveness of algo-
rithms. In contrast to most other measures, they offer a graphical picture of a classifier’s
performance. Figure 10 displays the random forest’s performance.
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5.2.2. Naive Bayes

In this method, Gaussian naive Bayes performed well compared to other naive Bayes
classifiers. Gaussian was used as a distribution name for numeric predictors. An accuracy
of 78% was achieved using this classifier. Figures 11 and 12 show the confusion matrix and
ROC curve calculated to display the performance of this classifier.
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Similarly, when the support vector machine was applied to the second dataset, it
performed well with an accuracy of 80%. There was no change in the performance when
applied to either the first or second dataset. K-nearest neighbor and multi-layer neural
network gave an accuracy of 78% and 76% when applied to the second dataset which also
comprised personalized parameters.

Additionally, there were two classes for the accuracy, recall, and F1-score, with class
0 being a negative class and class 1 being a positive class. The values were computed to
check the accuracy of the prediction of true and false values in each class. For example,
if the value of precision class 0 was 1 that signified that 100% of the data were classified
correctly. We can use accuracy when we are interested in correctly predicting both 0 and
1 and our dataset is balanced enough. We utilized recall to identify as many actual 1 as
was feasible, while precision was employed to ensure that the forecast of 1 was as accurate
as possible. The F1 score is also a weighted average of recall and accuracy. The output of
several methods, when used on the second dataset, is shown in Table 5.
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Table 5. Comparison of the performance of different algorithms using different performance metrics.

Technique Accuracy Cross-Validation Score Precision Class 0 Precision Class 1 Recall Class 0 Recall Class 1 F1 Class 0 F1 Class 1

SVM 80 0.71 1.0 0.78 0.31 1.0 0.47 0.88
KNN 78 0.73 0.67 0.81 0.46 0.91 0.55 0.85

Random Forest 91 0.75 0.91 0.91 0.77 0.97 0.83 0.94
Naïve Bayes 78 0.73 1.0 0.76 0.23 1.0 0.38 0.86

MLP 76 0.64 0.60 0.80 0.46 0.88 0.52 0.84
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6. Analysis and Critical Review
6.1. Approach 1: Using Only the Main Objective Parameters (EEG, and BP)

Using this method, we used several artificial intelligence (AI) methods on the first set
of data, which had EEG and BP as the main parameters. SVM and KNN classifiers came in
second and third, respectively, with an 80% and 91% classification accuracy, outperforming
all other methods. Figure 13 shows that compared to the other options, the MLP classifier
works the worst.
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By utilizing cross-validation, the degree of precision changes little. When the K-fold
cross-validation approach was completed with K = 5 and K = 10, the accuracy of the
SVM classifier remained unaffected; however, the MLP classifier was significantly affected
compared to other algorithms. As shown in Figure 14, the random forest provided the best
degree of accuracy, which was 91%.
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6.2. Approach 2: Using EEG, BP, and Personalized Parameters

We applied the second dataset to this method. The second dataset included the key
parameters (EEG and BP) as well as age, height, smoking, weight, alcohol intake, heart rate,
and morning weather temperature. For the second dataset, random forest obtained the
highest accuracy score of 91%.
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6.3. PANAS Results

In this research, a PANAS questionnaire was used to collect responses from the
participants before and after the commute. This questionnaire comprised a scale of words
that according to a person’s surroundings, indicated their feelings and emotions. The
PANAS scale ranges from 1 to 5, as shown in Tables 2 and 3 above. All the participants
filled out the form before and after the journey. Using this form, we calculated the positive
and negative affect scores before and after the commute. A positive affect score is calculated
by adding the scores on lines 1, 3, 5, 9, 10, 12, 14, 16, 17, and 19 from Table 2. The scores
range from 10 to 50. A higher value indicates higher levels of positive affect. Similarly, a
negative affect score is calculated by adding the items 2, 4, 6, 7, 8, 11, 13, 15, 18, and 20 from
Table 3. The negative affect score also ranges from 10 to 50. Bigger values indicate higher
levels of negative affect. Once the positive and negative affect scores were calculated, we
averaged the pre-positive affect, pre-negative affect, post-positive affect, and post-negative
affect for all the participants. Table 6 presents the average positive and negative affect
before and after commuting.

Table 6. Comparison of positive and negative affect scores before and after the commute.

Avg Pre-Positive Affect Avg Post-Positive Affect Avg Pre-Negative Affect Avg Post-Negative Affect

34.73 28.60 11.16 19.05

In Table 6, the positive affect score before the commute is higher compared to the
positive affect score after the commute, which indicates that the participants’ feelings and
emotions were more positive before the commute. Similarly, the negative affect score
increased after the commute, indicating that the participants were less stressed before the
commute. It also indicates that participants were more positive or interested in going to
work before the commute.

7. Conclusions

This study developed several machine-learning-based approaches deploying multi-
modal data to create an intelligent model capable of predicting the commute impact on
human health. This research acquired responses to a questionnaire (PANAS) to illustrate
the effect of commuting on self-reported evaluations. The employment of a machine-
learning-based approach has led to the conclusion that systolic blood pressure was greater
post commute. It was independent of the length of the journey and whether it was a short
or long period of time. After the commute, beta low power in the EEG was found to be
greater than alpha low power. Alpha power is associated with a relaxed but awakened
state, which is observed when we are awake but relaxed and not processing a great deal
of information, whereas beta power is associated with a state of mental and intellectual
activity and outwardly focused concentration, reflecting a state of alertness.

An accuracy of 91% was achieved for the first dataset, which contained the objective
parameters (EEG and BP). While a 91.1% accuracy rate was attained for the second set
of data, which included objective parameters and personalized parameters. The random
forest algorithm showed the best performance in both datasets. The results obtained from
the selected classifiers supported the research hypothesis. Similarly, using PANAS, we also
found that positive affect was higher before the commute. This means that the participants
were more positive and interested in going to work before the commute. Negative affect
was higher after the commute, which means that participants were less interested or more
stressed. The objective results from the machine-learning-based method supported the
subjective results obtained using PANAS.

The goal of this study was to find out how commuting in a busy city affects a person’s
body and try to predict what those effects are based on machine learning approaches. It also
helps recording the experience of commuters with a special focus on the use of emerging
computing technologies. This research will help make a living lab for multimodal research
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experiments in areas such as body sensors, ubiquitous computing, and wireless telehealth.
Currently, the only people who can tell if someone is stressed or not are medical and
physiological professionals. Using a questionnaire is one of the conventional methods for
determining stress. This approach solely relies on the participants’ reactions: whether they
tremble indicates they are under stress or not. Stress can be found automatically, which can
improve social well-being and reduce the risk of health problems. It is important to make
an intelligent model that uses people’s body data to automatically figure out how stressed
they are and prevent hazards to their health such as high blood pressure. The objective
bio signals (heart rate and BP) were found to be higher post commute than pre commute,
regardless of the commute duration. Mood and stress are favorably linked with bio signals.
Based on the machine learning technique, we were able to determine the participants’ stress
levels after commuting.

Our future work will focus on designing a smart model to find out how commuting
affects productivity at work.
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