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Hameed, A.; Możaryn, J.; Ordys, A.;

Sibilski, K. Analysis of the Snake

Robot Kinematics with Virtual

Reality Visualisation. Sensors 2023, 23,

3262. https://doi.org/10.3390/

s23063262

Academic Editor: Enrico Meli

Received: 17 February 2023

Revised: 11 March 2023

Accepted: 13 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Analysis of the Snake Robot Kinematics with Virtual
Reality Visualisation
Anna Sibilska-Mroziewicz 1,*,† , Ayesha Hameed 2,† , Jakub Możaryn 2 , Andrzej Ordys 2
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Abstract: In this article, we present a novel approach to performing engineering simulation in an
interactive environment. A synesthetic design approach is employed, which enables the user to
gather information about the system’s behaviour more holistically, at the same time as facilitating
interaction with the simulated system. The system considered in this work is a snake robot moving on
a flat surface. The dynamic simulation of the robot’s movement is realised in dedicated engineering
software, whereas this software exchanges information with the 3D visualisation software and a Vir-
tual Reality (VR) headset. Several simulation scenarios have been presented, comparing the proposed
method with standard ways for visualising the robot’s motion, such as 2D plots and 3D animations on
a computer screen. This illustrates how, in the engineering context, this more immersive experience,
allowing the viewer to observe the simulation results and modify the simulation parameters within
the VR environment, can facilitate the analysis and design of systems.

Keywords: Virtual Reality; snake robot; simulation of multi-body systems; kinematics

1. Introduction

Biomimetic robots imitate living organisms’ appearance, shape, or behaviour and are
designed to utilise biological principles to replicate natural behaviour and solve complex
problems. A snake robot is an example of a biomimetic robot characterised by its high level
of redundancy and numerous degrees of freedom. The robot’s movement is produced by
changes in its internal shape, similar to the motion of natural snakes. The robot’s joints,
which link its segments, are defined by a series of angles that describe its configuration [1].

Virtual Reality (VR) has an important role in Industry 4.0, the fourth industrial revolu-
tion, and offers new ways to use VR in robotics applications through virtual manufacturing.
Integrating VR with robotics has several potential uses [2], including enabling the planning
of robot trajectories through trial and error in VR rather than using existing industrial
systems; training operators; assisting surgeons in robotic surgery procedures; developing
safe procedures for human-robot collaboration; and creating an integrated environment
for control design that encompasses models (digital twins), control algorithms, and VR.
VR simulation provides a more immersive and engaging way to study simulation results.
In the virtual environment, abstract properties of the motion, such as angles or velocity
vectors, can be displayed. The VR application also allows the user to change their per-
spective, stop or rewind the simulation, and manipulate simulation parameters within the
VR environment.

VR provides a cost-effective approach to controlling virtual robots in a simulated
environment and facilitates the training of operators. VR is also a valuable tool for testing
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complex simulations involving human–robot collaboration. In [3], the authors developed a
virtual environment for validating mathematical models of robots. In addition, multiple
users can be tracked in VR while performing assembly tasks, thereby aiding in designing
effective workplace layouts for humans and robots in the industrial setting [4].

Robot-assisted surgery is a promising field that employs VR simulators to train doc-
tors in various clinical procedures, including those using da Vinci robots. The immersive
perspective of VR visualisation provides medical students with an unprecedented under-
standing of anatomy, enabling the exploration of organs at both the micro and macro scales.
Moreover, immersive, dynamic models of physiological and pathological processes could
result in an experience of “immersive medicine” [5].

Programming by Demonstration is a technique for teaching robotic systems new
behaviours from a demonstration by a human operator. To reduce programming com-
plexity, robots can be taught new movements in VR environments [6]. A novel method-
ology based on heuristic beam search, described in [7,8], has been implemented in VR.
This algorithm plans collision-free paths for n degree-of-freedom robots, with human in-
volvement in defining the free space or collision-free volume and selecting the start and
goal configurations.

To ensure safe and efficient collaboration between humans and robots, planning
the workspace layout and programming of the industrial robotic work cell is essential.
VR can aid in achieving these tasks. Ref. [7] highlights the use of VR in planning the
workspace layout and programming the robotic cell, which can improve the safety of
human–robot collaboration. Furthermore, VR-enhanced Computer-Aided Design (CAD)
software provides an effective way to create and visualise an appropriate layout for the
robotic cell.

VR has been demonstrated to enhance learning for high school students by simplify-
ing and simulating complex concepts across various fields. Virtual Reality experiments
have also been found to improve student understanding in science courses and to increase
their interest in learning through immersive experiences [9–12]. Virtual Reality labora-
tories provide a safe environment for students to perform experiments without the risk
associated with real-world materials or hazardous situations. In mathematical subjects, ge-
ometric models can be taught effectively using VR, as students can easily visualise complex
geometry models to improve the quality of their education.

One further application of Virtual Reality is testing and implementing control algo-
rithms for various systems. In [13], a solution is proposed for decentralised formation
tracking of groups of mobile robots using consensus and Model Predictive Control. The
solution is designed to ensure collision avoidance and communication topology, with
experimental results verified in a VR environment. In [14], an illusion-based VR interaction
technique is proposed where the virtual hand of a user is moved during a reach to guide
their physical hand to a specific location. The proposed method is validated for developing
a control approach to achieve redirection and desired point and path tracking. Addition-
ally, VR simulations are used to test and train autonomous transition control methods
for drones, which assist farm workers in scouting to improve the efficiency of vineyard
management [15], and in smart cities [16].

VR is a technology that allows the visualisation and interaction with three-dimensional
environments, including objects’ behaviour. It is used to simulate and study complex envi-
ronments for entertainment and research purposes. VR interfaces are used for visualisation,
interaction with robotics, planning, usability, and infrastructure for both experts and non-
experts [17]. However, the use of VR with biomimetic robotics has not been extensively
researched. More specifically, there is limited research on using snake robots in VR. How-
ever, the motion of haptic snakes has been investigated for multiple feedback methods,
such as tapping and gesture feedback [18].

A comprehensive review is presented in the literature from 2015 to 2019 that covers
VR applications in medical robotics [19]. In [20], the author presented the VR challenges for
manufacturing systems for industry 4.0, which conclude that the adoption of immersive
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technologies of AR/VR systems in manufacturing industries has persistently increased.
Moreover, research possibilities are in areas that improve the flexibility of multiple users in
a VR environment and the development of methodologies for simultaneous interface and
concurrent interactions among collaborators in a VR environment. Another promising area
is a mixed reality framework for human–robot collaboration [21].

The dynamical model of the snake robot and its kinematics was described in several
articles [22,23]. In this article, it was shown that when the snake robot moves on the
ground, the friction or drag force coefficients of the snake robot are larger in a sideway
direction than in the longitudinal direction of the link. However, there is a lack of visual
implementation. Previous articles on the subject analyse the joint angles’ angular velocities
and the robot’s head or mass centre linear velocity [24–28]. In these articles, snake robots
used Line-of-Sight (LOS) guidance control law to exponentially stabilise the desired straight-
line path under a given condition on the look-ahead distance parameter. However, our
article describes Point-of-Sight (PoS) control law. Moreover, our article presents a new
method for enhancing kinematic studies by analyzing the velocity in all segments’ normal
and tangential directions. Simulation results include plots generated in MATLAB and
screenshots taken in a VR environment.

In this paper, we present a new approach for evaluating control systems in snake
robots. Currently, Virtual Reality (VR) and augmented reality (AR) are employed to vi-
sualise the motion of machines and multi-body systems, utilising virtual entities and
presenting information in standard graphs and numerical data. In particular, AR offers ad-
ditional information often imperceptible in the physical world. In this study, we introduce
supplementary layers of information, such as vectors (e.g., velocity, friction, torque) and
colours, to facilitate a more comprehensive understanding of how parameter changes im-
pact the control system’s quality in snake robots. We employ a synesthetic design approach
to enable insightful evaluations of the algorithms used in robotics. This paper proposes
a new method for presenting engineering simulation results in VR. Specifically, it investi-
gates the movement of a snake robot on a flat surface and scrutinises how various model
parameters affect its motion. The study utilises MATLAB to compute the robot’s dynamic
model and control algorithms while the Unity engine generates the virtual environment
and animations.

This article is structured into five sections. Section 1 introduces the use of VR tech-
nology in engineering and advances in biomimetic snake robots. Section 2 discusses the
dynamic model of the snake robot, the control algorithm used for the robot to reach the
destination position, and the implementation details of the applications created in MAT-
LAB and Unity. The simulation results are presented in Section 3. The obtained results are
discussed in Section 4. Finally, Section 5 provides the conclusions and future work.

2. Materials and Methods
2.1. Snake Robot Model

The model of the snake robot depicted in the article is based on widely used equa-
tions of snake robot motion on a flat horizontal surface. A detailed description of the
model can be found in [22,29]. This dynamical model can be derived based on the torque
equilibrium equation:

Mθ θ̈+ Wθ̇
2 − lSθKfR,x + lCθKfR,y = DTu (1)

where: Sθ = diag(sin(θ)) ∈ RN×N and Cθ = diag(cos(θ)) ∈ RN×N are square matrices
with trigonometric functions of link angles at the diagonal and zeros in the remaining
elements, and link angles θ = [θ1, . . . , θN ]

T ∈ RN in a global coordinate system.
To define the robot’s configuration, there is a differentiation between link angles θi

and joint angle φi indicated in Figure 1. A link angle is defined as an angle between
the link and a global x-axis, while a joint angle is a difference between the link angles
of two neighbouring links φi = θi − θi+1. The vector u ∈ RN−1 defines the controllable
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parameters–actuator torques exerted on successive links. The fR,x and fR,y vectors represent
components of friction force on the links in global x- and y-directions. This model assumes
viscous friction forces acting on the mass centre of the links. The friction force is defined in
a local coordinate system attached to each robot’s segments, as shown in Figure 1. Friction
force is proportional to the segment’s linear velocity vi and coefficients ct and cn:

fR,i = −
[

ct 0
0 cn

]
vi (2)

(a) (b)

Figure 1. Assignment of (a) joint and link angles (b) friction force in the normal and tangential direction.

Anisotropic friction force enables the snake robot’s movement by producing lower
friction coefficients, denoted as ct, in the joints’ longitudinal direction compared to the
normal direction, where the coefficient is denoted as cn. This difference in coefficients
allows the joints to slide forward.

2.2. Path Following Controller

A simple approach for path-following is the Line-of-Sight (LoS) method [30], which
involves moving towards a series of pre-defined reference points. This method requires
the robot to follow a straight line between its current and target positions. Once the robot
reaches the desired accuracy for the current target position, it moves on to the next reference
point in the sequence.

The gait pattern of a snake robot’s commonly used control system is lateral undulation,
described in [31]. The dynamical analysis of various snake robot motion patterns can be
found in [32], and the performance of different motion strategies is discussed in [33]. For
the lateral undulation pattern, each joint angle i of the robot, where i belongs to the set
1, . . . , N − 1, is controlled using the following equation

φi,ref = α sin(ωt + (i− 1)δ) + φo (3)

where α and ω are the amplitude and angular frequency, respectively, of the sinusoidal joint
motion, δ determines the phase shift between the joints, and φ0 is a joint offset, which we
assume to be identical for all joints. The joint offset controls the direction of the locomotion
and allows the robot to reach the destination point. It is defined as the difference between
the heading angle θ̄ and heading reference angle θ̄re f as

φo = kθ

(
θ̄ − θ̄ref

)
(4)

The controller gain kθ > 0 influences the control system efficiency. The heading angle
of the snake robot is defined as an average of link angles:

θ̄ =
1
N

N

∑
i=1

θi (5)

The heading reference angle θ̄re f designates a direction to the reference position
as follows

θ̄re f = − arctan
(

py

px

)
(6)
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where px and py are distances between the robot’s head and destination point along
the x- and y-axes of the inertial coordinate system. The joint torque is determined according
to the control law given as

u = kp(φref −φ)− kdφ̇ (7)

The system performance depends on controller gains kp > 0 and kd > 0.

2.3. MATLAB Simulations

The equations of motion for the snake robot were coded in MATLAB software and
solved using the ode solver. Additionally, control algorithms were incorporated into the
software implementation, enabling the snake robot to reach a specified position while
keeping track of its centre. This program can simulate the system for various parameter
sets, including adjustments to the target position, friction coefficients, and controller gain.

Two coordinates define the destination position in the inertial coordinate system. A
series of points can also be defined, and once the robot reaches one of them, it will move on
to the next in the sequence. If the algorithm does not define the subsequent target point,
the robot continues to move forward using the last calculated value of the joint offset.

The friction coefficients in the normal and tangential directions are the primary pa-
rameters determining the snake robot’s behaviour. A distinct difference in the anisotropy
of friction force is necessary for the robot to move forward. The simulation program lets
the user define the viscous friction coefficient within 0.1 to 10 (Ns/m).

To direct a robot towards a target orientation, we manipulate a joint offset defined in
Equation (4). The control algorithm’s effectiveness is determined by the controller gain
kθ > 0, which can vary between 0 (when the robot’s dynamics are not influenced by path
following) and 3.

The simulation generates several plots, such as the robot’s trajectory, joint angles, and
control signals, as well as graphs depicting the heading angle and reference heading angle’s
progression. Additionally, each segment’s resultant position and orientation at discrete
simulation intervals are saved to a txt file or transmitted directly to the visualisation
program. This data allows visualisation programs to accurately reproduce the snake
robot’s motion.

The MATLAB implementation is available at GitHub webpage (https://github.com/
asibilska/Snake-Robot-Locomotion-MATLAB-, Retrieved 3 February 2023) and Matlab
Central webpage (Snake-Robot-Locomotion-MATLAB, MATLAB Central File Exchange.
https://uk.mathworks.com/matlabcentral/fileexchange/102910-snake-robot-locomotion-
matlab Retrieved 3 February 2023). A full description of the program and implemented
snake robot model can be found in [34].

2.4. Visualisation of the Snake Robot Motion
2.4.1. Simulink 3D Animation

Initially, the robot’s movement was visualised using Simulink 3D Animation Toolbox,
a MATLAB library that utilises the Virtual Reality Markup Language (VRML). The segment
geometry was imported from the STL file created in SOLIDWORKS. MATLAB calculated
the segment positions and orientations, which were saved in a txt file to create the animation.
Figure 2 shows that this visualisation provided a deeper understanding of the snake robot’s
motion from various perspectives. However, manipulating the camera in the program was
challenging, and the graphics of the solution were relatively inadequate. Thus, a different
visualisation approach was employed for the snake robot.

https://github.com/asibilska/Snake-Robot-Locomotion-MATLAB-
https://github.com/asibilska/Snake-Robot-Locomotion-MATLAB-
https://uk.mathworks.com/matlabcentral/fileexchange/102910-snake-robot-locomotion-matlab
https://uk.mathworks.com/matlabcentral/fileexchange/102910-snake-robot-locomotion-matlab
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Figure 2. Visualisation of the snake robot implemented in Simulink 3D Animation.

2.4.2. Three-Dimensional Simulations in Unity

The latest version of the 3D visualisation for the snake robot was developed using
Unity, a popular game engine known for its advanced graphical animations. Besides
creating three-dimensional and two-dimensional games, Unity is also used in several indus-
tries, including film, automotive, architecture, engineering, and construction. Its intuitive
editor has drag-and-drop functions and scripting abilities based on the widely used C# lan-
guage. The Unity engine offers a comprehensive training platform with numerous tutorials,
examples, and specialised training paths, making it an ideal choice for this application.

To improve VR software development, a useful tool is the Software Development Kit
(SDK), which offers a collection of pre-built and configured interactions for VR projects.
The XR Interaction Toolkit, which is one of the most popular free SDKs, is used in our
project. Other widely used solutions include the Oculus Interaction SDK and the Windows
Mixed Reality Toolkit. The SDK provides script libraries to implement interactions in VR
projects, such as grabbing objects, interacting with the user interface, recognising hand
gestures, locomotion systems, and physics interactions.

The implemented program allows running simulations on Oculus Quest 2 (Meta Quest
documentation, http://developer.oculus.com/documentation, Access date: 3 February
2023), a VR headset developed by Oculus, a division of Meta. It is a standalone device
that can run games and software wireless under an Android-based operating system. It
supports positional tracking with six degrees of freedom, using internal sensors and an
array of cameras in the front of the headset rather than external sensors. An Oculus Quest
2 set consists of VR goggles with a resolution of 3664 × 1920 (1832 × 1920 per eye) and a
refresh rate of 90 Hz, and two symmetric controllers enabling tracking of the user’s hands.
They allow the user to interact with the virtual environment by pointing at objects with a
ray or pressing the controller’s buttons.

The visualisation program utilises the CAD-designed geometry of the snake robot
segments. Using data generated by MATLAB, the program interpolates the position and
orientation of the segments in consecutive moments. The Unity scene, as shown in Figure 3,
features an immersive environment, lighting, and a camera that tracks the user’s head
movement. Additionally, a Graphical User Interface (GUI) allows the user to interact with
certain elements of the scene. The user can move around in either continuous or telepor-
tation mode. The GUI contains grabbable and interactable parts, such as the reference
position or buttons.

http://developer.oculus.com/documentation
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Figure 3. Virtual scene with the snake robot implemented in Unity.

There is also an optionally available grid that features white marks that are 1(m) apart
and a red mark that indicates the origin of the Cartesian coordinate system.

One of the main benefits of visualising the snake robot’s movement in VR is the user’s
ability to observe it from any distance or perspective. This means the user can change the
camera position or move around the virtual scene. To switch to a different pre-defined
camera position, the user must press one of the controller buttons, X/Y/A/B, as shown in
Figure 4.

Figure 4. Oculus Quest 2 controllers with buttons changing the camera position.

There are five sets of camera positions available, each offering a unique perspective:

• No button pressed—default stationary camera at eye-level position and horizontal
orientation. This camera observes the GUI in front of the user, and the snake robot is
seen from a height like it is moving on the floor.

• The B button pressed—the camera is facing downwards perpendicular to the floor. It
moves with a robot’s centre and rotates to track the θ̄ angle.

• The A button pressed—this camera simulates a camera attached to the robot’s head. It
is moving and rotating along with the first segment of the robot.

• The Y button pressed—the camera is stationary and is facing downwards, perpendic-
ular to the floor.

• The X button pressed—the camera is in a low position behind the target position. It
changes position when the robot reaches subsequent targets.

The user can manipulate the Oculus Quest 2 controllers to control the snake robot’s simu-
lation. The user can increase or decrease the simulation’s speed, pause, or rewind it. The
trigger button shown in Figure 5 can be used to stop or rewind the simulation, with the
amount of pressure applied to the button determining the magnitude of the rewind. The
user can decelerate the simulation by pressing a push button, and the deceleration rate
depends on the force applied. Further, haptic feedback (controller vibrations) may occur
when reaching a designated position.
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Figure 5. Oculus Quest 2 controllers with buttons used to control the simulation speed.

The Unity game engine provides a way to display an interactable Graphical User
Interface (GUI) in VR. The GUI consists of elements such as sliders, drop-down lists, and
push/toggle buttons, and the user interacts with them by casting a ray from the controllers,
as shown in Figure 6. In our program, the GUI is stationary and located in front of the
default camera position. It enables the user to restart the simulation and change the
data source. There are two simulation modes available. In the first “off-line” mode, an
application reads previously calculated data from a text file generated by MATLAB. In this
mode, the GUI displays a drop-down list with all files uploaded to the application.

Figure 6. Graphical User Interface and controllers ray allowing interaction with GUI.

In the second “real-time” mode, the robot’s position and orientation are calculated in
real-time while the visualisation runs on Unity. In this case, the simulation in MATLAB
and VR visualisation run in parallel. Unity and MATLAB communicate via TCP Sockets to
exchange information about simulation parameters and trajectories. In “real-time” mode,
users can assign the robot’s destination point and change the simulation parameters in GUI,
such as friction coefficients in the normal and tangential directions and the path following
gain. The GUI provides sliders to change parameter values in a given range. Application
modes can be changed by marking the “data form file/data from MATLAB” checkbox
in GUI.

The VR GUI consists of checkboxes that allow users to turn on/off the visualisation
of selected physical properties of the robot’s motion, such as the segment’s velocities and
guidance angles. The segment’s velocity is depicted as a vector attached to the segment’s
centre. The velocity of the segment is calculated as the quotient of the change in its position
by the time of data sampling. The user can select by GUI slider which segment’s velocity
should be displayed.

There is a panel shown in Figure 7 attached to the user’s left hand. It shows the current
values of selected parameters:

• time,
• heading angle,
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• reference heading angle,
• position of the snake robot’s head in global X−Y coordinates.

Plots are generated in MATLAB, and display:

• X−Y position of robot head and remaining segments,
• heading angle versus reference heading angle,
• joint angles,
• link angles,
• tangential and normal components of segment velocities,
• absolute and global X−Y components of the snake robot’s head velocity.

Figure 7. Screen from VR application showing a panel with simulation parameters and plots gener-
ated in MATLAB.

The application also provides visualisation of the guidance angles. The heading
reference angle, denoted by θ̄ref, is displayed as a red line that connects the destination
point, the robot’s head, and the horizontal line. Meanwhile, the heading angle, denoted by
θ̄, is represented by a yellow line.

The VR environment includes a red cylinder to represent the location of the destination
point that the robot is following. In “off-line” mode, the destination position and reaching
time are saved in a file. In “real-time” mode, the user marks the desired position on the
floor with controller rays and clicks the trigger button to confirm the new position. The
application sends the reference point to MATLAB via a TCP protocol, and the control
algorithm calculates the target trajectory. The robot’s segment’s calculated positions are
sent back to Unity, and the robot’s configuration is displayed in VR. If the user assigns
a new target position, the algorithm restarts, and the snake robot returns to the origin.
This allows the user to observe the algorithm’s performance and compare results for
different parameters.

3. Results

For kinematic analysis of the snake robot, described by mathematical model 1, we
have carried out the following numerical studies for varying parameters:

• friction coefficients in normal cn and tangential ct directions;
• parameters of the lateral undulation gait pattern, Equation (3): α, ω, δ;
• controller gains, kp and kd, described in control law Equation (7) and kθ described in

joint offset Equation (4).

For all analysis, we have assumed the same robot’s geometrical parameters:

• number of robot segments: N = 10;
• the segment mass: m = 1;
• the segment length: l = 0.2;
• the moment of inertia: J = ml2/3.
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3.1. Friction Coefficients

The anisotropy of the friction coefficient was introduced in Equation (2), where ct is
the friction coefficient in the tangential direction and cn in the normal direction. During
studies, we have analysed four cases:

• ct = 0.1 and cn = 10;
• ct = 1 and cn = 10;
• ct = 10 and cn = 10;
• ct = 10 and cn = 1.

All simulations in this subsection were performed for:

φi,ref = 40◦ sin(40◦t + (i− 1)43.5◦) (8)

and
u = 1(φref −φ)− 2φ̇ (9)

3.1.1. Robot’s Configurations for Different Friction Coefficients

Figures 8–11 display different sets of parameters and their effects on the robot’s
configurations. Each figure contains three screenshots taken from the VR application, with
one plot per figure.

The MATLAB-generated plot displays the positions of the robot’s head (indicated by a
thick blue line) and its remaining segments (indicated by dotted lines) on the x- and y-axes.
The robot’s configuration at t = 5 seconds, t = 10 seconds, and t = 24 seconds is marked
on the plot with pentagrams, circles, and triangles, respectively. Moreover, the bottom plot
shows the position of the robot’s head along the x-axis, while the left plot shows its position
along the y-axis.

At the 5th, 10th, and 24th seconds of the simulation, screenshots were taken in VR. The
camera used in these shots was fixed and placed parallel to the floor, as seen in Figure 4,
where the camera is attached to the Y button. A grid representing the coordinate system
was displayed in the virtual scene.

Figure 8. Trajectories of robot segments for ct = 0.1 and cn = 10 (a) and robot configurations for
t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).
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Figure 9. Trajectories of robot segments for ct = 1 and cn = 10 (a) and robot configurations for
t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).

Figure 10. Trajectories of robot segments for ct = 10 and cn = 10 (a) and robot configurations for
t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).
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Figure 11. Trajectories of robot segments for ct = 10 and cn = 1 (a) and robot configurations for
t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).

Figure 10 indicates that the robot requires anisotropy of friction coefficients to move.
When ct = cn, the robot seems to slide on the surface without any forward motion. However,
as shown in Figures 8 and 9, when ct < cn, the robot slides forward. The displacement
is greater when there is a larger difference between coefficients. On the other hand, as
depicted in Figure 11, when ct > cn, the snake moves backwards, and the head’s trajectory
remains a polygonal chain rather than a sinusoidal curve.

3.1.2. Analysis of Linear Velocities of Robots Segments

Figure 12 displays the velocity of the snake robot’s head. The plot contains three lines:
the yellow line represents the absolute velocity value, the red line corresponds to the global
y-component of velocity, and the blue line shows the x-component of velocity. At three
points in time, t = 6 (s), t = 9 (s), and t = 11 (s), there are markers on the plot indicating
the velocity values.

Figure 12. Velocity of the snake robot’s head for ct = 0.1 and cn = 10 (a) ct = 1 and cn = 10 (b),
ct = 10 and cn = 10 (c), and ct = 10 and cn = 1 (d).
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The oscillations along the y-axis in the global coordinate system have a similar appear-
ance in the first three simulations, with an amplitude of approximately A = 0.2(m) and
a period of about T = 5 (s). However, the amplitude of oscillation is considerably lower
in the fourth simulation. The oscillations along the z-axis in the global coordinate system
have a mean value of zero in the third simulation, resulting in no forward movement of the
robot. In the first and second simulations, the mean value of the x-axis velocity is positive,
causing the robot to move forward. The resultant velocity is significantly higher in the first
case. Finally, in the fourth simulation, the x-axis velocity oscillates around a negative value
when the robot moves backwards.

Figures 13–16 depict the velocities of each robot segment, with the yellow line indicat-
ing the velocity magnitude. The blue line represents the tangential component of velocity,
which is aligned with the x-axis of the local coordinate system of each segment, and the red
line represents the normal component of velocity, which is aligned with the y-axis of the
local coordinate system of each segment.

Figure 13. Velocities of the snake robot’s segments for ct = 0.1 (a) and cn = 10 (b).

Figure 14. Velocities of the snake robot’s segments for ct = 1 (a) and cn = 10 (b).
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Figure 15. Velocities of the snake robot’s segments for ct = 10 (a) and cn = 10 (b).

Figure 16. Velocities of the snake robot’s segments for ct = 10 (a) and cn = 0 (b).

Figures 12–15 provide insights into how the robot’s segments move, whether they
slide longitudinally along the segment’s length or laterally, perpendicular to the segment.
In the first two simulations (Figures 12 and 13), segments 1, 2, 9, and 10 primarily move
tangentially, while segments 4, 5, and 6 predominantly move in the normal direction. All
segments exhibit dominant normal velocity directions in the third and fourth simulations.

The simulation results are also presented in Figures 17–20. The top-left plot displays
the absolute velocity value of each segment (top plot) and the ratio of the tangential velocity
to the absolute velocity value (bottom plot). The VR screenshots illustrate the robot’s
configuration, with arrows representing the velocity vectors of each segment at various
simulation time points.

The results obtained support the previous findings. As seen in Figures 17 and 18, the
arrows are primarily oriented tangentially for segments 1, 2, 9, and 10 and perpendicularly
for segments 4, 5, and 6. In contrast, the arrows in Figures 19 and 20 are predominantly
normal for all segments.
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Figure 17. Absolute value and tangential component of segments velocities for ct = 0.1 and cn = 10 (a)
and velocity vectors for t = 6 (s) (b), t = 9 (s) (c), and t = 11 (s) (d).

Figure 18. Absolute value and tangential component of segments velocities for ct = 1 and cn = 10 (a)
and velocity vectors for t = 6 (s) (b), t = 9 (s) (c), and t = 11 (s) (d).

Figure 19. Absolute value and tangential component of segments velocities for ct = 10 and cn = 10 (a)
and velocity vectors for t = 6 (s) (b), t = 9 (s) (c), and t = 11 (s) (d).



Sensors 2023, 23, 3262 16 of 30

Figure 20. Absolute value and tangential component of segments velocities for ct = 10 and cn = 1 (a)
and velocity vectors for t = 6 (s) (b), t = 9 (s) (c), and t = 11 (s) (d).

3.2. Parameters of Gait Pattern

The motion of the snake robot is characterised by a lateral undulation pattern defined
by Equation (3) and determined by the amplitude α, angular frequency ω, and phase shift
δ. The subsequent section examines the impact of each of these parameters on the robot’s
motion. In all simulations, we used the values ct = 1, cn = 10, kp = 1, and kd = 2.

3.2.1. Amplitude

We conducted a series of simulations with an angular frequency of ω = 40 (◦/s), a
phase shift of δ = 60◦, and a sequence of amplitudes: α1 = 30◦, α2 = 40◦, α3 = 50◦, and
α4 = 60◦. Figures 21–24 display the robot trajectories, which indicate that increasing the
amplitude results in a more pronounced bending of the robot’s body, and a significantly
greater distance travelled by the robot, as observed in the VR screenshots.

Figure 21. Trajectories of robot segments for φi,ref = 30◦ sin(40◦t + (i− 1)60◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).
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Figure 22. Trajectories of robot segments for φi,ref = 40◦ sin(40◦t + (i− 1)60◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).

Figure 23. Trajectories of robot segments for φi,ref = 50◦ sin(40◦t + (i− 1)60◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).

Figure 24. Trajectories of robot segments for φi,ref = 60◦ sin(40◦t + (i− 1)60◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).
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Figures 25 and 26 depict plots of the link angles θ (top-left), joint angles φ (top-
right), link angle angular velocities θ̇ (bottom-left), and joint angle angular velocities
φ̇ (bottom-right). The thick line represents the mean angle value. The larger α values
correspond to larger link and joint angles. The derivatives of the angles also increase with
larger amplitudes.

Figure 25. Values of link angles θ, joint angles φ, link angles derivatives θ̇, joint angles derivatives φ̇

for α = 30◦ (a), α = 40◦ (b), α = 50◦ (c), and α = 60◦ (d).

Figure 26 shows the velocity of the robot head. The absolute value of the velocity is
marked by the yellow line, the component of the velocity along the x-axis of the global
coordinate system is marked by the blue line and the component of the velocity along
the y-axis of the global coordinate system is marked by the red line. The robot’s velocity
increased with larger α; however, there is no significant difference between α = 50◦ and
α = 60◦.

Figure 26. Velocity of the snake robot’s head for α = 30◦ (a), α = 40◦ (b), α = 50◦ (c), and α = 60◦ (d).

Figure 27 shows the torques applied to the robot’s joints. They increased linearly with
rising amplitude.
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Figure 27. Torque in robot’s joints for α = 30◦ (a), α = 40◦ (b), α = 50◦ (c), and α = 60◦ (d).

The simulation results have been gathered in Table 1. Column d indicates the distance
travelled by the robot’s head after 25 seconds of simulation; max(|u|) is the maximum
value of torque applied to the robot’s joints; V is the final velocity of the robot head in the
25th second of the simulation; max(|θ|), max(|φ|) are the maximum value of the link and
joint angle; finally, max(|θ̇|) and max(|φ̇|) are the maximum values of angle derivatives.
While calculating columns 5, 7–10, we considered only the system’s steady state after the
200th simulation sample.

Table 1. Simulation results for different amplitudes α.

α ω δ d max(|u|) V max(|θ|) max(|θ̇|) max(|φ|) max(|φ̇|)
30◦ 40◦ 60◦ 1.25 0.17 0.091 29◦ 0.74◦/s 20◦ 0.7◦/s
40◦ 40◦ 60◦ 1.86 0.23 0.125 39◦ 0.98◦/s 27◦ 0.94◦/s
50◦ 40◦ 60◦ 2.36 0.29 0.15 48◦ 1.21◦/s 34◦ 1.17◦/s
60◦ 40◦ 60◦ 2.73 0.34 0.16 57◦ 1.44◦/s 40◦ 1.4◦/s

3.2.2. Angular Frequency

The next series of simulations investigated the influence of angular frequency ω on the
snake motion. The simulations were performed for α = 50 (deg/s), δ = 60◦, and sequence of
frequencies ω1 = 30 (◦/s), ω2 = 40 (◦/s), ω3 = 50 (◦/s), ω4 = 60 (◦/s). Figures 23 and 28–30
indicate the change in the robot’s shape. For smaller ω, the robot’s body is more curved
and bent. Figure 31 indicates changes in robot angles and their derivatives. For larger
frequencies, the values of angles are decreasing. However, their derivatives are increasing.
Nevertheless, the difference in derivatives is not so significant as for different amplitudes,
shown in Figure 25. There is no significant influence of frequencies on the snake head’s
velocity, as shown in Figure 32. An increase in angular frequency strongly influences the
values of torques in joints, as shown in Figure 33. The simulation results for different
frequencies have been gathered in Table 2.
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Figure 28. Trajectories of robot segments for φi,ref = 50◦ sin(30◦t + (i− 1)60◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).

Figure 29. Trajectories of robot segments for φi,ref = 50◦ sin(50◦t + (i− 1)60◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).

Figure 30. Trajectories of robot segments for φi,ref = 50◦ sin(60◦t + (i− 1)60◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).
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Figure 31. Values of link angles θ, joint angles φ, link angles derivatives θ̇, and joint angles derivatives
φ̇ for ω = 30◦ (a), ω = 40◦ (b), ω = 50◦ (c), and ω = 60◦ (d).

Figure 32. Velocity of the snake robot’s head for ω = 30◦ (a), ω = 40◦ (b), ω = 50◦ (c), and ω = 60◦ (d).

Figure 33. Torque in robot’s joints for ω = 30◦ (a), ω = 40◦ (b), ω = 50◦ (c), and ω = 60◦ (d).
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Table 2. Simulation results for different angular frequencies ω.

α ω δ d max(|u|) V max(|θ|) max(|θ̇|) max(|φ|) max(|φ̇|)
50◦ 30◦ 60◦ 1.9 0.19 0.11 62◦ 1.06◦/s 39◦ 1.03◦/s
50◦ 40◦ 60◦ 2.36 0.29 0.15 48◦ 1.21◦/s 34◦ 1.17◦/s
50◦ 50◦ 60◦ 2.62 0.38 0.16 33◦ 1.28◦/s 28◦ 1.24◦/s
50◦ 60◦ 60◦ 2.67 0.46 0.15 30◦ 1.33◦/s 24◦ 1.25◦/s

3.2.3. Phase Shift

Analogous experiments were performed for α = 50◦, ω = 50 (◦/s), and a sequence
of different phase shifts: δ1 = 30◦, δ2 = 40◦, δ3 = 50◦, δ4 = 60◦. As we can see from
Figures 29 and 34–36, the robot’s shape is the same but the movement direction changes.
The values of joint angles, derivatives of joint angles, and torque remain the same for all
phase shift values (see Figures 37–39, and Table 3).

Figure 34. Trajectories of robot segments for φi,ref = 50◦ sin(50◦t + (i− 1)30◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).

Figure 35. Trajectories of robot segments for φi,ref = 50◦ sin(50◦t + (i− 1)40◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).
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Figure 36. Trajectories of robot segments for φi,ref = 50◦ sin(50◦t + (i− 1)50◦) (a) and robot configu-
rations for t = 5 (s) (b), t = 10 (s) (c), and t = 24 (s) (d).

Figure 37. Values of link angles θ, joint angles φ, link angles derivatives θ̇, and joint angles derivatives
φ̇ for δ = 30◦ (a), δ = 40◦ (b), δ = 50◦ (c), and δ = 60◦ (d).

Figure 38. Velocity of the snake robot’s head for δ = 30◦ (a), δ = 40◦ (b), δ = 50◦ (c), and δ = 60◦ (d).
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Figure 39. Torque in robot’s joints for δ = 30◦ (a), δ = 40◦ (b), δ = 50◦ (c), and δ = 60◦ (d).

Table 3. Simulation results for different phase shifts δ.

α ω δ d max(|u|) V max(|θ|) max(|θ̇|) max(|φ|) max(|φ̇|)
50◦ 50◦ 30◦ 6.37 0.38 0.43 212◦ 3.33◦/s 28◦ 1.24◦/s
50◦ 50◦ 40◦ 4.99 0.38 0.29 80◦ 2.02◦/s 28◦ 1.24◦/s
50◦ 50◦ 50◦ 3.77 0.38 0.21 89◦ 1.48◦/s 28◦ 1.24◦/s
50◦ 50◦ 60◦ 2.63 0.4 0.16 33◦ 1.28◦/s 28◦ 1.24◦/s

3.3. Controller Gains

This section presents the results of simulations for different controller gains. The
simulation results have been collected in Table 4. All simulation were performed for
α = 50◦, ω = 50◦, δ = 60◦, ct = 1, and cn = 10.

Table 4. Simulation results for different control gains.

kp kd d max(|u|) V max(|θ|) max(|θ̇|) max(|φ|) max(|φ̇|)
0.5 0.5 3.05 0.67 0.22 62◦ 2.33◦/s 54◦ 2.227◦/s
1 0.5 0.9 1.36 0.13 114◦ 4.56◦/s 101◦ 4.41◦/s
3 0.5 3.27 1.20 0.18 121◦ 6.55◦/s 70◦ 3.24◦/s
5 0.5 3.72 1.11 0.19 110◦ 8.9◦/s 61◦ 3.06◦/s

0.5 1 2.49 0.37 0.16 56◦ 1.35◦/s 28◦ 1.22◦/s
1 1 3.2 0.74 0.22 63◦ 2.45◦/s 55◦ 2.42◦/s
3 1 3.33 0.85 0.19 88◦ 4.47◦/s 63◦ 2.74◦/s
5 1 3.59 0.78 0.19 86◦ 6.38◦/s 58◦ 2.55◦/s

0.5 3 0.82 0.13 0.04 56◦ 0.68◦/s 18◦ 0.27◦/s
1 3 1.79 0.25 0.1 56◦ 1.10◦/s 20◦ 0.84◦/s
3 3 3.43 0.58 0.2 56◦ 2.71◦/s 44◦ 1.90◦/s
5 3 3.57 0.67 0.19 58◦ 4.14◦/s 50◦ 2.19◦/s

0.5 5 0.5 0.08 0.02 56◦ 0.46◦/s 24◦ 0.33◦/s
1 5 1 0.15 0.05 56◦ 0.78◦/s 18◦ 0.55◦/s
3 5 2.85 0.41 0.17 56◦ 1.97◦/s 31◦ 1.34◦/s
5 5 3.4 0.55 0.19 56◦ 3.1◦/s 41◦ 1.80◦/s

The distance travelled by the robot increases with the kp coefficient. The relation
between distance and kd does not look so obvious. For kp = 1 and kd = 0.5 the robot
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behaves chaotically. The required torque seems to increase with rising kp and lower with
kd. There is no unambiguous trend between gain coefficients and joint/link angles.

3.4. Path Following Coefficient

The last parameter considered in our studies was kθ , which allows the robot to follow
a destination point. For these simulations, we have assumed α = 50◦, ω = 50◦, δ = 60◦,
ct = 1, cn = 10, kp = 3, and kd = 3, and a destination point situated in coordinates (5, 5).
The simulations were performed for kθ = 0.1, kθ = 0.3, kθ = 0.5, kθ = 1, kθ = 2, and kθ = 3.
Larger gains increase the distance travelled by the robot and improve the tracking of the
reference heading angle, as shown in Figures 40 and 41. However, this means the significant
increase in control signals shown in Figure 42 and joint angles shown in Figure 43 can
violate design constraints. The kθ above the value of one causes unacceptable torque values
and can destroy the robot’s mechanism. The optimal solution is to assign a path-following
coefficient larger than kθ = 0.5 to ensure path-following but smaller than kθ = 1.

Figure 40. Trajectories of robot segments for kθ = 0.1 (a), kθ = 0.3 (b), kθ = 0.5 (c), kθ = 1 (d), kθ = 2 (e),
and kθ = 3 (f).
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Figure 41. Heading angle and reference heading angle for kθ = 0.1 (a), kθ = 0.3 (b), kθ = 0.5 (c),
kθ = 1 (d), kθ = 2 (e), and kθ = 3 (f).

Figure 42. Torque in robot’s joints for kθ = 0.1 (a), kθ = 0.3 (b), kθ = 0.5 (c), kθ = 1 (d), kθ = 2 (e), and
kθ = 3 (f).
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Figure 43. Values of link angles θ, joint angles φ, link angles derivatives θ̇, joint angles derivatives φ̇

for kθ = 0.1 (a), kθ = 0.3 (b), kθ = 0.5 (c), kθ = 1 (d), kθ = 2 (e), and kθ = 3 (f).

4. Discussion

Our research aimed to introduce a novel method of studying robotic multi-body sys-
tems utilising Virtual Reality technology. By integrating VR visualisation in Unity and
simulation in MATLAB, we could conduct a series of real-time, interactive simulations of
the motion of a snake robot. We could adjust the robot’s parameters, designate destination
points using VR controllers and GUI, and observe an animation illustrating the robot’s
behaviour. The VR environment allowed us to follow the motion from multiple perspec-
tives, pause or rewind the simulation, analyse the velocities and heading angles of different
segments, and compare the animations with the plots produced in MATLAB.

Our research generated a collection of experiments demonstrating how various param-
eters affect the robot’s motion. The necessary condition for the movement of a snake robot
is the anisotropy of frictional force. Conducted studies show that the robot moves faster
with a greater difference in friction in the tangential and normal directions. Increasing
the amplitude of the gait pattern causes the robot to move faster, but it may lead to a
violation of joint constraints. The angular frequency and phase shift determines the robot’s
direction. Choosing optimal controller gains, kp and kd, is a difficult task that requires
further investigation for different scenarios. According to our studies, the optimal value of
the path following coefficient kθ is between 0.5 and 1.

In the research, we utilised the snake robot as a representative example of a multi-
body dynamical system featuring non-linearity. Our study demonstrates that even minor
alterations to the parameters or controller gains can result in significant variations in the
robot’s performance. Identifying the optimal set of parameters to maximise the robot’s per-
formance under diverse environmental conditions and destination positions is challenging.
Hence, our research emphasises the implementation of advanced control algorithms, such
as Model Predictive Control or Sliding Mode Control, to operate the snake robot. We will
conduct VR-supported studies to test and evaluate the efficacy of these control algorithms.
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5. Conclusions

Virtual Reality is a cutting-edge technology. It allows users to experience and in-
teract with virtual environments. It has applications in entertainment, education, and
socialisation and has the potential to be a game-changer in engineering research. In ad-
dition, VR has immense potential to revolutionise research in the engineering field. A
pioneering application of VR in visualising snake robot motion is presented in this article.
This application could significantly influence the development of control algorithms for
robotic systems.

At the moment, we are in the process of developing sophisticated control algorithms
for a snake robot. This will enhance the VR application by visualising the abstract control
properties and extending its functionality.

To this end, VR, Unity, and Matlab integration can be utilised to conduct realistic
simulations and design the digital twin for mechanical systems. Therefore, several potential
future research proposals have been identified based on the findings of this study. First,
this approach will enable a synesthetic approach to enhance the control system design
methodology. Exploring the best ways to present information to improve the engineering
understanding of control systems would be worthwhile. Building on the current research,
novel visual evaluation methods for mechanical control systems based on augmented
reality can be developed.

In the specific case of evaluating snake robot controllers, it is possible to use VR to
visualise additional physical parameters of the robot during motion, such as friction forces,
joint torques, and link angle errors. Furthermore, ongoing investigations evaluate using
the snake robot’s Model Predictive Control (MPC) in various control scenarios involving
obstacles or joint failures. Ghost robots can be displayed to indicate the predicted positions
of the robot.
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