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Abstract: A highly sensitive room-temperature graphene photothermoelectric terahertz detector,
with an efficient optical coupling structure of asymmetric logarithmic antenna, was fabricated by
planar micro-nano processing technology and two-dimensional material transfer techniques. The
designed logarithmic antenna acts as an optical coupling structure to effectively localize the incident
terahertz waves at the source end, thus forming a temperature gradient in the device channel and
inducing the thermoelectric terahertz response. At zero bias, the device has a high photoresponsivity
of 1.54 A/W, a noise equivalent power of 19.8 pW/Hz1/2, and a response time of 900 ns at 105 GHz.
Through qualitative analysis of the response mechanism of graphene PTE devices, we find that the
electrode-induced doping of graphene channel near the metal-graphene contacts play a key role in
the terahertz PTE response. This work provides an effective way to realize high sensitivity terahertz
detectors at room temperature.

Keywords: graphene; photothermoelectric; terahertz detector; noise equivalent power

1. Introduction

The terahertz (THz) radiation (0.1–10 THz) is located in the transition area between
electronics and optics and includes a wide electromagnetic frequency spectrum between
microwaves and infrared, and its optoelectronic hybrid characteristics have a wide range of
potential applications, including wireless communication, spectroscopy, material science,
sensing and imaging, etc. [1–3]. Since the 1980s, the rapid development of ultrafast lasers
and semiconductor technology has greatly facilitated the development of terahertz technol-
ogy. Terahertz detectors are key components of terahertz systems, but the low terahertz
photon energy makes it an extremely challenging task to achieve high-speed, sensitive
terahertz detection. Because the terahertz frequency band is located in the frequency gap
between microwaves and infrared, there are unprecedented methods for bridging the
gap. Terahertz detectors should have high sensitivity, short response time, low power
consumption, compatibility with readout circuits, and low manufacturing cost. Currently,
widely used terahertz detectors such as thermoelectric/Golay cell detectors, Schottky diode
detectors, quantum well detectors, bolometers, and field-effect transistor detectors, all have
some limitations, such as low sensitivity, complex material and device fabrication processes,
or low-temperature operation mode [4–7]. In order to expand the application range of
terahertz detectors, it is necessary to develop terahertz detectors that can work at room
temperature and have high sensitivity and fast response time.

Photothermoelectric (PTE) detectors are a kind of optical-thermal detector based on
the PTE effect. Unlike photoconductive and photovoltaic detectors whose spectral response
range is limited by the active semiconductor bandgap used in the detector, PTE detectors
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are known for their ultra-wideband response operation at room temperature and zero
driven bias [8–12]. In addition, the PTE detectors have the advantages of low noise, no
cooling unit, no external power supply, DC/AC dual-mode operation, and the ability
of detecting infrared and terahertz radiations. PTE can be divided into two processes:
photothermal conversion and thermoelectric effect. For photothermal conversion, carriers
absorb terahertz photons and transfer the photon energy to the other carriers through
electron-electron interaction, which results in the non-equilibrium distribution of carrier
gas and the temperature gradient along the device channel. The carrier temperature
gradients caused by terahertz photon absorption drive the diffusion of carriers from the
hot end to the cold end and create potential differences. Considering the variation of one-
dimensional temperature and Seebeck coefficient, the photogenerated voltage (VPTE) of
PTE detector is the integral of the product of Seebeck coefficient and temperature gradient
along the conduction channel of the device. The formula is

VPTE =
∫

S(x) ∆T(x) (1)

where S(x) is Seebeck coefficient and ∆T(x) is temperature gradient. The Seebeck coefficient
S reflects the magnitude of the temperature difference electric potential per unit temperature
change; when kBT << EF, according to Mott equation, S can also be written as

S =− π2kB
2T

3e
1
σ

dσ
dEF

(2)

where kB is Boltzmann constant, e is the electron charge, σ is the electrical conductivity of
the material, EF is Electron energy. From Equation (2), S is proportional to the conductivity
and the derivative of energy, so the Seebeck coefficient can be regulated by adjusting the
Fermi energy level, which is generally divided into gate control and chemical doping. For
PTE detectors, if we assume that the Seebeck coefficient varies in a small range along the
channel, the asymmetric distribution of temperature is necessary.

Since the discovery of graphene in 2004, researchers have begun to study various 2D
materials in depth, and the potential use of these materials as photodetectors in a wide
range of electromagnetic spectrum is an important research direction [13–19]. The intrinsic
bandgapless graphene has strong absorption at all frequencies, with spectral responses
ranging from visible to terahertz bands. The electron heat capacity of few-layer graphene is
much lower than that of bulk materials, resulting in the greater temperature variation with
the same absorbed energy [20–22]. The remarkable thermoelectric effect of two-dimensional
materials such as graphene and black phosphorus shows a good prospect in the develop-
ment of high performance room temperature terahertz detectors [23,24]. For example, 2D
material-based PTE terahertz detectors were built by depositing different metallic materials
as electrodes [25]. In these devices, electrode-induced channel P-type and N-type doping
results in an asymmetric distribution of Seebeck coefficients along the device channel,
which induces a PTE response. In addition, the split gate was used to construct lateral PN
junction in the device channel to achieve efficient terahertz PTE response [26]. Although ex-
cellent device performance is achieved, the above device structures are relatively complex.
Additionally, the gate voltage may introduce excess noise.

In this work, a simple antenna coupled asymmetric structure has been used to achieve
the excellent device performance of graphene PTE detectors, which can be compared with
the state-of-the-art two-dimensional materials terahertz detectors. Furthermore, we propose
a qualitative model to analyze the highly sensitive PTE response caused by asymmetric
coupling. In particular, we found that the metal-graphene contacts play a key role in the
terahertz PTE response. Our results have important guiding value for further optimization
of PTE terahertz detectors for two-dimensional materials in the future.
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2. Materials and Methods
2.1. Device Design and Fabrication

We used FDTD electromagnetic simulation to simulate and optimize the antenna
coupling structure of the detector, which has excellent local field enhancement for far-
field terahertz waves. Because high-resistivity silicon has high terahertz transmittance
and can effectively reduce the reflection of terahertz waves, a substrate of high-resistivity
silicon (ρ ≈ 20,000 Ω cm) covered with 300 nm SiO2 was used for the construction of
graphene PTE detectors. The detectors were fabricated by standard planar micro-nano
device processes and two-dimensional material transfer techniques. Firstly, the coupling
structure of the metal antenna (5 nm Ti/40 nm Au) was prefabricated by lithography,
electron beam evaporation, and lift-off processes. Then, the highly oriented pyrolytic
graphite was mechanically dissociated into micron-sized few-layer graphene (~30 nm)
using blue film tape, and the graphene flake was accurately transferred to the channel
area of the device by using 3D mechanical transfer platform and PDMS-assisted transfer
technology. The graphene device is encapsulated with metal leads onto a custom PCB
board for subsequent electrical and optical measurement.

2.2. Device Characterizaions

The output characteristic curve of the device was firstly measured using a high-precision
digital source meter (Keithley 2400). The SMB100A microwave source (110 kHz–20 GHz)
was used to drive a VDI solid-state 6-fold frequency multiplier to produce high-frequency
radiation (75 GHz–110 GHz) with a power density of 5 mW/cm2. The output port of
the multiplier is waveguide-coupled via a standard gain horn antenna, which emits lin-
early polarized high-frequency radiation into free space. The fundamental frequency
microwaves are electrically modulated, and then electrically modulated terahertz radiation
is output from the VDI multiplier and irradiated onto the device. In detail, a terahertz
beam electrically modulated with a frequency of 1 kHz is irradiated onto the detector, and
the generated photocurrent signals are amplified by a low-noise current amplifier (SR570)
and then recorded by an oscilloscope (Tektronix MSO2024B). The noise spectrum of the
detector is obtained by the spectrum analyzer (Keysight N9322C). The test process of the
device was all carried out in room temperature and air environment.

3. Results and Discussion

In order to enhance the PTE response of graphene to improve the performance of
terahertz detection, it is necessary to design an efficient asymmetric optical coupling
structure. We designed a logarithmic antenna coupling structure which can make the local
enhancement region of terahertz field at the source terminal of the device. Figure 1a,b
show the overall structure and the channel region of the optical coupling structure of
high-performance graphene PTE detector with asymmetric temperature distribution. The
logarithmic antenna consists of two metal sleeves containing a plurality of circular tooth
strips. The geometric design rules follow the so-called spoof–plasmon effect, which converts
the incident electromagnetic field into a surface plasma-induced local field, which causes
the terahertz light to focus into the channel region of the device [27]. The coupled antenna
is placed on the side close to the source end to form an asymmetric configuration, with two
vertically placed metal strips as readout electrodes to collect the photoelectric signals. Since
more terahertz electromagnetic energy is concentrated on the source side, unilateral heating
along the graphene channel creates an effective temperature difference, enabling the PTE
terahertz detection. The field distribution characteristics along the channel direction at
different frequencies were obtained by FDTD simulation (Figure 1c). It can be found that the
terahertz electric field has strong local enhancement and presents an effective asymmetric
distribution. Furthermore, the x-y plane distribution of the electric field intensities in the
frequency range of 80~110 GHz further verify the good field enhancement performance of
the device (Figure 1d–g), showing the efficient electromagnetic coupling capability of the
designed structure.
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Figure 1. (a) Structure of the logarithmic antenna optically coupled PTE device; (b) enlarged view of
device channel active region; (c) the electric field intensity distribution along the channel direction of
the coupled structure; (d–g) electric field distributions at different frequencies in the x–y plane.

Figure 2a is the schematic diagram of the terahertz test system. Figure 2b is an
optical image of the graphene PTE detector, showing that the prepared device has a
complete and good device structure. Good ohmic contact is the key to obtain excellent
performance of devices. As shown in Figure 2c, the linear current–voltage (I–V) curve
indicates that the device has excellent ohmic contacts. In order to characterize the spectral
response of the PTE detector, we measured the photoresponse of the device in the frequency
range 75–110 GHz at zero bias voltage. As shown in Figure 2d, the oscilloscope recorded
the rapid and stable pulsed photoresponse at different incident terahertz frequencies. It
can be seen that the graphene shows excellent optical response performance at different
frequencies, and its photocurrent could reach 13.6 µA at 105 GHz. The large photoresponse
is due to the excellent thermoelectric properties of graphene at room temperature and the
electromagnetic gain of the optimized antenna coupling asymmetric structure. Current
responsivity (RA) is an important parameter to evaluate the performance of the detector.
Its calculation formula is

RA =
Iph

Pin · A
(3)

where Iph is the photocurrent signal of the detector, Pin is the power density of the terahertz
beam, and A is the area of the detector. In this measurement, the power density of the
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terahertz beam is 5 mW/cm2, and the area of the detector is 600 µm × 300 µm (including
the antenna). As shown in Figure 2e, we calculate the zero-bias photoresponsivity of the
detector at different frequencies. The results show that the zero-bias photoresponsivity of
the graphene device can reach 1.54 A/W at 105 GHz, showing excellent device performance.
In addition, we further verify the reliability of the photocurrent signal of the device at zero
bias voltage. As shown in Figure 2f, we can find that when the terahertz wave impinges
on the device, the output current increases instantaneously. The current in the on state
corresponds to the highest point of the photocurrent waveform and the current in the
off state corresponds to the lowest point, and the difference between the two current
corresponds to the magnitude of the photocurrent.
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Figure 2. (a) Schematic diagram of terahertz photocurrent test system; (b) optical image of terahertz
graphene PTE detector; (c) room-temperature I–V curve; (d) photoresponse waveform of the de-
vice under different frequency illumination; (e) the zero-bias photoresponse of devices at different
frequencies; (f) real–time output current when the device is fixed at zero–bias voltage at 105 GHz.

In the following, we discuss on the speed of the PTE detector, which is usually de-
fined as the time measured from 10% up to 90% on rising edge of signal as well as the
recovery time (from 90% down to 10% of the falling edge). As shown in Figure 3a, the
response/recovery times of the device were 900 ns and 1.2 µs in a single signal period,
respectively. The fast response speed of the graphene device is due to the high mobility of
hot electrons in graphene, which is faster than typical room temperature thermal detectors
(such as pyroelectric detectors and bolometers), which is advantageous for practical appli-
cations. In addition, by setting different electrical modulation frequencies of the terahertz
source, we recorded the photoresponse of the graphene device at the terahertz frequency
of 100 GHz. As shown in Figure 3b, the photocurrent of the graphene device does not
decrease significantly in the modulation frequency range of 0–20 kHz (limited by the maxi-
mum electrical modulation frequency of the terahertz source), further confirming the high
sensitivity and high-speed response capability. Figure 3c shows the stable waveforms of
the device recorded by the oscilloscope at 10 kHz and 20 kHz modulation frequencies.
An important characteristic of the ideal terahertz detector is the linear dynamic range,
that is, there is a linear relation between input terahertz intensity and the photocurrent.
Figure 3d shows a good linear relationship between photocurrent and incident power,
confirming the power dependence of PTE response. From the perspective of practical
applications, the noise equivalent power (NEP) is another key parameter to evaluate the
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performance of photodetectors. NEP is defined as the lowest detectable power within the
measurement bandwidth of 1 Hz, calculated by

NEP =
in

RA
(4)

where in is the noise value at the modulation frequency, and RA is the responsivity of the
detector. The noise spectrum of detectors usually contains several different main noise
sources, including 1/f noise, shot noise and thermal noise (Johnson-Nyquist noise) [28–30].
The 1/f noise results from changes in electronic state and is prevalent at low frequencies
(below 1 kHz). Shot noise is caused by photoexcited carriers randomly generated by the
detector under radiation or thermal excitation. Thermal noise is related to the ohmic
resistance and temperature of the detector and is generated by the random thermal motion
of charge carriers. Since our graphene devices are operated in zero-bias mode, the shot noise
is negligible, and the thermal noise dominates the noise spectrum of the detector. In order
to obtain the detector sensitivity, we used a spectrum analyzer (Keysight N9322C) to obtain
the noise spectrum of the devices under zero bias (Figure 3e). As shown in Figure 3f, we
evaluated the NEP of the graphene device at different frequencies. The terahertz graphene
PTE detector achieved a low NEP of 19.8 pW/Hz1/2 at 105 GHz, showing good detection
sensitivity. The performance comparison of the 2D material-based terahertz detectors is
shown in Table 1, showing that our graphene PTE devices have good performance.
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Figure 3. (a) Response time of the graphene detector; (b) variation of optical response with modu-
lation frequency; (c) the optical response waveform of the graphene detector at 10 kHz and 20 kHz
modulation frequencies; (d) power dependent optical response; (e) measured noise spectral den-
sity of the graphene detector at 300 K; (f) noise equivalent power of the graphene detector at
different frequencies.

In order to optimize the device performance in the future, we proposed a qualitative
theoretical model to analyze the high terahertz sensitivity caused by the asymmetric
antenna coupling structure. As shown in Figure 4a, the IV curves of the graphene device
remain parallel under 105 GHz illumination and dark conditions, indicating that the
bolometric effect is negligible. In addition, the photoresponse remains constant with the
increase in applied bias, which is consistent with the bias insensitivity of the PTE effect [26].
Figure 4b shows the schematic diagram of the response mechanism of the graphene PTE
detector. In our device, the coupling antenna and the readout electrode are separated,
and the coupling antenna is positioned away from the center of the channel and acts as a
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focusing structure to heat one end of the graphene. Since the readout electrodes at both ends
of the graphene channel are of the same metal, the doping effect of the metal electrode on
both ends of the graphene is the same, so it can be considered that the Seebeck coefficients
of the doping regions at both ends are the same. Considering the high thermal conductivity
of the metal and the fact that the focusing structure of the antenna does not directly heat
the electrode, it can be considered that the temperature difference of the source-drain metal
readout electrode is negligible. According to Equation (1), the thermoelectric response of
the graphene channel can be written as

VPTE= S1(T 1−T0) + S0(T2−T1)+S1(T 0−T2) = (S 1−S0)(T 1−T2) (5)

where S1 is the Seebeck coefficient in the metal-doped area, S0 is the Seebeck coefficient of
graphene away from the metal electrode, T0 is the metal temperature, T1 and T2 are the
temperature at the end of the doped graphene, and Th is the highest temperature point of
channeled graphene. According to Equation (5), the electrode-induced doping of graphene
channel near the metal-graphene contacts play a key role in the terahertz PTE response.
The thermoelectric response of graphene is determined by the electrode-induced doping
on graphene and the temperature difference along graphene channel. Due to the good
doping of metals to graphene, this ensures the difference of Seebeck coefficients between
the doped and undoped regions of graphene. Considering the contribution of Seebeck
coefficient difference, the PTE response will be further improved if the signs of the Seebeck
coefficient are opposite. Furthermore, the location of the optical coupling antenna in the
graphene channel determines the temperature difference required to achieve the graphene
PTE response. It can also be seen that when the coupling antenna is located in the middle
of the device channel, due to the symmetrical configuration, the temperature difference will
be zero, and the PTE response is completely suppressed. As the coupled antenna moves
away from the center of the graphene channel, the temperature at the end of the graphene
doping region near the coupled antenna will be closer to the maximum temperature point,
and the effective temperature difference to drive the PTE response of the graphene will be
expanded, thus improving the graphene PTE response.

Table 1. Comparison of performance of 2D material-based terahertz detectors.

Material Frequency Responsivity NEP Response Time Reference

black phosphorus 0.29 THz 135 V/W 138 pW/Hz1/2 800 ns [24]

Graphene 3 THz 49 V/W 160 pW/Hz1/2 3 ns [31]

Graphene 0.6 THz 764 V/W 515 pW/Hz1/2 - [32]

PdSe2 0.1 THz 0.02 A/W 142 pW/Hz1/2 7.5 µs [33]

Graphene 0.105 THz 1.54 A/W 19.8 pW/Hz1/2 900 ns This work
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Figure 4. (a) The I–V curve of the detector with and without terahertz illumination; (b) Schematic
diagram of the photothermoelectric response of graphene.
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4. Conclusions

In summary, we achieved sensitive graphene-based PTE terahertz detectors by using
an efficient asymmetric antenna coupling structure, which exhibits excellent zero bias
detection performance in the frequency range of 75 GHz to 110 GHz. The measurement
results show that the graphene device has a zero bias photoresponsivity of 1.54 A/W, a noise
equivalent power of 19.8 pW/Hz1/2, and a response time of 900 ns. Furthermore, through
qualitative analysis of the response mechanism of graphene PTE devices, we find that the
electrode-induced doping of graphene channel near the metal-graphene contacts play a key
role in the terahertz PTE response. These results show that the optical coupled structure we
designed effectively improves the thermalelectric terahertz detection sensitivity, providing
an effective way to further improve the performance of two-dimensional materials terahertz
detectors in the future.
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