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Abstract: V2P (vehicle-to-pedestrian) communication can improve road traffic efficiency, solve traffic
congestion, and improve traffic safety. It is an important direction for the development of smart
transportation in the future. Existing V2P communication systems are limited to the early warning
of vehicles and pedestrians, and do not plan the trajectory of vehicles to achieve active collision
avoidance. In order to reduce the adverse effects on vehicle comfort and economy caused by switching
the “stop–go” state, this paper uses a PF (particle filter) to preprocess GPS (Global Positioning System)
data to solve the problem of poor positioning accuracy. An obstacle avoidance trajectory-planning
algorithm that meets the needs of vehicle path planning is proposed, which considers the constraints
of the road environment and pedestrian travel. The algorithm improves the obstacle repulsion model
of the artificial potential field method, and combines it with the A* algorithm and model predictive
control. At the same time, it controls the input and output based on the artificial potential field method
and vehicle motion constraints, so as to obtain the planned trajectory of the vehicle’s active obstacle
avoidance. The test results show that the vehicle trajectory planned by the algorithm is relatively
smooth, and the acceleration and steering angle change ranges are small. Based on ensuring safety,
stability, and comfort in vehicle driving, this trajectory can effectively prevent collisions between
vehicles and pedestrians and improve traffic efficiency.

Keywords: V2P; artificial potential field; A*; MPC (model predictive control)

1. Introduction

In recent years, autonomous driving technology has undergone considerable improve-
ment. Academic and industrial circles around the world are actively promoting practical
commercial applications for this technology, injecting new vitality into the research of
autonomous driving technology [1]. Self-driving cars rely on advanced intelligent control
vehicle technology to reduce traffic accidents caused by driver errors, and even reduce
the incidence of traffic accidents to zero. Autonomous driving technology must ensure
accurate avoidance of pedestrians, so V2P is one of the core technologies in autonomous
driving [2–4]. It notifies both people and vehicles by analyzing the key information of
vehicles and pedestrians; this can prevent collisions between people and vehicles and
effectively improve road traffic efficiency, in order to achieve intelligent transportation
solutions for vehicle–road coordination.

V2P usually predicts whether there is a risk of collision between people and vehicles,
and judges whether an alarm needs to be issued to warn pedestrians and vehicles. A V2X
(vehicle-to-everything) collaborative system based on cellular and 802.11p radio is designed
in [5], and the SafeNav Android application is proposed, in which the interface sets
a determined collision area, and if multiple traffic participants enter the collision area,
the color of the traffic participant changes to red and it produces a visual and audible
alarm. In [3], a mobile application is proposed by Hussein et al. that supports pedestrians
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and vehicles. When the user interacts with their mobile phone, the screen is activated to
detect the location coordinates of the mobile phone. The system calculates the potential
collision point and judges whether collision is possible. This application, with its user-
friendly operation, increases VRU (Vulnerable Road User)s’ visual situational awareness
of locations near automatic- or manual-control vehicles. The above studies all needed to
predict the degree of risk, and the vehicles needed to switch frequently to the “stop-go”
state. The vehicles did not actively avoid pedestrians, and the degree of intelligence was
not high, which may bring certain safety risks [6]. Trajectory planning can realize active
obstacle avoidance for V2P vehicles [7]. In order to safely and quickly move a vehicle
from its current location to the target location, it is necessary to design a robust trajectory
planning strategy.

At present, classic trajectory planning includes rule-based methods [8,9], graph search
methods [10–12], and numerical optimization methods [13]. The rule-based method aims
to establish a behavior rule base based on vehicle driving rules and experience information,
divide the state according to different environmental information, and determine the vehicle
driving trajectory according to the rule logic. In [14], an autonomous vehicle control system
based on the FSM (finite state machine) rule-based method was proposed by Sang-Hyeon
Bae et al. The proposed vehicle system can handle six major urban environment driving
situations. The system actively recognizes the real-time driving environment, formulates
an action plan based on the finite state machine, and activates motion model control. The
rule-based method can effectively deal with some typical driving scenarios defined in
the rule base, but due to the limited number of added driving scenarios, it cannot handle
driving scenarios that have not been added to the rule base; thus, it has certain limitations.

To solve the problem of limited driving scenarios, the graph search method is used
for trajectory planning. Dijkstra, BFS (Best First Search), and A* are common graph search
planning algorithms [15]. Dijkstra’s algorithm starts from the initial point where the object
is located, visits the adjacent nodes of the initial point in the graph until it reaches the target
point, and finally, outputs the shortest path; however, the algorithm runs for a long time
and is not in real time. The BFS algorithm quickly guides the target point by introducing
a heuristic function, thereby effectively improving the running speed of the algorithm. The
heuristic function evaluates the cost from any node to the target node, and selects the node
closest to the target instead of the node closest to the initial point. Therefore, there is no
guarantee that the shortest path will be found. The A* algorithm combines the advantages
of the heuristic algorithm, BFS, and the Dijkstra algorithm; not only can it find the shortest
path, but in a simple static road environment, the algorithm running time is also as fast
as BFS. This, it can meet the real-time requirements of vehicle trajectory planning [16].
The graph search method is suitable for situations where obstacles are stationary, while
pedestrians cannot be considered static obstacles, similarly to roads, so they cannot be
directly applied to V2P scenarios.

The artificial potential field method has become a classic algorithm in numerical
optimization methods due to its simple principle, its small amount of calculation, and
its high execution efficiency, and is widely used in robot trajectory planning [17]. The
artificial potential field method has a small amount of calculation and fast calculation
speed; thus, it meets the high real-time requirements of vehicle trajectory planning, and
supports the independent design of the attraction potential field generated by the target
position, and the repulsive potential field generated by obstacles, to meet the requirements
of different scenarios. In [18], Lu et al. proposed a method to find a path by fitting the curve
of the target point and the critical oscillation point, reducing the path jitter, and making
the path smoother. Virtual repulsion was added by Azzabi A et al. [19] to improve the
repulsion potential field function and solve the local optimum of the artificial potential field.
However, since the direction of virtual repulsion is uncertain, it may cause new problems.
The application of the above-mentioned artificial potential field method does not consider
the vehicle’s motion constraints, so it cannot be directly applied to the vehicle trajectory
planning problem.
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Due to its ability to deal with system multi-constraint problems, the model predictive
control (MPC) algorithm in numerical optimization is widely used in the field of automatic
driving [20]. MPC establishes a mathematical model with a cost function and constraints.
Constrained optimization problems can be solved using linear programming methods
according to the cost and the complexity of the constraint function. The advantage is that
the optimal trajectory is not constrained by a predefined pattern. Cost and constraint
functions adapt to the driving environment with road geometry, boundaries, and obstacles.
This adaptability makes the final trajectory highly adaptable to changes in the environment.
A solution proposed by Mekala et al. was to use MPC to control speed for obstacle
avoidance, so that the vehicle can accelerate and decelerate smoothly, but obstacles are
represented as hard constraints in the optimization process; this may lead to the non-
existence of feasible solutions in practice [21]. An iterative nonlinear model predictive
control path planner using a point-mass vehicle model was proposed by Murillo et al.,
which considered vehicle dynamic constraints but not road boundaries [22].

This paper proposes an obstacle avoidance trajectory planning algorithm that meets
the needs of vehicle path planning. First, pedestrians are ignored and only road boundaries
are considered, and the A* algorithm is used to give the shortest path from the initial
point of the vehicle to the target point as a reference path. Secondly, pedestrians are
regarded as dynamic obstacles, and a linear prediction model is established on the basis
of the vehicle model, which is used to predict the future state of the vehicle. Based on the
artificial potential field method and the vehicle motion constraints, the input constraints
and output variable constraints are jointly controlled to plan the vehicle’s trajectory. Finally,
the trajectory planning algorithm proposed in this paper is verified via test verification.

The rest of this paper is organized as follows. Section 2 describes the preprocessing
process of GPS data information. Section 3 introduces the proposed trajectory planning
algorithm and gives the algorithmic framework to safely and efficiently solve the active
obstacle avoidance problem in vehicles. Section 4 outlines the test verification and analyzes
the results of the algorithm to verify the validity of the algorithm. Finally, the conclusions
are given in Section 5.

2. Data Preprocessing

Due to the influence of noise in the transmission process, the GPS position information
obtained by the actual system has incompleteness and uncertainty, which affects the accu-
racy of the position information. For noisy data, filters are usually used for preprocessing.
The Kalman filter is only suitable for linear systems, and the actual system had different
degrees of nonlinearity, so the nonlinear Kalman filter can be better for application in the
filtering process of GPS data. In nonlinear filtering, the model is divided into a state model
and a measurement model.

2.1. State Model

The basic state vector of the state model includes the GPS position coordinates, the
velocity, and the error caused by noise in the propagation process. The first-order Gauss-
Markov process was used to model the error as non-white noise. The state vector of the
system can be given by expression (1).

xt = [Xt,
·

Xt, Yt,
·

Yt, ε1t, ε2t, . . . , εnt]
xt+1 = f (xt)

(1)

where (Xt, Yt) is the position coordinate component, (
·

Xt,
·

Yt) is the velocity coordinate
component, and εit(i = 1.2. . . . , n) is the error caused by the n-th noise source in the
receiving process, so the state model of the system is obtained as follows:
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Xt+1 = Xt + T
·

Xt +
T2

2 δ
··

Xt
·

Xt+1 =
·

Xt + Tδ
··

Xt

Yt+1 = Yt + T
·

Yt +
T2

2 δ
··
Yt

·
Yt+1 =

·
Yt + Tδ

··
Yt

(2)

where δ
··

Xt, δ
··
Yt is the interference of other systems, T is the sampling period, and the error

caused by noise in the propagation process is expressed using the first-order Gauss–Markov
process as follows:

ε1(t+1) = αε1t + βσ1t
ε2(t+1) = αε2t + βσ2t

...
εn(t+1) = αεnt + βσnt

(3)

σnt is the error brought by the n-th noise source in the propagation process. This article
assumes that n = 2, and that these noises are non-correlated random white noise with
a mean value of 0; the parameters α, β are, respectively,

α =
2τ − 1
2τ + 1

, β =
2τ

2τ + 1

where τ = 100.

2.2. Measurement Model

Using Z(t) to represent the observed value of GPS position information at the time t,
the measurement model is expressed as:

Zt = Hxt + Vt (4)

Z1t = Xt + ε1t + V(t)
Z2t = Yt + ε2t + V(t)

(5)

In the formula, it is assumed that V(t) is Gaussian white noise with variance σ2
v and

a mean value of 0.
The system is discretized, and the obtained state model and measurement model are

as follows:
xk+1 = f (xk)

Zk = Hxk + Vk
(6)

where the subscript k represents the time.

3. Trajectory Planning

Trajectory planning was divided into path planning and speed planning. First, under
the environment in which obstacles are ignored, the A* algorithm was used to construct
the drivable area, and initial global planning of the path from the initial point to the target
point was carried out to produce a reference path. Secondly, the artificial potential field
method and MPC were combined for trajectory planning.

3.1. A* Path Planning

The Dijkstra, Best First Search (BFS), and A* algorithms are three typical path planning
algorithms. Dijkstra’s algorithm is guaranteed to find the shortest path from the initial
point to the goal point, but it runs slowly [23,24]. BFS runs faster than Dijkstra’s algorithm,
but it cannot be guaranteed to find the shortest path [25]. The A* algorithm is a heuristic
search algorithm that can perform global path planning in a static environment according
to a defined evaluation function [17]. It responds quickly to the environment and searches
the path directly, so it is widely used in path planning research. This algorithm can greatly
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reduce search time and improve path search efficiency while keeping the path as short as
possible. Since the static road environment where the vehicle is driving is relatively simple,
in simple cases, the A* algorithm runs as fast as BFS. Therefore, this paper uses the A*
algorithm to plan the global path and generate a vehicle reference path.

The heuristic function of the A* algorithm contains information on the initial point
and the target point at the same time, and the priority of each node is calculated using
Formula (7):

f (n) = g(n) + h(n) (7)

where f (n) is the comprehensive priority of the node n. When selecting the next node to
traverse, the node with the smallest f (n) value and the highest priority will be selected.
g(n) is the cost of the node n from the initial point. h(n) is the heuristic function of the A*
algorithm, and is the estimated cost of the node distance from the target point. This paper
allowed the vehicle to move in eight directions (namely: front, rear, left, right, right front,
right rear, left rear, and left front, corresponding to g(n) values of 1, 1, 1, 1, 1.5, 1.5, 1.5, and
1.5), and the Euclidean distance was chosen as the heuristic function.

3.2. Vehicle and Pedestrian Models

When using MPC for local trajectory planning, the motion states of vehicles and pedes-
trians are required. Therefore, the monorail vehicle kinematics model and the pedestrian
(dynamic obstacle) model were established first, and were used to describe the state of the
vehicle and pedestrian, respectively.

3.2.1. Vehicle Model

This paper mainly considers the plane motion of the vehicle, and used a single-track
model to describe the vehicle, taking the rear wheel of the vehicle as a reference point, as
shown in Figure 1. θ represents the direction of the speed of the vehicle, l represents the
wheelbase, v represents the vehicle’s current speed, and δ represents the angle between the
two speed directions at the front and rear of the vehicle.
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Figure 1. Schematic diagram of vehicle monorail model.

The updated formula of each state quantity in the model is as follows:

x(t + dt) = x(t) + v(t) cos(θ)dt

y(t + dt) = y(t) + v(t) sin(θ)dt

θ(t + dt) = θ(t) + v
l tan(δ)dt

v(t + dt) = v(t) + adt

(8)

where x and y are the longitudinal and lateral positions of the vehicle, and a is the accelera-
tion of the vehicle.
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3.2.2. Pedestrian Model

The basic aim of the traditional artificial potential field method is to control the robot
to find a collision-free path by constructing an artificial force field based on the attraction
field of the target point and the repulsive force fields of the obstacles, and using the falling
direction of the search potential function. The path planning of the robot does not need to
consider the boundary and road environment, but for the vehicle, it needs to consider the
constraints of the road, so the model construction is more complicated.

During the driving process of the vehicle, the most common dynamic obstacle is
the pedestrian. In this paper, the pedestrian is abstracted as an obstacle point. Since the
pedestrian is a dynamic obstacle, the position and velocity of the pedestrian should also be
taken into account in the obstacle potential field. According to the space dynamics equation
and the Lagrangian equation, the resultant force of the vehicle is the vector superposition
of the repulsive force and the attraction force, and the direction of the resultant force is the
moving direction of the vehicle. Under the action of the resultant force, the vehicle can
bypass obstacles and reach the end point. The resultant force F can be expressed as:

F = Fa + Fr (9)

where Fa is the attraction force generated by the target point on the controlled object, and
Fr is the repulsive force generated by the obstacle on the controlled object. Assuming there
are n obstacle points, the attraction function Fa and repulsion function Fr are redefined as:

Fa =
1
2
× Ka ×

√
(x− gx)

2 + (y− gy)
2 (10)

Fr =

 1
2 × Kr × e

−
n
∑

i=1

√
(x−Oxi )

2+(y−Oyi )
2

0, d > dr

, 0 < d < dr (11)

where (x, y) are the position coordinates of the vehicle at any time, (gx, gy) are the coor-
dinates of the end position of the vehicle, Ka is the gravitational potential energy gain
coefficient, and d is the Euclidean distance between the vehicle and the nearest obstacle.
dr is the radius of the obstacle repulsion field. When the distance between the vehicle and
the obstacle is less than dr, the vehicle will be affected by the repulsion. Kr is the repulsive
potential energy gain coefficient, (Oxi , Oyi ) are the obstacle coordinates, and Oxi = [xi, vxi ],
Oyi =

[
xi, vyi

]
is the combination of position and velocity.

3.3. MPC Trajectory Planning

The MPC method is a numerical optimization method. According to the model and
the current state quantity output, the deviation between the predicted trajectory and the
expected trajectory is calculated, and control quantity input and output constraints are
imposed to ensure that the vehicle can meet the corresponding motion constraints and
avoid collisions. In the trajectory planning process, the future behavior of the vehicle needs
to be predicted within the specified forecast horizon, and the control input at the next
moment is calculated by minimizing the error between the predictor and the reference
point under various constraints. On the basis of Formula (8), the linear prediction model of
the current sampling moment is established as follows:

.
x(t + dt) = v cos(φ)− vθ sin(φ)
.
y(t + dt) = vθ cos(φ) + v sin(φ)
.
φ(t + dt) = v tan(δ)

l + vδ tan(δ2+1)
l

φ = θ + δ

(12)
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Since the controlled system in MPC usually adopts a discrete state space model, it is
necessary to establish a state space expression under a linear discrete time system, and
expand the state space variable xs(k) and the control variable u(k) into a new state variable
xs(k + 1). The new state space expression is as follows:

xs(k + 1) = Axs(k) + Bu(k) + C

yo(k) = Dx(k)
(13)

where xs(k) ∈ R4, u(k) ∈ R2, and yo(k) ∈ R2 are output variables. xs(k), yo(k) are all
related to the four identical variables, and Formula (14) lists the expression for xs(k).

xs(k) = [x(k), y(k), φ(k), v(k)]′

u(k) = [a(k), δ(k)]′

.
v(k) = a(k)

(14)

A =


1 0 −v sin(θ) cos(θ)
0 1 v cos(θ) sin(θ)
0 0 1 tan(δ)

l
0 0 0 1



B =


0 0
0 0
0 v

l cos2(δ)

1 0


C =

[
vθ sin(θ) −vθ cos(θ) −v δ

l cos2(δ)
0
]

D =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



(15)

Based on the state space model for predicting the future dynamics of the system,
Formula (13) is rewritten as an incremental model as follows:

∆xs(k + 1) = A∆xs(k) + B∆u(k)

∆yo(k) = C∆x(k)
(16)

where
∆xs(k) = xs(k)− xs(k− 1)

∆u(k) = u(k)− u(k− 1)
(17)

The prediction range of the MPC-based upper decision controller is set to Np and the
control range is set to Nc. In addition, Np < Nc. Assuming that the current moment is k,
k > 0. Using the current state information to define the input vector and predicted output
vector of the system in the future Nc, the steps are as follows:

U(k)
de f
=


u(k)

u(k + 1)
. . .

u(k + Nc − 1)

 (18)
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YNp(k + 1 | k)
de f
=


yo(k + 1|k)
yo(k + 2|k)

. . .
yo(k + Np

∣∣k)
 (19)

The output vector prediction equation for the next Np steps is as follows:

YNp(k + 1
∣∣∣k) = Sxxs(k) + SuU(k) (20)

where
Sx = [CA, CA2 . . . CANp ] (21)

Su =


CB 0 · · · 0

CAB CB · · · 0
...

...
. . .

...

CANp−1B CANp−2B · · ·
NP−Nc+1

∑
i=1

CAiB

 (22)

In order to ensure that the predicted output variable is as close as possible to the
reference trajectory, that is, that the vehicle uses the shortest path as much as possible, the
objective function for constructing the optimization solution is as follows:

minJ = K
Np

∑
k=0
‖ YNp(k + 1 | k)− R(k + 1) ‖2

Q +Ku ‖ ∆U(k) ‖2
R +

Np

∑
k=0

Fr(k + 1|k) + Khh2 (23)

In the formula, Kh is the weight coefficient, h is the relaxation factor, Q, R are the
weighted matrices of the output error and control input, respectively, and R(k + 1) is the
reference path, which is the path obtained by the A algorithm. The first item of the objective
function represents the planning trajectory, and the reference trajectory should be as close
as possible to ensure the shortest planned trajectory. The second item aims to control the
incremental size to ensure that there will be no drastic changes in speed, heading angle, or
acceleration during the operation of the vehicle, and to ensure the stability and comfort
of the vehicle to a certain extent. The third item represents the potential energy value of
the vehicle in the obstacle potential field, which ensures that the vehicle can effectively
avoid dynamic obstacles. The fourth term is the relaxation factor, which can enhance the
solution of the feasible domain, so as to ensure that there is an optimal solution to the
programming problem.

To ensure the safety of vehicle obstacle avoidance and reduce the influence of the
maneuvering process on the comfort of the vehicle, the control process needs to take into
account the corresponding constraints. Through these constraints, the vehicle can avoid
accelerating or decelerating too quickly, thereby ensuring driving safety and comfort, and
the control input must meet the following constraints [26,27]:

−8 m/s2 ≤ a ≤ 3 m/s2, the pedestrian was not detected
−2 m/s2 ≤ a ≤ 1 m/s2, the pedestrian was detected
−π/4 ≤ δ ≤ π/4
0 m/s ≤ v ≤ 16.7 m/s
vre f = 12 m/s

(24)

where vre f is the best reference speed. Speeds of 12 m/s and 16 m/s were chosen because
they correspond to typical speeds of 40 m/h and 60 m/h.

3.4. Algorithm Framework Description

Figure 2 describes the proposed algorithm framework. The algorithm takes the road
environment, pedestrian trajectory, and vehicle running state as inputs, and combines the
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A* algorithm, the artificial potential field method, and MPC trajectory planning to finally
output the vehicle control state and guide the vehicle to avoid obstacles. First, according
to the initial point and target point of the vehicle, combined with the road environment,
the A* algorithm is used to plan a global path, which will function as the reference path.
Secondly, based on the global path, PF processes the position information of pedestrians
and vehicles, and uses the artificial potential field method and MPC algorithm to plan
a trajectory that satisfies the obstacle model and vehicle motion constraints.
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Figure 2. The framework of the trajectory planning algorithm system proposed in this paper.

4. Test Verification and Analysis of Results
4.1. Test Environment

The test required pedestrians and vehicles to be equipped with GPS to determine their
position, speed, and direction. The pedestrian terminal included GPS and LoRa modules,
and the GPS working frequency was 1 HZ. MCU (Microcontroller Unit) adopted an STM32
chip, and the radio frequency module was the LoRa RFM98 chip.

The test used the LoRa wireless transmission system, which consisted of gateways
and terminals. The gateway was responsible for receiving and processing messages sent
by the terminal. Figure 3 presents a hardware frame diagram and hardware physical
diagram of the pedestrian terminal, in which the GPS module and the MCU perform
one-way communication through the USART (Universal Synchronous/Asynchronous
Receiver/Transmitter), and the LoRa module performs two-way communication with
the MCU through the SPI (Serial Peripheral Interface) bus. Figure 4 is a hardware frame
diagram of the gateway and its corresponding physical diagram. MT7620A is the main
control chip of the gateway. The chip can meet the design requirements of the smart
gateway in terms of performance, and its price is lower than that of similar chips; thus,
it conforms to the low cost requirements of the LoRa network. It consists of four groups
of the same modules, which can support simultaneous communication with different
frequency bandwidths. Among them, LoRa communicates with the MCU through the
SPI bus in a two-way manner. The gateway software runs on the OpenWRT operating
system. The LoRa radio frequency module and its MCU in the gateway are the same
as those of the terminal. The gateway uses a POE power supply, and an RGB indicator
light indicates its working status. It possesses a single debugging serial port, an Ethernet
interface LAN/WAN, and 4G. The module interface has dial-up Internet access.



Sensors 2023, 23, 3248 10 of 15
Sensors 2023, 23, x FOR PEER REVIEW 11 of 16 
 

 

MCU

GPS

LoRaSPI

USART

  
Figure 3. Pedestrian terminal (the hardware frame diagram is on the left, and the physical hardware 
diagram is on the right). 

The gateway was located on the roof of the No. 3 experimental building (15 m in 
height) of Xi’an University of Posts and Telecommunications. Pedestrians wearing V2P 
pedestrian terminals walked at a constant speed outside the teaching building of the 
Chang’an Campus of Xi’an University of Posts and Telecommunications. 

SPI BUS

MCU

MCU

LoRa SX1278

LoRa SX1278LoRa  SX1278

MCU

MCU

LoRa SX1278

SPI BUS

SPI BUS SPI BUS

   MCU   MT7620A

SPI BUS

Debug

LAN/WAN

4G

RGB

POE

USART

  
Figure 4. Gateway (the hardware frame diagram is on the left and the physical hardware diagram 
is on the right). 

4.2. Analysis of Results 
Using the state model and measurement model in Section 2.1, pedestrian terminals 

and Superstar GPS OEM GPS receivers were used to collect pedestrian position infor-
mation at the same time. The sampling interval was 1 s. The experiment collected 1100 
sets of data, which were divided into eleven groups. UKF and PFs were used to filter The 
GPS position information, and the number of particles selected by the PFs was 100. A 
group was randomly selected, and the trajectory and filtering errors obtained are shown 
in Figure 5; the experimental results of the other ten groups are consistent with this group. 

  
Figure 5. Analysis of filtering error of PF and UKF algorithms (the left picture shows the trajectory 
generated via filtering after collecting GPS position information, and the track generated by the ac-
tual position information. The right picture shows the error between the data processed by the filter 
and the real data). 

0 10 20 30 40 50 60
x

10

20

30

40

50

60

70

80

y

True State
Measurement
Particle Filter
Unscented Kalman Filter

0 10 20 30 40 50 60 70 80 90 100
t

0

5

10

15

20

25

30

35
Filter Error

Particle Filter Error
Unscented Kalman Filter Error

Figure 3. Pedestrian terminal (the hardware frame diagram is on the left, and the physical hardware
diagram is on the right).

Sensors 2023, 23, x FOR PEER REVIEW 11 of 16 
 

 

MCU

GPS

LoRaSPI

USART

  
Figure 3. Pedestrian terminal (the hardware frame diagram is on the left, and the physical hardware 
diagram is on the right). 

The gateway was located on the roof of the No. 3 experimental building (15 m in 
height) of Xi’an University of Posts and Telecommunications. Pedestrians wearing V2P 
pedestrian terminals walked at a constant speed outside the teaching building of the 
Chang’an Campus of Xi’an University of Posts and Telecommunications. 

SPI BUS

MCU

MCU

LoRa SX1278

LoRa SX1278LoRa  SX1278

MCU

MCU

LoRa SX1278

SPI BUS

SPI BUS SPI BUS

   MCU   MT7620A

SPI BUS

Debug

LAN/WAN

4G

RGB

POE

USART

  
Figure 4. Gateway (the hardware frame diagram is on the left and the physical hardware diagram 
is on the right). 

4.2. Analysis of Results 
Using the state model and measurement model in Section 2.1, pedestrian terminals 

and Superstar GPS OEM GPS receivers were used to collect pedestrian position infor-
mation at the same time. The sampling interval was 1 s. The experiment collected 1100 
sets of data, which were divided into eleven groups. UKF and PFs were used to filter The 
GPS position information, and the number of particles selected by the PFs was 100. A 
group was randomly selected, and the trajectory and filtering errors obtained are shown 
in Figure 5; the experimental results of the other ten groups are consistent with this group. 

  
Figure 5. Analysis of filtering error of PF and UKF algorithms (the left picture shows the trajectory 
generated via filtering after collecting GPS position information, and the track generated by the ac-
tual position information. The right picture shows the error between the data processed by the filter 
and the real data). 

0 10 20 30 40 50 60
x

10

20

30

40

50

60

70

80

y

True State
Measurement
Particle Filter
Unscented Kalman Filter

0 10 20 30 40 50 60 70 80 90 100
t

0

5

10

15

20

25

30

35
Filter Error

Particle Filter Error
Unscented Kalman Filter Error

Figure 4. Gateway (the hardware frame diagram is on the left and the physical hardware diagram is
on the right).

The gateway was located on the roof of the No. 3 experimental building (15 m in
height) of Xi’an University of Posts and Telecommunications. Pedestrians wearing V2P
pedestrian terminals walked at a constant speed outside the teaching building of the
Chang’an Campus of Xi’an University of Posts and Telecommunications.

4.2. Analysis of Results

Using the state model and measurement model in Section 2.1, pedestrian terminals
and Superstar GPS OEM GPS receivers were used to collect pedestrian position information
at the same time. The sampling interval was 1 s. The experiment collected 1100 sets of
data, which were divided into eleven groups. UKF and PFs were used to filter The GPS
position information, and the number of particles selected by the PFs was 100. A group was
randomly selected, and the trajectory and filtering errors obtained are shown in Figure 5;
the experimental results of the other ten groups are consistent with this group.

EKF, UKF, and PF are commonly used filters in nonlinear systems. EKF revolves
around its current state through Taylor expansion, discarding high-order terms, linearizing
the system under study, and solving it as a linearized system; the result has large deviation.
The UKF algorithm uses UT transformation to obtain a Sigma point set, and uses a small
number of points to approximate the state distribution, which better describes the nonlinear
system, so the filter converges to the correct solution more quickly. However, UKF is only
applicable to the standard Kalman filter system under linear assumption (under the linear
and Gaussian assumption of the system). When the linearity of the system is not high, the
effect of UKF filtering is not good. PF is a parameterless filter that does not have a specific
function that enables it to obtain posterior results, and the Monte Carlo method generates
a large number of random particles to approximate the posterior distribution of the state
and achieve state estimation. In the process of prediction and updating, the PF algorithm
only updates the particles in it, and then, obtains a state estimation via weighting and
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summing. It does not need to calculate the posterior covariance of the state, so it can
approximate any system’s state distribution. In this paper, UKF and PF were selected
to filter the GPS position information. It can be seen from Figure 5 that the trajectory
filtered by PF is closer to the real trajectory. For stability, therefore, the PF filter was used to
preprocess the data and improve the positioning accuracy.
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Figure 5. Analysis of filtering error of PF and UKF algorithms (the left picture shows the trajectory
generated via filtering after collecting GPS position information, and the track generated by the actual
position information. The right picture shows the error between the data processed by the filter and
the real data).

To verify the effectiveness of the proposed trajectory planning algorithm, the algorithm
was tested and verified in this paper. Two pedestrians wearing pedestrian terminals kept
moving forward at a constant speed, and the pedestrian speed was 1 m/s. After collecting
the GPS position information of pedestrians, this paper modeled the pedestrian driving
environment, assuming that the vehicle length was 4.5 m, the width was 2 m, the tire
diameter was 0.6 m, the width was 0.25 m, and the front and rear wheelbases, and the
rear wheelbases, were 1.5 m. As shown in Figure 6, the vehicle was modeled to a given
size. The initial point was (10,2), the target point was (35,47), the best reference speed was
given as 12 m/s, the pedestrian was located outside the line of sight of the driver, and
the trajectory was uncertain. (0,10). The initial points of the two pedestrians were (0,20).
After preprocessing the GPS data using PF, the positions of the vehicle and the pedestrian
were determined and are shown in Figure 6a. The two black rectangles in the figure jointly
denote the road boundary, which is regarded as a static obstacle, and pedestrians are
dynamic obstacles relative to vehicles.

According to the initial point and target point of the given vehicle, we first used
the A* algorithm to plan an optimal global reference path. The output trajectory of the
A* algorithm is given by the discrete points in the predicted time domain, which are
discrete trajectory points. Due to the kinematic constraints of the vehicle, if the vehicle
position is required to be continuous, the yaw angle continuity requires the curve to be
first-order continuous, and the acceleration constraint requires the curve to be second-order
continuous; then, the planned path should satisfy the second-order continuity of the curve.
Upon integrating the requirements of path planning and calculation cost, the cubic spline
curve was selected to smooth the path. Figure 6b shows the fitting results of the planned
path using the cubic spline curve.
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Figure 6. The trajectory generated by the proposed algorithm (the unit in the figure is m). (a) The
initial state of the test scene, where the green mark at (35,47) is the target point, and the vehicle is
at (10,2) as the initial coordinate point. (0,10) and (0,20) are the initial points of the two pedestrians.
(b) The reference global path planned using the A* algorithm. (c) The path diagram planned using
the proposed algorithm.

After testing and verification, the vehicle could avoid pedestrians, and the trajectory
planned by the algorithm is shown in Figure 6c. The blue part is the vehicle trajectory, and
the black part is the trajectory of the two pedestrians. The obstacle detection range was set
to the front wheel of the vehicle as the reference point, within a circle with a radius of 5 m.
The speed, acceleration, and heading angle of the vehicle during obstacle avoidance are
shown in Figure 7. The vehicle accelerates as closely as possible to the recommended speed
of 12 m/s. It stops accelerating to avoid the first pedestrian at the sixth second, and then,
decelerates to avoid the second pedestrian, with complete collision avoidance, at the tenth
second; finally, it decelerates within the speed limit to reach the target point. The vehicle
heading angle changes smoothly within (−pi/4, pi/8).
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In the case of the vehicle’s avoidance of pedestrians, the hazard distance between the
vehicle and the pedestrian was set to 1.5 m [28]. In this paper, the closest distance between
the vehicle and the pedestrian was used as the performance index to evaluate the proposed
algorithm. In the process of algorithm execution, the distance between the vehicle and the
two pedestrians was counted, and the result is shown in Figure 8; the ordinate is the distance
between the vehicle and the pedestrian, the unit is m, and the abscissa is the number of
sequences. Among them, the distance between the vehicle and the two pedestrians in
the algorithm proposed in this paper was two solid lines. “Distance–1” in the legend
indicates the distance between the vehicle and the first pedestrian during the operation
of the proposed algorithm; “Distance–2” in the legend indicates the distance between
the vehicle and the first pedestrian during the operation of the proposed algorithm; and
“Ref. [29]–distance–1” in the legend represents the distance between the vehicle and the first
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pedestrian during the operation of the algorithm proposed by Ref. [29]. It can be seen from
Figure 8 that the algorithm proposed in this paper has good obstacle avoidance performance,
and the closest distance from pedestrians is 2.7 m, while the algorithm proposed by Ref. [29]
is within the danger-range distance of pedestrians. Therefore, the algorithm in this paper
has better performance and higher safety, and thus, has reference value.
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5. Conclusions

In order to achieve the goals of vehicles actively avoiding pedestrians, and safely and
reliably improving traffic efficiency, this paper proposes a trajectory planning algorithm
that combines the A* algorithm, the artificial potential field method, and MPC; we added
the dynamic obstacle potential field into the objective function of the MPC controller, so
as to guide the vehicle to avoid obstacles and avoid of human–vehicle collision. The test
results show that the planning algorithm proposed in this paper can plan the trajectory of
vehicles while keeping a safe distance from pedestrians, to actively avoid collisions and
improve traffic safety. The trajectory planned by this algorithm is relatively smooth and
conforms to the motion constraints of the vehicle. During vehicle driving, the acceleration
change is within the range of (−1.6m/s2, 1.2m/s2), acceleration during vehicle obstacle
avoidance is within the range of (−1.6m/s2, 0.4m/s2), the heading angle change is in the
range of (−pi/4, pi/8), and the vehicle acceleration and steering angle change ranges are
small, ensuring steering stability and riding comfort.

Author Contributions: Conceptualization, R.P. and L.J.; methodology, H.W. and X.Z.; software,
L.J.; validation, L.J.; formal analysis, J.Y. and J.S.; investigation, J.Y. and J.S.; writing—original draft
preparation, L.J. and R.P.; writing—review and editing, R.P. and L.J. All authors have read and agreed
to the published version of the manuscript.

Funding: This work was supported by the Key Industry Innovation Chain Project of Shaanxi
Province (No. 2021ZDLGY07-10, No. 2021ZDLNY03-08), the Science and Technology Plan Project of
Shaanxi Province (No. 2022GY-045), the Key Research and Development Plan of Shaanxi Province
(No. 2018ZDXM-GY-041), the Scientific Research Program funded by the Shaanxi Provincial Ed-
ucation Department (Program No. 21JC030), the Science and Technology Plan Project of Xi’an
(No. 22GXFW0124, No.2019GXYD17.3), the National Innovation and Entrepreneurship Training
Program for College Students (No. 202211664023), and the Guangzhou Nansha District Innovation
Team Project (No. 2021020TD001).



Sensors 2023, 23, 3248 14 of 15

Data Availability Statement: No applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ma, Y.; Zhu, X.; Zhang, S.; Yang, R.; Wang, W.; Manocha, D. TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents.

In Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 1 February 2019.
2. Rasouli, A.; Tsotsos, J.K. Autonomous Vehicles That Interact with Pedestrians: A Survey of Theory and Practice. In Proceedings

of the IEEE Transactions on Intelligent Transportation Systems, Yokohama, Japan, 26–29 May 2019.
3. Hussein, A.; García, F.; Armingol, J.M.; Olaverri-Monreal, C. P2V and V2P communication for Pedestrian warning on the basis of

Autonomous Vehicles. In Proceedings of the IEEE 19th International Conference on Intelligent Transportation Systems (ITSC),
Rio de Janeiro, Brazil, 1–4 November 2016.

4. Cunningham, W. Honda Tech Warns Drivers of Pedestrian Presence. Available online: https://www.cnet.com/roadshow/news/
honda-tech-warns-drivers-of-pedestrian-presence/ (accessed on 27 January 2023).

5. Magdum, S.S.; Franklin, A.; Tamma, B.R.; Pawar, D.S. SafeNav: A Cooperative V2X System using Cellular and 802.11p based
Radios opportunistically for Safe Navigation. In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent
Transportation Systems (ITSC), Rhodes, Greece, 20–23 September 2020.

6. Ren, Y.; Zhao, Z.; Zhang, C.; Yang, Q.; Hong, K.-S. Adaptive Neural-Network Boundary Control for a Flexible Manipulator With
Input Constraints and Model Uncertainties. IEEE Trans. Cybern. 2021, 51, 4796–4807.

7. Zuo, Z.; Yang, X.; Li, Z.; Wang, Y.; Luo, X. Mpc-based cooperative control strategy of path planning and trajectory tracking for
intelligent vehicles. IEEE Trans. Intell. Veh. 2021, 6, 513–522. [CrossRef]

8. Jaswanth, M.; Narayana, N.K.L.; Rahul, S.; Supriya, M. Autonomous Car Controller using Behaviour Planning based on Finite
State Machine. In Proceedings of the 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI),
Tirunelveli, India, 28–30 April 2022.

9. Malviya, V.; Reddy, A.K.; Kala, R. Autonomous Social Robot Navigation using a Behavioral Finite State Social Machine. Robotica
2020, 38, 2266–2289. [CrossRef]

10. Shariski, F.H.; Priandana, K.; Wahjuni, S. Performance Analysis of Self-Organizing Map Method for Wheeled Robot Control
System. In Proceedings of the 2020 International Conference on Smart Technology and Applications (ICoSTA), Surabaya,
Indonesia, 20 February 2020.

11. Tian, Z.; Guo, C.; Liu, Y.; Chen, J. An Improved RRT Robot Autonomous Exploration and SLAM Construction Method. In
Proceedings of the 2020 5th International Conference on Automation, Control and Robotics Engineering (CACRE), Dalian, China,
18–20 September 2020.

12. Hao, B.; Du, H.; Dai, X.; Liang, H.Y. Automatic recharging path planning for cleaning robots. Mob. Inf. Syst. 2021, 2021, 1–19. [CrossRef]
13. Elbanhawi, M.; Simic, M. Sampling-based robot motion planning: A review. IEEE Access 2014, 2, 56–77. [CrossRef]
14. Bae, S.H.; Joo, S.H.; Pyo, J.W.; Yoon, J.S.; Kuc, T.Y. Finite State Machine based Vehicle System for Autonomous Driving in Urban

Environments. In Proceedings of the 2020 20th International Conference on Control, Automation and Systems (ICCAS), Busan,
Republic of Korea, 13–16 October 2020.

15. González, D.; Pérez, J.; Milanés, V.; Nashashibi, F. A Review of Motion Planning Techniques for Automated Vehicles. IEEE Trans.
Intell. Transp. Syst. 2016, 17, 1135–1145. [CrossRef]

16. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-Star Algorithm: An Improved A-Star Algorithm for AGV Path
Planning in a Port Environment. IEEE Access 2021, 9, 59196–59210. [CrossRef]

17. He, N.; Su, Y.; Guo, J.; Fan, X.; Liu, Z.; Wang, B. Dynamic path planning of mobile robot based on artificial potential field. In
Proceedings of the 2020 International Conference on Intelligent Computing and Human-Computer Interaction (ICHCI), Sanya,
China, 4–6 December 2020.

18. Lu, S.X.; Li, E.; Guo, R. An Obstacles Avoidance Algorithm Based on Improved Artificial Potential Field. In Proceedings of the
2020 IEEE International Conference on Mechatronics and Automation (ICMA), Beijing, China, 13–16 October 2020.

19. Azzabi, A.; Nouri, K. An advanced potential field method proposed for mobile robot path planning. Trans. Inst. Meas. Control
2019, 41, 1–13. [CrossRef]

20. Gutjahr, B.; Gröll, L.; Werling, M. Lateral vehicle trajectory optimization using constrained linear time-varying MPC. IEEE Trans.
Intell. Transp. Syst. 2017, 18, 1586–1595. [CrossRef]

21. Mekala, G.K.; Sarugari, N.R.; Chavan, A. Speed Control in Longitudinal Plane of Autonomous Vehicle Using MPC. In Proceedings
of the 2020 IEEE International Conference for Innovation in Technology (INOCON), Bangalore, India, 6–8 November 2020.

22. Murillo, M.; Sánchez, G.; Genzelis, L.; Giovanini, L. A real-time path-planning algorithm based on receding horizon techniques.
J. Intell. Robot. Syst. 2018, 91, 445–457. [CrossRef]

23. Murota, K.; Shioura, A. Dijkstra’s algorithm and L-concave function maximization. Math. Program. 2014, 145, 163–177. [CrossRef]
24. Dijkstra, E. A note two problems in connection with graphs. J. Numer. Math. 1959, 1, 269–271. [CrossRef]
25. Rachmawati, D.; Sihombing, P.; Halim, B. Implementation of Best First Search Algorithm in Determining Best Route Based on

Traffic Jam Level in Medan City. In Proceedings of the 2020 International Conference on Data Science, Artificial Intelligence, and
Business Analytics (DATABIA), Medan, Indonesia, 16–17 July 2020; pp. 5–12.

https://www.cnet.com/roadshow/news/honda-tech-warns-drivers-of-pedestrian-presence/
https://www.cnet.com/roadshow/news/honda-tech-warns-drivers-of-pedestrian-presence/
http://doi.org/10.1109/TIV.2020.3045837
http://doi.org/10.1017/S0263574720000259
http://doi.org/10.1155/2021/5558096
http://doi.org/10.1109/ACCESS.2014.2302442
http://doi.org/10.1109/TITS.2015.2498841
http://doi.org/10.1109/ACCESS.2021.3070054
http://doi.org/10.1177/0142331218824393
http://doi.org/10.1109/TITS.2016.2614705
http://doi.org/10.1007/s10846-017-0740-1
http://doi.org/10.1007/s10107-013-0643-2
http://doi.org/10.1007/BF01386390


Sensors 2023, 23, 3248 15 of 15

26. Bokare, P.; Maurya, A. Acceleration-Deceleration Behaviour of Various Vehicle Types. Transp. Res. Procedia 2017, 25, 4733–4749. [CrossRef]
27. Bae, I.; Moon, J.; Seo, J. Toward a Comfortable Driving Experience for a Self-Driving Shuttle Bus. Electronics 2019, 8, 943. [CrossRef]
28. Nie, B.; Li, Q.; Gan, S.; Xing, B.; Huang, Y.; Li, S.E. Safety envelope of pedestrians upon motor vehicle conflicts identified via

active avoidance behaviour. Sci. Rep. 2021, 11, 3996. [CrossRef]
29. Zhao, Y.B.; Han, Z.Z.; Su, K.; Guo, L.; Yang, W.H. Anti-collision Trajectory Planning and Tracking Control based on MPC and

Fuzzy PID Algorithm. In Proceedings of the 2020 4th CAA International Conference on Vehicular Control and Intelligence (CVCI),
Hangzhou, China, 18–20 December 2020; pp. 613–618.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.trpro.2017.05.486
http://doi.org/10.3390/electronics8090943
http://doi.org/10.1038/s41598-021-82331-z

	Introduction 
	Data Preprocessing 
	State Model 
	Measurement Model 

	Trajectory Planning 
	A* Path Planning 
	Vehicle and Pedestrian Models 
	Vehicle Model 
	Pedestrian Model 

	MPC Trajectory Planning 
	Algorithm Framework Description 

	Test Verification and Analysis of Results 
	Test Environment 
	Analysis of Results 

	Conclusions 
	References

