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Abstract: The identification of homogeneous subgroups of patients with psychiatric disorders can
play an important role in achieving personalized medicine and is essential to provide insights for
understanding neuropsychological mechanisms of various mental disorders. The functional connec-
tivity profiles obtained from functional magnetic resonance imaging (fMRI) data have been shown to
be unique to each individual, similar to fingerprints; however, their use in characterizing psychiatric
disorders in a clinically useful way is still being studied. In this work, we propose a framework that
makes use of functional activity maps for subgroup identification using the Gershgorin disc theorem.
The proposed pipeline is designed to analyze a large-scale multi-subject fMRI dataset with a fully
data-driven method, a new constrained independent component analysis algorithm based on entropy
bound minimization (c-EBM), followed by an eigenspectrum analysis approach. A set of resting-state
network (RSN) templates is generated from an independent dataset and used as constraints for
c-EBM. The constraints present a foundation for subgroup identification by establishing a connection
across the subjects and aligning subject-wise separate ICA analyses. The proposed pipeline was
applied to a dataset comprising 464 psychiatric patients and discovered meaningful subgroups.
Subjects within the identified subgroups share similar activation patterns in certain brain areas. The
identified subgroups show significant group differences in multiple meaningful brain areas including
dorsolateral prefrontal cortex and anterior cingulate cortex. Three sets of cognitive test scores were
used to verify the identified subgroups, and most of them showed significant differences across
subgroups, which provides further confirmation of the identified subgroups. In summary, this work
represents an important step forward in using neuroimaging data to characterize mental disorders.

Keywords: precision medicine; subgroup identification; ICA; constrained ICA; resting-state fMRI

1. Introduction

With the increasing availability of large-scale multi-subject data, precision medicine is
set to change modern medical care [1]. Traditional symptom-based medical care, in which
clinical decisions are made based on the data collected from a large population of patients,
is envisioned to be replaced by a more individual-based approach where personalized
treatment is grounded in deep assimilation of a subgroup of patients carrying unique
disease characteristics [2]. By taking into consideration the key characteristics shared by
specific subgroups of patients, precision medicine aims to target treatments that benefit the
patients the most and with sparse side effects. The core challenge of precision medicine
is to classify patients into homogeneous subgroups based on the biomarkers of a certain
disease, where individuals share homogeneity within a subgroup and express heterogeneity
across subgroups. This becomes more challenging for patients with psychiatric disorders
because the etiology of a majority of neuropsychiatric illnesses is unclear [3–6], even though
studies show that numerous subtypes exist within broad neuropsychiatric disorder domains
including schizophrenia [7], bipolar disorder [8], major depression [9,10], and autism [11].
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Traditionally, parsing patients with mental disorders is based on primarily subjective
measures including descriptive psychopathology, which originates from the expression
of each individual, behavioral characteristics, cognitive test scores, and other related
indices [12,13]. The classification accuracy is limited due to the limitation of identifying
internal abnormalities based on external symptoms and the uncertain relationship between
subtypes and post hoc descriptions [14].

Functional magnetic resonance imaging (fMRI), reflecting neural activity changes in
an area of the brain by measuring the blood-oxygenation-level-dependent (BOLD) signal,
has been attractive for understanding neurological changes associated with a broad range
of psychiatric disorders [15]. Besides the insights provided by fMRI, research also shows
that the functional connectivity profiles captured by fMRI preserve subject variability and
act as fingerprints [16]. The sustainability and reproducibility of the identified functional
profiles from fMRI provide a valuable opportunity for classifying psychiatric patients into
subgroups by analyzing their brain functions.

Independent component analysis (ICA) has been successfully applied to fMRI analysis
for estimating functional networks in a data-driven manner [17–19]. Hence, ICA can iden-
tify putative biomarkers of multiple neuropsychiatric disorders effectively [19–25]. ICA
decomposes a subject’s brain activities into a series of functional networks that are maxi-
mally independent. Analyzing individual-level ICA results from a large-scale multi-subject
dataset can be complicated because the components across subjects are not aligned due to
the intrinsic sign and permutation ambiguity of ICA, which makes it difficult to draw group
inferences [25]. Group ICA (GICA) [26] generalizes ICA to provide group inferences for
multi-subject analysis. GICA performs a first-level PCA on individual subject data followed
by a second-level PCA on the vertically concatenated data. A single ICA estimation is per-
formed only on the aggregated group-level data. The subject-specific result is achieved by
the back-reconstruction step in GICA, which allows for inter-subject comparison of the spa-
tial and temporal results. However, the assumption of common group-level spatial maps
makes GICA less competitive than another extension of ICA, independent vector analysis
(IVA), in preserving inter-subject variability [27–31]. IVA [32] extends ICA to multi-subject
analysis by effectively making use of the dependence across datasets [25,33]. By exploiting
the multivariate information across the subjects, IVA allows the subject datasets to fully
interact with each other [25]; this makes IVA a good candidate for subgroup identification.
Studies on the application of IVA to subgroup identification yield promising results that
meaningful functional networks are detected and show significant group differences across
the identified subgroups [34,35]. However, IVA is computationally expensive, and its
performance degrades as the number of datasets increases [34]. In [34,35], both of the
studies implemented IVA on only 50 subjects due to the computational complexity, which
limits the potential of identifying subgroups from a large-scale (a couple of hundred to
thousand of subjects) dataset.

To balance the trade-off between the accuracy and complexity of an algorithm, adding
a constraint is a general solution when certain domain knowledge is accessible. Compared
with general ICA, constrained ICA (c-ICA) allows multi-subject datasets to be connected
through the constraints and the components to be aligned across subject-level ICA analyses,
which provides a foundation for identifying subgroups from a large-scale dataset. Studies
on c-ICA show that providing robust prior information increases c-ICA overall performance
in source separation [36–41]. Compared with IVA, c-ICA overcomes the computational
complexity caused by over-parameterization due to its flexibility as it can be applied to
individual subjects. Compared with GICA, c-ICA better preserves inter-subject variability
as it analyzes individual subjects separately. Therefore, c-ICA is a good candidate for
subgroup identification because it is able to leverage the rich information of subgroups
from a large-scale dataset while maintaining a low computational cost.

This study aims to identify subgroups from a large-scale multi-subject resting-state
fMRI dataset consisting of 464 subjects, including patients with schizophrenia (176), psy-
chotic bipolar disorder (159), and schizoaffective disorder (129). The identification of
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subgroups from fMRI or other large datasets is a crucial problem that has not yet been
sufficiently addressed. To properly address this issue, we propose a pipeline that makes use
of functional activity maps for subgroup identification with the Gershgorin disc theorem,
which we call fSIG. The proposed pipeline uses a c-ICA- and Gershgorin disc-based method
to identify homogeneous subgroups within which subjects have similar functional network
activity patterns. Additionally, we present a flexible constrained algorithm, c-EBM, using
the entropy bound minimization (EBM) technique [42]. There are limitations of current
c-ICA algorithms that impose an orthogonality constraint on their demixing matrices and
only use fixed nonlinearity, which limits the solution space and also performance [36–41].
c-EBM overcomes the aforementioned limitations by providing a flexible density matching
and decoupling for the demixing matrix without the orthogonality constraint. To extract
reliable resting-state networks as references for c-EBM, group ICA-EBM [26,42] is incorpo-
rated into the fSIG pipeline. We demonstrate that results from c-EBM capture inter-subject
variability and can be used for subgroup identification studies. Preliminary work using the
Gershgorin disc theorem for subgroup identification study is presented in our previous
work [35], which is incorporated within the fSIG pipeline along with c-EBM in this work.
Our results show that the fSIG pipeline is able to identify homogeneous subgroups that
show significant activity differences in multiple meaningful brain areas such as the dorso-
lateral prefrontal cortex, anterior cingulate cortex, superior temporal gyrus, etc. These areas
have been connected with functional deficits in psychiatric disorders in multiple prior stud-
ies [43–45] . Compared with subgroups identified by the method in [34], results from fSIG
show various advantages including: (1) better subgroup structures such that subjects within
each subgroup have higher correlations than the subjects outside the subgroup in their
functional network activities; (2) more meaningful brain areas that show significant group
differences. Besides using neuroimaging data, three sets of cognitive tests scores: Social
Functioning Scale (SFS) [46], Brief Assessment of Cognition in Schizophrenia (BACS) [47],
and Positive and Negative Syndrome Scale (PANSS) [48] are statistically analyzed in order
to validate the identified subgroups from different perspectives. Results from fSIG show
significant group differences on most cognitive test scores across the subgroups identified
with neuroimaging data, which increases our confidence that the identified subgroups
are meaningful.

The rest of this paper is organized as follows: methods used to identify subgroups,
including ICA-EBM, c-EBM, and the Gershgorin disc-based method for subgroup identifi-
cation are presented separately in Sections 2.1–2.3. The data used in this study and the
preprocessing are introduced in Section 2.5. The template generation steps are listed in
Section 2.6. The implementation of c-EBM on subgroup identification and its corresponding
results are presented in Section 3, followed by discussions in Section 4.

2. Materials and Methods
2.1. ICA-EBM

The basic noiseless ICA problem can be modeled as [25]

x(v) = As(v), 1 ≤ v ≤ V, (1)

where x(v) = [x1(v), . . . , xN(v)]> is an observation vector (e.g., from a single subject) at
sample index v (superscript > represents transpose); s(v) = [s1(v), . . . , sN(v)]> are N
statistically independent, zero mean, and unit variance latent sources; and A ∈ RN×N is an
unknown invertible mixing matrix. Given the model, ICA estimates the latent sources by
finding a demixing matrix W ∈ RN×N such that the estimates y(v) = [y1(v), . . . , yN(v)]>,
where y(v) = Wx(v), are maximally independent. To simplify the notation, the sample
index v is suppressed in the rest of this paper. The ICA cost function, J (W), can be
represented as the mutual information among N source estimates yn for n = 1, . . . , N,
which can be written as a function of the demixing matrix W [25]
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J (W) =
N

∑
n=1
H(yn)− log |det(W)| − H(x), (2)

where H(yn) is the (differential) entropy of the nth estimation yn, log |det(W)| is a regu-
larization term preventing the demixing matrix W having small determinant and the cost
function being minimized by only scaling the estimates. The last term,H(x), is the entropy
of x and is constant with respect to W.

Sources can be estimated by minimizing J (W) with respect to W. In order to calculate
the entropy of the nth estimate,H(yn) = −E[log pyn(yn)], the probability density function
pyn(yn) is required. However, the estimation of a probability density function can be
computationally complicated [49]. Therefore, finding a flexible way to estimate the entropy
approximation is important for ICA. ICA by entropy bound minimization (EBM) estimates
entropy by utilizing a finite number of predefined measuring functions coming from
various distributions and the maximum entropy principle. Previous research [50] shows
that, with fMRI data, EBM provides better estimations of functionally relevant components
than other ICA algorithms such as Infomax.

In order to obtain a better model match for each source and simplify the optimization
procedure, a decoupling step is performed to divide the matrix optimization problem into
a series of vector optimization problems. One way of applying decoupling is to constrain
the demixing matrix W to be orthogonal [49]. However, the regularization term becomes
fixed, and the solution space shrinks with the orthogonality constraint. Another way of
implementing decoupling procedure on (2) is through the method proposed in [51], which
does not constrain W to be orthogonal. The original problem is simplified to minimize
the mutual information among the estimated sources with respect to each row vector wn,
based on which (2) can be rewritten as

Jn(wn) = H(yn)− log |d>n wn|+ C, (3)

where d>n is a unit vector that is perpendicular to all the rows of the demixing matrix
W except wn [51] and C is a constant that does not depend on wn. With the decoupling
procedure, the ICA-EBM cost function can be written as

Jn(wn) = −Om(n){E[Gm(n)(yn)]} − log |d>n wn|+ C1, (4)

where Om(n){E[Gm(n)(yn)]} measures the negentropy of the nth estimation and can be
solved numerically as in [42]; Gm(n), for m = 1, . . . , M, is a selected measure function from

a set of M (M = 4 in this paper) measuring functions G(x): x4, |x|
1+|x| ,

x|x|
10+|x| ,

x
1+x2 ; the value

of O(·) is calculated beforehand to alleviate the followed calculation; and C1 is a constant
with respect to wn.

2.2. Constrained EBM

ICA has been widely used as a fully data-driven method for fMRI analysis due to its
minimal assumptions about the data. When reliable references are available, the source sep-
aration performance of ICA can be improved by leveraging the prior information through
incorporating references such as spatial activation maps into the ICA cost function [36–41].

For a given observed dataset comprising V samples, the estimations are given by the
matrix equation Y = WX, with Y, X ∈ RN×V . The reference of the nth source estimate
yn = [yn(1), . . . , yn(V)]> ∈ RV is denoted by rn ∈ RV . The constraint function hn(·) is
defined as

hn(rn, yn) = θn − ε(rn, yn) ≤ 0, (5)
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where ε(rn, yn) quantifies the similarity between the nth estimates and its corresponding
reference and θn is the constraint parameter that tolerates the level of deviation of yn from
rn. The absolute value of the Pearson correlation is used as the measurement of similarity:

ε(rn, yn) = |corr(rn, yn)| =
∣∣∣∣ r>n yn

‖rn‖ ‖yn‖

∣∣∣∣ ∈ [0, 1]. (6)

With the decoupling procedure in (4), c-EBM is able to apply constraints to individual
sources without assuming the demixing matrix W to be orthogonal. The value of θn is
restricted between 0 and 1 and can be determined based on specific applications. Higher
values of θn provide estimates that are highly similar to the references, which can be helpful
when keeping the variability of the datasets is not the priority. On the other hand, estimates
from c-EBM with lower values of θn are less similar to the references but better at preserving
the variability across datasets, which is preferred for subgroup identification.

We apply an augmented Lagrangian-based approach to incorporate the inequality
constraint (5) into the cost function (4). A slack variable z is defined as hn(rn, yn) + z2 = 0
to replace the inequality constraint with an equality constraint. The cost function of c-EBM
can be written as [40]

J c
n (wn, µn) = Jn(wn) +

1
2γ

[
max{0, [γhn(rn, yn) + µn]}2 − µ2

n

]
, (7)

where µn is a Lagrangian multiplier and γ ∈ R+ is a learning parameter. Gradient descent
approach is used for minimizing J c

n with respect to wn, with the update

4wn = wi+1
n −wi

n

∝
∂J c

n (wn)

∂wn
= −O′m(n){E[Gm(n)(yn)]}E[gm(n)(yn)X]

− dn

d>n wn
−max

(
0, [γnhn(rn, yn) + µn]

)
sign(r>n yn)

( 1
V

Xrn

)
,

(8)

where i denotes the iteration index, and O(·)′ and gm(n) are the first order derivatives of
O(·) and Gm(n)(·), respectively. In each iteration, the Lagrange multiplier µn is updated by

µn ← max{0, [γnhn(rn, yn) + µn]}. (9)

2.3. Subgroup Identification

Functional connectivity profiles estimated using fMRI data are shown to be robust
and stable for identifying subject variability, similar to fingerprints. From this point of view,
a homogeneous subgroup (SG) can be defined as group subjects that have similar func-
tional network activity patterns, i.e., higher correlation within the group than the subjects
outside the group. Each component from the ICA results represents an activation map of
a functional network for a given subject. By taking advantage of the prior information
provided by the references rn, c-EBM is able to align the components across subjects which
alleviates the post-process alignment for subgroup study. Group ICA [26] is used to extract
reliable resting-state networks as reference followed by performing subject-level analysis
with c-EBM.

Subject-wise c-EBM is applied to K subjects separately. Because each subject is a
dataset for c-EBM, in this paper, we use K subjects and K dataset interchangeably. To
evaluate the similarity of a specified functional network across K subjects, let us recall from
(1) the ICA model for the kth subject

x[k](v) = A[k]s[k](v), 1 ≤ v ≤ V. (10)
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The vth sample of the source vector, s[k](v) = [s[k]1 (v), . . . , s[k]N (v)]>, is a realization of
the random vector s[k] ∈ RN . We define the nth source component vector (SCV) as
sn = [s[1]n , . . . , s[K]n ]>, which is a random vector independent of all other SCVs. Accordingly,
the estimate of the nth SCV is denoted by yn = [y[1]n , . . . , y[K]n ]>. For the vth sample, the
corresponding realization of the nth estimated SCV is yn(v) = [y[1]n (v), . . . , y[K]n (v)]>, where

y[k]n (v) = w[k]>
n x[k](v). Thus, for a total of V samples, the estimated sample covariance

matrix of the nth SCV is given by

Ĉn =
1

V − 1
YnY>n , where Yn =


y[1]n (1) y[1]n (2) . . . y[1]n (V)

y[2]n (1) y[2]n (2) . . . y[2]n (V)
...

...
. . .

...
y[K]n (1) y[K]n (2) . . . y[K]n (V)

 ∈ RK×V .

We note that Ĉn provides the correlation information among K subjects for a given func-
tional network. Subjects that have similar functional network activation patterns will show
higher correlation value within themselves, which forms block structures in Ĉn.

Subgroups are defined based on the correlation values of subjects with similar func-
tional network activation patterns. Specifically, these subgroups are identified as the
diagonal blocks within the sample covariance matrix Ĉn, where the entries within each
block represent the correlations between subjects in that subgroup. To obtain a sample
covariance matrix with diagonal block structures, we permute Ĉn based on the subjects’
indices from the subgroup identification results. Therefore, we can define the sample co-
variance matrix of the nth SCV which has B diagonal blocks as Ĉn = blkdiag

(
G1

n, . . . , GB
n
)
,

where Gb
n ∈ Rgb×gb , for b = 1, . . . , B, represents the correlation coefficients between the gb

subjects within one subgroup. In situations where there exists a distinct group of subjects
that do not display correlations with any other subjects or belong to any subgroups, the
final diagonal block in Ĉn may consist of an identity matrix. Typically, the diagonal-block
structure has off-diagonal block entries with lower values than those within the diagonal
block. This structure indicates that the subjects within the corresponding subgroup exhibit
a high correlation with one another.

The subgroup identification process consists of two steps: (I) cluster SCVs based on Ĉn
such that SCVs with similar activation patterns across subjects will be in the same cluster
Φ; (II) identify homogeneous subgroups based on the aggregated covariance matrix C̄
calculated from the ith cluster of the SCVs, Φi, 1 ≤ i ≤ I, where I is the total number of
clusters and C̄ = 1/Mi ∑m∈Φi

Ĉm is the mean matrix of the sample covariance matrices in
clusters Φi and Mi is the total number of SCVs included in Φi.

Because a homogeneous subgroup represents a group of subjects that have a similar
activation pattern in one or more functional networks, Step I uses the k-means algorithm to
separate SCVs into different clusters. The correlations of subjects’ activation patterns for
the SCVs within a cluster are optimized to the centroid of the cluster. The optimal number
of centroids is estimated to maximize the modularity of the aggregated sample covariance
matrix C̄. Process in Step I is inspired by the exemplars concept from [52], where a similar
process was applied to cluster dynamic functional network connectivity (dFNC) windows.
As both the covariance matrix of SCVs and dFNC windows reflect subjects’ connectivity
patterns, the exemplars concept is a good candidate for clustering SCVs. Step II reveals
subgroup structures from C̄ by implementing Gershgorin disc-based method [35], where
the number of eigenvalues of C̄ located outside the smallest Gershgorin disc determines
the number of subgroups and the corresponding eigenvectors identify the index of the
subjects that belong to each subgroup. The identified subgroups have higher intragroup
similarity than the rest of the subjects from the perspective of their functional networks’
spatial activation patterns. The flowchart of the proposed subgroup identification pipeline,
fSIG, is displayed in Figure 1.
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Figure 1. Flowchart of the proposed subgroup identification pipeline, fSIG. Step 1: Extract the resting-
state network (RSN) templates by applying group ICA-EBM on an independent dataset (COBRE).
Step 2: Apply c-EBM on subjects from BSNIP dataset with the extracted RSN templates and form
the sample covariance matrix Ĉn from the estimated SCV Yn. Step 3: Cluster the sample covariance
matrix Ĉn based on their similarity of connectivity patterns in Yn and calculate the aggregated
sample covariance matrix C̄i by taking the average of Ĉn within the same cluster Φi. The Gershgorin
disc-based method is applied to C̄i to identify the number of potential homogeneous subgroups and
the subjects that belong to each subgroup. In the plots of Gershgorin discs, the red dots and the circles
are the actual eigenvalues λn and the Gershgorin discs of C̄i.

2.4. Subgroup Validation

The validation of identified subgroups is based on statistical tests of spatial maps and
three sets of cognitive scores. To compare the spatial activation patterns of the RSNs that
show group differences between identified subgroups, a two-sample t-test is performed on
the activation value of each voxel across subjects belonging to each subgroup, and results
are plotted on the corresponding t-maps. False discovery rate (FDR) correction [53] is
implemented on all t-test results. Because there exists a possibility that more than one brain
area that shows group differences between the identified subgroups, global difference map
(GDM) [54] is used to summarize the distinctive power of each cluster. GDM is defined as

TΦi
GDM =

Qi

∑
q=1

|tq|
∑Qi

l=1 tl
TΦi

q , (11)
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where tq and TΦi
q are the t-statistic and the t-map of qth SCV that shows significant group

difference between identified subgroups in the ith cluster Φi separately.

2.5. Data Preprocessing
2.5.1. Resting-State fMRI

The resting-state fMRI datasets and the corresponding behavioral variables are from
the Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) [55,56]. Identical
diagnostic and recruitment approaches were applied to all recruited subjects at multiple
sites (Baltimore, Chicago, Dallas, Detroit, and Hartford). All subjects at each site underwent
a single 5 min run of resting-state fMRI on a 3-T scanner. Subjects were instructed to keep
their eyes open, focus on a crosshair displayed on a monitor, and remain still during the
entire scan [55].

We removed the first three time points and performed head motion correction followed
by the slice-timing correction. The corrected fMRI data were then warped into the standard
Montreal Neurological Institute (MNI) space through an echo-planar imaging template and
then were resampled to 3 × 3 × 3 mm3 isotropic voxels. The resampled fMRI data were
further smoothed using a Gaussian kernel with a full width at half maximum (FWHM)
equal to 6 mm. Quality control [57] was applied to select subjects. A total of 1143 subjects
passed quality control, comprising healthy controls (229 subjects), patients with various
diagnoses (464 subjects), and relatives of the patients (450 subjects). In this study, only data
from 464 patients are used, which included 176 individuals with schizophrenia, 159 with
psychotic bipolar disorder, and 129 with schizoaffective disorder.

2.5.2. Cognitive Test Scores

Three sets of cognitive test scores, the Social Functioning Scale (SFS) [46], the Brief
Assessment of Cognition in Schizophrenia (BACS) [47], and the Positive and Negative
Syndrome Scale (PANSS) [48], were collected from the same subjects. The SFS score
evaluates the key social skills and performance of individuals. Studies of functional imaging
have shown that there is a significant connection between social functioning and functional
brain imaging [58–61]. The BACS score includes six subtests and an overall composite
score that quantify the neurocognitive deficits of schizophrenia patients. The six subtests,
list learning, digit sequencing, token motor, verbal fluency, symbol coding, and the tower
of London, separately assess the functional abilities of verbal memory, working memory,
motor speed, verbal fluency, attention, and speed of information processing, and executive
function [47]. The quantification of functional abilities has provided insightful guidance
on determining the correlation between the altered functional connectivity strength and
the cognitive function decrease in individuals with psychosis [62–64]. The PANSS score
includes 30 disparate symptoms observed in psychotic patients and is evaluated with
a scale ranging from 1 to 7. The scores are able to consistently reflect three dimensions
of the symptom: positive, negative, and general [65]. PANSS has been used to quantify
the differences of functional networks across multiple psychotic probands [66,67]. The
aforementioned three sets of cognitive tests give a thorough validation and assessment
of the identified subgroups. For any missing cognitive test data of the subjects, they are
padded with the mean of that specific test or subtest from all the subjects with the available
test data.

2.6. Reference Generation
2.6.1. Data Acquisition and Preprocessing

The reference signals are generated from a large-scale resting-state fMRI data including
91 healthy controls (average age: 38± 12) collected by Center of Biomedical Research
Excellence (COBRE) [68–70], which is accessible from (https://coins.trendscenter.org/,
accessed on 10 January 2023). During the scan, participants followed the instructions to keep
their eyes open and stare passively at a central fixation cross. All resting-state fMRI data
were collected on a single 3-Tesla Siemens Trio scanner with a 12-channel radio frequency

https://coins.trendscenter.org/


Sensors 2023, 23, 3264 9 of 20

coil, TE = 29 ms, TR = 2 s, flip angle = 75◦, slice gap = 1.05 mm, slice thickness = 3.5 mm,
voxel size = 3.75× 3.75× 4.55 mm3. The fMRI scans were obtained over five minutes with
a sampling period of 2 seconds, which generates 150 time points for each subject. The first
six time points were removed to address the T1-effect. We performed motion correction,
slice time correction, and spatial normalization and re-sampled each subject’s data to
3× 3× 3 mm3 yielding 53× 63× 46 voxels in total.

2.6.2. Model Order and RSNs Selection

Group ICA using EBM algorithm [26,42] is applied to the 91 subjects with model
order set as 100. Because model order is an important step of the model match for ICA,
we designed a thorough process for order selection based on the concept of cross-ISI [71].
Cross-ISI, which is denoted as ISIC

ij = ISI(Gij), measures the consistency of the ith run to
the jth run, where

ISI(Gij) =
1

2N(N − 1)

(
N

∑
n=1

(
∑N

m=1 |gnm|
maxp |gnp|

− 1
)
+

(
N

∑
m=1

(
∑N

n=1 |gnm|
maxp |gmp|

− 1
))

, (12)

with Gij = AiWj with elements gnm [71,72], where Ai = W−1
i is the inverse matrix of the

demixing matrix of the ith run, | · | is the absolute value, and Wj is the estimated demixing
matrix of jth(j 6= i) run. The cross-ISI of the ith run, which measures the consistency of
the ith run to the other runs (R runs in total), is calculated by averaging all its pairwise
cross-ISI, which is defined as

ISIC
i =

1
R− 1

R

∑
j=1, j 6=i

ISIC
ij . (13)

The final model order is decided by the following steps:

1. Estimate the model order by entropy-rate based order selection using the finite mem-
ory length model (ER-FM) and autoregressive model (ER-AR) [73], as 71.73± 7.76
and 77.29± 7.74, respectively;

2. Test the estimated model order ranging from 25 to 110 with step size 5;
3. Perform 300 runs of ICA-EBM with random initialization on each one of the estimated

model orders;
4. Calculate Cross-ISI for all the runs. The distribution of Cross-ISI for all the orders is

displayed in Figure 2;
5. Select model orders that have relatively small values and small variance of Cross-ISI;
6. Select the best run that has the smallest Cross-ISI from the selected model orders;
7. Inspect the results based on the visualization of spatial activation of functional net-

works and the corresponding spectral summary.

Given the fact that GICA assumes a common spatial space for all the subjects, we
choose a higher model order of 100 to better preserve subject variability. The final 49 resting-
state networks (RSNs) components used as the functional network templates are selected
based on the inspection of their spatial maps, power ratio between low-frequency and high-
frequency signals, and location of brain regions. Those components are organized into eight
functional areas with respect to their functional and anatomical properties [74,75], namely,
auditory (AUD: 1 RSN), sensorimotor (MOT: 8 RSNs), visual (VIS: 10 RSNs), default-mode
(DMN: 11 RSNs), attentional (ATTN: 8 RSNs), and frontal (FRONT: 8 RSNs), cerebellar
(CB: 2 RSNs), and basal ganglia (BG: 1 RSN) networks. The visualization of the selected
RSNs and their aggregated functional network connectivity (FNC) matrix are given in
Figure 3a and 3b, respectively.
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Figure 2. Using Cross-ISI as an objective index of choosing an appropriate model order of group
ICA-EBM. The estimated model orders ranging from 25 to 110 with step size 5 and 300 runs of
ICA-EBM with random initialization are applied to each one of the estimated model orders. The
final model order is decided by considering various factors, including the lowest Cross-ISI value, the
variance of the Cross-ISI, and the anatomical and functional properties of each model order result.
For each box, the lines from top to bottom represent the maxim, the 25th and 75th percentiles, the
median, and the minimum of the Cross-ISI, respectively. The red plus signs represent outliers.

(a)

Figure 3. Cont.
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Figure 3. Selected functional network references and the corresponding aggregate functional network
connectivity matrix. (a) Visualization of the selected functional network references, which were
separated into eight functional areas based on their anatomical and functional properties. In each
functional area, one color in the composite maps corresponds to one component. (b) Aggregated
functional network connectivity matrix. Pairwise correlations between resting-state networks’ time
courses are first Fisher z-transformed and averaged across all subjects, then inverse z-transformed
back to display.

3. Results

With the aforementioned RSN templates, c-EBM is applied to all patients (464 subjects)
separately with the constraint parameter set as 0.3. The relatively lower constraint value
is used to preserve the inter-subject variability with respect to the active patterns of the
spatial maps.

The identified subgroups, the brain areas that show significant group differences, and
their corresponding statistical tests results are shown in Figure 4 and listed in Tables 1–4.
As mentioned in Section 2.3, after the clustering of SCVs, the aggregated SCV covariance
matrix C̄ is achieved by taking the average of the SCV covariance matrices within the same
cluster. Two subgroup detection methods, the Gershgorin disc-based method [35] and the
method in [34], are implemented and compared. In [35], eigenanalysis based on Gershgorin
disc was proposed to determine the number of subgroups and the subjects belonging to
each subgroup. For a given covariance matrix Ĉn, the sum of the absolute values of the
non-diagonal entries in the ith row is represented as Ri = ∑j 6=i

∣∣ρ[i,j]n
∣∣. A Gershgorin disc is

defined as a closed disc centered at ρ
[i,i]
n with radius Ri,

{
z ∈ R :

∣∣z− ρ
[i,i]
n
∣∣ ≤ Ri

}
, where

ρ
[i,i]
n is the entry on the ith row and ith column of Ĉn. Let Rmin be the radius of the smallest

Gershgorin disc. The number of subgroups is identified as the number of eigenvalues of Ĉn
that is located outside the smallest Gershgorin disc. For a normalized Ĉn with unit variance,
its diagonal entries are 1, i.e., ρ

[i,i]
n = 1. Therefore, eigenvalues that are located outside the

smallest Gershgorin disc should be greater than Rmin + 1. The subjects belonging to each
subgroup are identified by applying k-mean clustering on the corresponding eigenvectors.
The method presented in [35] identifies the subgroups by maximizing the modularity of
the given covariance matrix Ĉn. More details about applying the Gershgorin disc-based
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method to an aggregated sample covariance matrix C̄ can be found in Supplementary
Figure S1.
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Figure 4. Performance comparison between the Gershgorin disc-based method and the compared
method in [34] on the aggregated matrix C̄. The process of clustering SCVs with similar activation
patterns into the same cluster, resulting aggregated covariance matrix C̄ is displayed in (a). The
identified subgroups and the corresponding t-maps from the Gershgorin disc-based method and the
compared method in [34] are shown in (b,c) separately. Subgroups 1 and 2 are denoted by yellow
and magenta squares separately. Subgroups from both methods show significant activity differences
in meaningful brain areas such as the dorsolateral prefrontal cortex (dlPFC), anterior cingulate cortex
(ACC), etc. The Gershgorin disc-based method provides more meaningful brain areas that show
significant group differences and the subgroups that form better block structures in the aggregated
covariance matrix as is shown in C̄n(g) than the one formed by the compared method in C̄n(m).

As it is shown in Figure 4, Gershgorin disc-based approach reveals a better subgroup
structure than the method in [34] as the block structure is more obvious in the Gershgorin
disc-based result. This can be explained by the nature of the Gershgorin disc-based method
that takes the eigenspectrum of C̄ into consideration. The statistical tests on neuroimaging
and cognitive variables also show more significant group differences with the Gershgorin
disc-based method results. Three neuronetwork components that show significant group
differences are found by the Gershgorin disc-based method versus one component by the
method in [34]. We investigate the cognitive scores by applying MANOVA to each set
of tests. The MANOVA results for the Gershgorin disc-based method are F-score = 4.95
(p = 1.5× 10−4) for BACS, F-score = 5.3 (p = 7.21× 10−6) for SFS, and F-score = 7.57
(p = 6.01× 10−25) for PANSS separately. Two-sample t-test is implemented on each subtest
to assess differences between the subgroups. The identified subgroups from the Gershgorin
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disc-based method have shown significant group differences in the majority of subtests.
The two-sample t-test results of each subtest are reported in Table 2, Table 3 and Table 4,
respectively.

As shown in Figure 4b, the Gershgorin disc-based method detected three components
that show group differences in the spatial activation patterns. The subgroup identified by
the Gershgorin disc-based method has higher activation in the following brain areas relative
to the other subjects: the dorsolateral prefrontal cortex (dlPFC), Broca’s area, primary
somatosensory cortex, primary auditory, middle temporal gyrus, superior temporal gyrus,
supramarginal gyrus, and anterior cingulate cortex (ACC). The corresponding description
of these brain areas are defined using the Brodmann Area (BA) and Montreal Neurological
Institute and Hospital (MNI) coordinate system [76,77] in Table 1. Similar activation areas
that show group differences can be found in Figure 4c from the subgroups that are identified
by the modularization method [34]. However, the results from the Gershgorin disc-based
method reveal more functional network components that show group differences and have
lower p-values, e.g., the primary auditory area.

Table 1. Peak activations in the t-maps of the resting-state networks that show group differences.

Name BA MNI

dlPFC 9 −45, 33, 33
Broca-Operc 44 −60, 6, 18
Primary somatosensory cortex 1 42, −42, 63
Primary auditory 41 63, −27, 9
Middle temporal gyrus 21 −51, −51, 6
Superior temporal gyrus 21 53, −40, 8
Supramarginal gyrus 40 48, −38, 57
ACC 24 0, 30, 18

As shown in Figure 4b, the identified subgroup (marked by a yellow square) shows
significant group differences with the rest of the subjects (subgroup 2, marked by magenta
square) in a variety of brain areas that have shown to be related to schizophrenia, psychotic
bipolar disorder, and schizoaffective diseases. One of these brain areas is dlPFC, which
is part of the central executive network that is involved in multiple cognitive functions
including working memory [78,79], verbal fluency [80], etc. It is shown that patients with
psychiatric disorders experience obvious deficits in their working memory and have a
dysfunctional dlPFC area [81]. Studies in [47,82] show that performances on digit sequenc-
ing tests and verbal fluency tests are linked with working memory function. As shown
in Table 2, the digit sequencing test and verbal fluency test from BACS show significant
group differences between the identified groups. Subjects in the identified subgroup have a
higher mean value (−1.01± 1.29) on the BACS composite score than the rest of the subjects
(−1.59± 1.36).

Another meaningful brain area that shows significant group difference is ACC, which
is part of a large-scale brain network, the salience network, which has contributions to com-
plex functions such as communication, social behavior, etc. [83]. The connection between
the abnormalities of the anterior cingulate cortex and multiple psychiatric disorders is
studied in [43,44]. The statistical test results of SFS scores are also aligned with the previous
research that the subjects in the identified subgroups have better social skills than the rest
of the subjects. For example, the Prosocial Performance and Occupation/Employment
scores show great group differences. Furthermore, the mean value of the SFS total score is
133.79± 20.65 for the subjects within the identified subgroup, and 123.97± 23.19 for the
rest of the subjects.

The superior temporal gyrus is another identified important brain area where ab-
normalities have been found connected to language-related symptoms in schizophrenia
patients [45]. The severity of dysconnectivity in supramarginal gyrus shows different levels
of processing speed deficits in schizophrenia and psychotic bipolar disorder [84]. The
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symbol coding test from BACS assesses the attention and speed of information processing
ability of the subject. The mean score of the symbol coding test of the identified subgroup
is −1.01 ± 1.06 and −1.28 ± 1.15 for the rest of the subjects, which coincides with the
aforementioned neuroimaging results.

The validation from cognitive test scores brings a complete picture of the identified
subgroup. The subjects within the subgroup show higher activation in the brain areas such
as dlPFC, ACC, and superior temporal gyrus, and these subjects experience fewer functional
deficits in working memory, verbal fluency, and processing speed. The combination of the
clear block structure revealed in C̄, the meaningful functional brain areas, and the high
significance level, i.e., small p-value, of each subtest give high confidence in the identified
subgroup.

Table 2. Two-sample t-test of each test included in BACS (lower p-value is marked in bold).

BACS p-Value (Method in [34]) p-Value (fSIG)

List Learning 6.23× 10−3 1.61× 10−3

Digit Sequencing 2.43× 10−6 5.98× 10−6

Token Motor 4.19× 10−2 3.43× 10−3

Verbal Fluency 8.87× 10−4 1.60× 10−2

Symbol Coding 1.09× 10−2 9.67× 10−3

Tower of London 2.00× 10−4 1.64× 10−4

Table 3. Two-sample t-test of each field included in SFS (lower p-value is marked in bold and
non-significant values are marked with ∗).

SFS p-Value (Method in [34]) p-Value (fSIG)

Social Engagement 8.48 × 10−1 ∗ 9.46 × 10−2 ∗

Interpersonal Communication 8.00 × 10−5 5.71 × 10−5

Independence /Competence 1.41 × 10−1 ∗ 2.57 × 10−3

Recreation Performance 5.51 × 10−2 ∗ 4.41 × 10−5

Independence/Performance 1.94 × 10−2 4.88 × 10−5

Prosocial Performance 3.17 × 10−3 7.57 × 10−6

Occupation/Employment 2.49 × 10−1 ∗ 1.71 × 10−3

Table 4. Two-sample t-test of the positive, negative, and general symptoms in PANSS (lower p-Value
is marked in bold and non-significant values are marked with ∗).

PANSS p-Value (Method in [34]) p-Value (fSIG)

Positive Total 3.81 × 10−3 9.56 × 10−14

Negative Total 1.79 × 10−8 6.83 × 10−12

General Total 8.45 × 10−1 ∗ 6.86 × 10−4

4. Discussion

Identifying subgroups through the activation patterns of the RSNs is an effective
method to find subjects that show homogeneity in their neuropsychology profiles and there-
fore also homogeneity in their symptoms [34,35]. The accessible large-scale multi-subject
neuroimaging data provide new opportunities for studying homogeneous subgroups of
psychiatric disorders objectively. Along with subjects’ cognitive test scores, the identified
subgroups are thoroughly verified by utilizing both neuroimaging and cognitive test data.

In this study, we demonstrate the effectiveness of applying the proposed pipeline,
fSIG, to identify homogeneous subgroups from a large-scale fMRI dataset. By using a
constrained version of ICA, the connection of brain activities across subjects is established
through the constraint. We also illustrate the process of extracting stable RSN templates
that can be used for c-ICA, which is a critical step for any c-ICA algorithms. From the
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brain activities estimated by c-ICA, a Gershgorin disc-based method is used to explore the
homogeneous subgroup structures.

The identified subgroups from fSIG show significant group differences in multiple
meaningful brain areas including the dorsolateral prefrontal cortex, Broca-Operc, primary
somatosensory cortex, primary auditory, middle temporal gyrus, superior temporal gyrus,
supramarginal gyrus, and anterior cingulate cortex. These brain areas have been reported
in earlier research to be insightful biomarkers of various psychiatric disorders. Three sets
of cognitive test scores are included in the study to verify the validation of the identified
subgroups. The observed abnormality in the aforementioned brain areas is consistent with
the functional deficits observed from the cognitive test scores. These observations also
show that patients in the identified subgroup from the B-SNIP dataset experience less
severe symptoms and brain function deficits compared with the rest of the patients.

We find it interesting that the identified subgroups from the Gershgorin disc-based
method show significant group differences in both dlPFC and ACC areas. The abnormalities
observed in dlPFC and ACC areas are consistent with the functional deficits observed
in the cognitive test scores. Studies from [85,86] show that the functional networks to
which dlPFC and ACC belong, the central executive network and salience network, play
critical roles in connecting heterogeneous symptoms of psychiatric disorders with the
pathophysiological mechanism. This confirms the significant group differences observed
from the PANSS scores, which are shown in Table 4. The consistent results that are drawn
from different types of data increase our confidence that the identified subgroups are
meaningful. Compared with the method proposed in [34], the Gershgorin disc-based
method shows better group structure in the covariance matrix of the SCVs and also lower
p-values overall. The consistency that the results coming from two different methods
coincide with each other increases the confidence in using the connection of brain activities
to identify potential homogeneous subgroups.

We note that we only refer to two methods, the Gershgorin disc-based method and
the method described in [34], for the second step of our subgroup identification problem.
The main reason for this is that the identification of subgroups from fMRI or other large
datasets is a crucial problem that has not yet been sufficiently addressed in the literature. To
date, only two related works, namely the Gershgorin disc-based method and the method
described in study [34], have utilized SCVs for subgroup identification in this research
field. However, the previous work in [35] cannot be compared directly with the method
in [34], as the Gershgorin disc-based method was applied to individual SCV covariance
matrices. In this study, the proposed fSIG pipeline enables a direct comparison of these
two methods. Besides the proposed pipeline and the improved computational efficiency,
compared with previous work [34], our results demonstrate that the Gershgorin disc-based
method identifies subgroups that exhibit more significant group differences in various
cognitive scores than the other method.

Even though the current study shows promising results in identifying homogeneous
subgroups, there are some areas worthy of further exploration. The RSNs references used
for this study are generated from a single site fMRI data, COBRE, which can be improved by
incorporating subjects from multiple sites. ICA-EBM is used for reference generation in this
study and the impact of references generated by other ICA algorithms will be investigated
in the future. The current c-EBM algorithm requires the specification of a constraint
parameter, a variation of the method that can adaptively select a constraint value based on
the statistical properties of the estimates, and the references might be desirable. The current
results of the identified subgroups are based on the Gershgorin disc-based method and
other types of identification approaches such as community detection are in the realm of
research interests as well. We also noticed that the Gershgorin disc-based method has some
limitations. For example, the number of subgroups identified by the Gershgorin disc-based
method may be affected by the dimension of the SCV sample covariance matrix. When the
dimension becomes large, the radius of the smallest Gershgorin disc increases, which can
cause an underestimation of the number of subgroups. Supplementary Figure S2 displays
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the distribution of subjects with different diagnosis labels across the two subgroups that
were identified. We note, however, that this distribution of subjects with different diagnosis
labels does not provide a definitive characterization of the identified subgroups. Therefore,
we have also used behavior variables or cognitive scores to validate the subgroups. In future
studies, we aim to explore the identification of disease subtypes. Such subtype information
would be valuable for identifying biomarkers and improving our understanding of the
etiology of different diseases. Given the complexity of identifying subgroups in mental
disorders, the continued development of effective subgroup identification methods from
large-scale fMRI data is needed for future research.
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