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Abstract: Thermoplastic polyurethane (TPU) has been widely used as the elastic polymer substrate
to be combined with conductive nanomaterials to develop stretchable strain sensors for a variety
of applications such as health monitoring, smart robotics, and e-skins. However, little research has
been reported on the effects of deposition methods and the form of TPU on their sensing perfor-
mance. This study intends to design and fabricate a durable, stretchable sensor based on composites
of thermoplastic polyurethane and carbon nanofibers (CNFs) by systematically investigating the
influences of TPU substrates (i.e., either electrospun nanofibers or solid thin film) and spray coating
methods (i.e., either air-spray or electro-spray). It is found that the sensors with electro-sprayed CNFs
conductive sensing layers generally show a higher sensitivity, while the influence of the substrate is
not significant and there is no clear and consistent trend. The sensor composed of a TPU solid thin
film with electro-sprayed CNFs exhibits an optimal performance with a high sensitivity (gauge factor
~28.2) in a strain range of 0–80%, a high stretchability of up to 184%, and excellent durability. The
potential application of these sensors in detecting body motions has been demonstrated, including
finger and wrist-joint movements, by using a wooden hand.

Keywords: strain sensors; electro-spray; air-spray; electrospinning; polyurethane/carbon nanofibers

1. Introduction

Flexible and stretchable sensors are attracting tremendous attention due to their
enormous potential in a variety of applications such as motion detection, health monitoring,
and human-machine interfaces [1,2]. Conventional sensors made of metals and semi-
conductors are rigid, brittle, and strenuous to wear, making them challenging for use as
wearable sensors [3]. On the other hand, elastic polymer nanocomposite-based sensors
are lightweight, soft, and can be made hypoallergenic [4–6]. Due to their high flexibility,
they can be fixed on non-flat surfaces (any part of our body) and/or attached to clothing
for long-term health monitoring. Sensors based on different working mechanisms have
been developed including piezocapacitive [7], piezoresistive [8], piezoelectric [9], and
triboelectric [10]. Among these, piezoresistive sensors have attracted considerable interest
due to the relatively simple read-out systems and advantages such as high sensitivity and
high stretchability [2,11].

Flexible piezoresistive sensors are usually made of an elastic substrate or matrix
in combination with conductive fillers [8–16]. Conductive materials such as carbon
black [12], metal nitrides/carbides (MXenes) [13], carbon nanotubes [14], carbon nanofibers
(CNFs) [15,16], silver nanowires (AgNWs) [17] and gold nanowires [18], and graphene [19]
are most commonly used. In particular, the one-dimensional conductive carbon nanoma-
terials (e.g., carbon nanotubes or nanofibers) were extensively studied due to their high
electrical conductivity and mechanical properties, as well as high stability [20]. Moreover,
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characteristics such as low cost and ease of fabrication must also be considered while
developing wearable electronics [21]. CNFs are one-dimensional carbon nanomaterials that
have high thermal and electrical conductivity [22] and possess various advantages such as
low production cost and ease of functionalization, compared to other carbon nanomaterials
(CNTs and graphene) [23]. Many recent studies demonstrated the potential use of this
material in preparing high-performance wearable electronics [24–28].

To achieve high flexibility and stretchability, elastic polymers such as Ecoflex, natural
rubber, and thermoplastic polyurethane (TPU) are commonly utilized [29]. Among them,
TPU can be readily made into different forms such as electrospun nanofibers and solid thin
films, thus offering tremendous possibility in terms of creating high-performance sensors.
For instance, Lu et al. developed a strain sensor in a sandwich structure using AgNWs
and electrospun TPU mats via a vacuum filtration process. The sensor exhibited high
durability with a sensitivity (gauge factor, GF) of ~12 and a workable strain range of up
to around 80% [30]. Zhang et al. produced wearable sensors based on MXenes and TPU,
encapsulated by polydimethylsiloxane (PDMS). The TPU substrate was obtained using the
solution casting method and the thickness of the film was controlled to 1 mm. MXenes
were transferred to the substrate by ultrasonic treatment for 30 min to ensure uniform
dispersion. PDMS was then used to encapsulate the sensor. This sensor was capable of
detecting a very low strain range of less than 0.005%, has a high durability over 3000 cycles,
a fast response (response time ~120 ms), and a sensing range of up to 90% [31].

Different techniques were developed to deposit the conductive sensing materials
on the elastic substrate, including electro-spray and air-spray. Air-spray is a process
of transferring coating materials (solution and/or particle dispersion) to a surface by
pressurized air. In this process, the liquid is forced through the nozzle and forms small
and fine droplets by using gas. It is an economical, time efficient, and easy-to-use process
and a promising method for making films with a large conductive area [32]. Electro-spray,
similar to electro-spinning, is an electro-hydrodynamic process in which an electrostatic
force is used to spray a suspension or solution. Process parameters play significant roles in
determining the properties of the resultant specimens. Therefore, these parameters must be
determined [33].

Towards the goal of developing highly sensitive, stretchable, and durable strain
sensors, this work investigates the influences of the elastic substrate (i.e., electrospun or
solid thin film TPU) and deposition methods (i.e., air-spray and electro-spray) on the
sensing performance of the resultant TPU/CNFs sensors. Porous TPU nanofiber mats
were prepared by electrospinning while solid TPU thin films with similar thicknesses were
solution cast. CNFs were then either air-sprayed or electro-sprayed onto the TPU substrates.
The sensitivity and stretchability of the resultant TPU/CNF sensors were characterized
and compared. Moreover, the effects of the CNFs’ area density on the sensing performance
(sensitivity and stretchability) were examined. The sensing mechanism was studied by
observing the structural changes when subjected to cyclic tensile loading–unloading, which
was also correlated with their sensing performance. Lastly, the potential application of the
sensors in motion detection was demonstrated on a wooden hand, including wrist and
finger bending movements.

2. Experimental Section
2.1. Materials

Carbon nanofibers (CNFs) were purchased from Applied Sciences Inc. (grade: PR-24-
XT-HHT and Pyrograf-III). Isopropyl alcohol (IPA), tetrahydrofuran (THF), and dimethyl-
formamide (DMF) were obtained from Chem-supply Australia and polyvinylpyrrolidone
(PVP) was bought from Sigma-Aldrich Australia. The RE-FLEX TPU pellets used for
fabricating the nanofiber TPU substrate was obtained from Townsend Chemicals Propri-
etary LTD.
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2.2. Fabrication of TPU/CNFs Strain Sensors

Four different sets of sensors were prepared, including sensors based on solid TPU
thin film substrate with CNFs being air-sprayed or electro-sprayed onto the substrate and
sensors based on electrospun TPU with CNFs being air-sprayed or electro-sprayed onto the
substrate (Table 1). The abbreviations of these four sets of sensors are listed in Table 1. The
detailed preparation procedures of the sensors are given below and illustrated in Figure 1.

Table 1. Sensors investigated in this study and their abbreviation.

Abbreviation Description

S-TPU-CNF-AS Solid TPU thin film with air-sprayed CNFs
S-TPU-CNF-ES Solid TPU thin film with electro-sprayed CNFs

NF-TPU-CNF-AS Nanofiber TPU with air-sprayed CNFs
NF-TPU-CNF-ES Nanofiber TPU with electro-sprayed CNFs
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Figure 1. Schematic of fabricating sensors based on S-TPU and NF-TPU substrates using either the
air-spray or electro-spray technique.

TPU substrate preparation: The TPU nanofiber mats were obtained using an electro-
spinning process. Firstly, the TPU pellets were dissolved in DMF and THF mixed in a
volume ratio of 1:3. The dissolution was completed by magnetic stirring at 300 rpm and
60 ◦C for 4 h. A TPU solution of three TPU concentrations was prepared and compared,
including 6 wt.%, 8 wt.%, and 10 wt.%. The electrospinning process was conducted on
a NanoSpinner electrospinning device (Inovenso NS+ plus, 220 V, 50/60 Hz). A syringe
with a 10 mL capacity was used to load the TPU solution. The influences of the different
spinning parameters were examined, including the TPU solution concentration, voltage,
flow rate, and spinneret-to-collector distance. The low voltage cannot produce nanofibers
due to low electric force while a voltage beyond the critical value results in an unstable
jet [34]. After trying voltages of 20 kV, 23 kV, and 25 kV, it was noted that the 23 kV voltage
enabled the effective production of uniform nanofibers. The influence of the flow rate, TPU
concentration, and spinneret-to-collector distance will be discussed in detail in Section 3.

Spray coating for depositing CNFs on TPU: CNFs are deposited on the substrates (solid
TPU thin film or electrospun TPU nanofibers) using two different deposition processes:
(a) air-spray and (b) electro-spray. To perform the coating, CNFs were first dispersed in
IPA by using PVP as the dispersion agent. The CNF concentration is 0.1 wt.% while the
PVP of the same concentration (0.1 wt.%) was used. This mixture was sonicated for about
1 h using an ultrasonic probe-sonicator. Sensors with CNFs of different area densities can
be produced by varying the volume of the CNF solution sprayed on the substrate of the
same area.
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In the air-spray deposition process, the substrate was surface treated by using O2
plasma for about 1 min using a plasma surface treatment machine (Zepto, Diener Electron-
ics, Ebhausen, Germany) to promote the adhesion with the CNFs. The air-spray technique
was performed using a Blackridge airbrush kit which has a nozzle diameter of 0.3 mm
and the operating pressure was 18–20 psi at a distance of 15 cm. After air-spray, the
specimen was heat treated at 60 ◦C for about 1 h and thin copper wires were attached
on either side using silver paste which acts as leads for measuring the resistance during
piezoresistivity tests.

The electro-spray was carried out by using a NanoSpinner electrospinning device
(Inovenso NS+ plus, 220 V, 50/60 Hz, Inovenso, Cambridge, MA, USA), the same device
used to obtain the TPU nanofiber substrate. The CNF solution is loaded into the syringe
with a 10 mL capacity. The drum collector to the tip of the spinneret distance, the voltage,
drum collector rotating speed, and flow rate were determined to be 10 cm, 23 kV, 300 rpm,
and 10 mL/h, respectively, to ensure uniform coating and no liquid dripping. It should be
mentioned that both TPU substrates were not surface treated for this electro-spray method
because no big droplets were observed during the spraying process and a very uniform
coating can be achieved by adjusting the flow rate of electro-spray. After spraying, the
samples were peeled off from the drum collector and heat treated at 60 ◦C for about 1 h.
Thin copper wires were then attached as electrodes for a resistance measurement.

2.3. Characterisation
2.3.1. Morphology

The morphology of the solid thin film and TPU nanofiber substrates were studied
using Field Emission Scanning Electron Microscopy (FESEM, Nova NanoSEM, FEI com-
pany, Hillsboro, OR, USA). Platinum coating was conducted before the examination. To
understand the structural changes of the TPU/CNFs sensors, the samples were stretched
to different levels of strains (up to 100%) and the microstructure of the CNFs sensing layer
was examined using SEM and an optical microscope.

2.3.2. Piezoresistivity Measurements

The piezoresistivity of the TPU/CNFs was characterized by measuring the resistance
changes when subjected to tensile stretch. By using a custom-made linear stage device, the
samples were imposed by cyclic and quasi-static tension. To measure the sensor responses
to cyclic loading–unloading, 8 cycles were applied with peak-strain ranging between 1%
to 650% (depending on the sample failure strain) at a velocity of 1 mm/s. Three samples
were tested to investigate the repeatability of the sample performance. The sensitivity of
the sensors was measured by applying linear regression to the data obtained from the
tensile test and by analyzing the changes in the resistance and strain (ε). The durability was
measured by examining the sensors under 3000 cyclic tensile loading and unloading cycles
at a velocity of 1 mm/s (equivalent to strain rate of 20%/s). The sensor’s piezoresistivity
under different stretching velocities from 1 mm/s, 5 mm/s, 9 mm/s, to 13 mm/s was also
studied while the response time was examined by stretching the sample to 50% strain at a
velocity of 13 mm/s (the highest velocity the equipment can accurately reach).

3. Results and Discussion
3.1. Effects of Electrospinning Parameters on Nanofiber Production

The concentration of the TPU solution plays a crucial role in producing uniform
nanofibers. Figure 2 shows the SEM images of electrospun nanofibers produced from a TPU
solution of three different concentrations, namely, 6 wt.%, 8 wt.%, and 10 wt.%. The flow
rate and the spinneret-to-collector distance for the electrospinning process were 2.5 mL/h
and 10 cm, respectively. Figure 2b indicates nanofibers made from an 8 wt.% TPU solution
displaying a uniform diameter without forming any beads. However, when 10 wt.%
TPU solution was used, nanofibers of non-uniform diameters were obtained, as shown in
Figure 2c. Notably, there were droplets forming at the nozzle tip which were not stretched



Sensors 2023, 23, 3245 5 of 15

(no Taylor cone was observed) and spun into fibers. The same phenomenon occurred for
the 6 wt.% concentration and non-uniform fibers were generated (Figure 2a). Hence, a TPU
solution with an 8 wt.% concentration was used to fabricate the NF-TPU substrate.
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Figure 2. SEM images of TPU nanofibers electrospun from TPU solution of different concentrations:
(a) 6 wt.%, (b) 8 wt.%, and (c) 10 wt.%.

Another parameter that plays a significant role in the production of uniform nanofibers
and needs to be determined is the spinneret-to-collector distance. Three different distances
were studied (5 cm, 10 cm, and 15 cm) while the flow rate and the TPU solution concentra-
tion were 2.5 mL/h and 8 wt.%, respectively. The structural morphology of the resultant
nanofibers was analyzed by using SEM. It was also noticed that a 5 cm distance was too
small for the liquid to stretch into nanofibers. Moreover, from Figure 3, we can see that
although there is no noticeable difference between the two in terms of uniformity, the
sample electrospun at a larger distance (15 cm, Figure 3a) has a smaller diameter (average
diameter ~0.34 ± 0.1 µm) as compared to those obtained at a shorter distance (10 cm,
Figure 3b, average diameter ~0.47 ± 0.07 µm). Moreover, it was found that thinner diam-
eter nanofibers can lead to early mechanical failure. Therefore, the spinneret-to-collector
distance was determined to be 10 cm.
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The third parameter studied is the flow rate of liquid feeding during electrospin-
ning. A low flow rate results in the instability of the jet while a high flow rate leads to
bead formation due to less volatility of the solution causing the bonding between the
fibers [35]. Three flow rates, 1, 2.5, and 4 mL/h, were studied in this work. It was found
that the jet was unstable, and droplets were formed when 1 and 4 mL/h were used. From
Figures 2b and 3b, we can see that the flow rate of 2.5 mL/h did not cause any bead forma-
tion and that the TPU nanofibers are uniform. Thus, for this study, a flow rate of 2.5 mL/h,
TPU concentration of 8 wt.%, and a spinneret-to-drum collector distance of 10 cm was
chosen for electrospinning TPU.

3.2. Piezoresistivity of the TPU/CNFs Sensors

Sensors fabricated using different spray methods and different substrates were pre-
pared and characterized. It should be mentioned that the area density of CNFs deposited
on the TPU substrate discussed in this Section is 0.65 mg/cm2. Figure 4a,b shows the
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relative resistance change (%) versus the tensile strain (%) of these sensors. The resistance
increases upon increasing the tensile strain up to its failure strain and the resistance increase
rate also increases at larger strains. The non-linear relationship in the curves of relative
resistance change (∆R/R0) versus the strain is often observed (particularly in a large strain
range) in piezoresistive sensors based on elastic polymer nanocomposites [36]. The reason
for this non-linearity in the large strain may be due to the tunneling resistance which
increases exponentially upon increasing the distance between two conductive particles [37],
as well as stress relaxation and creep [38]. The gauge factor (an indicator of the sensitiv-
ity) is defined as the slope in ∆R/R0 versus the strain curve in the strain range <80%. It
should be also noted that the stretchability is the failure strain (electrical failure where
the resistance is too high to be measured by the used multimeter with 1 GΩ capacity).
Figure 4c,d summarizes the sensitivity and stretchability of these four types of sensors
while Figure 4e gives the corresponding figure of merit (= GF × Stretchability). It can be
seen that S-TPU-CNF-ES shows the highest sensitivity with a gauge factor of ~28.2 but the
lowest stretchability of ~184% strain. In contrast, S-TPU-CNF-AS has a high stretchability
of up to 660% but the sensitivity is the lowest with a gauge factor of ~4.4. Moreover, it is
noticeable that the samples with CNFs electro-sprayed generally showed higher sensitivity
compared to air-sprayed samples. However, the influence of substrates, whether solid TPU
or electrospun TPU nanofibers, on sensitivity and stretchability is not explicit.Sensors 2023, 23, x FOR PEER REVIEW 7 of 16 
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Sensors 2023, 23, 3245 7 of 15

The sensors developed in this research are intended to be used for human motion
detection. Therefore, the sensors must have a high stretchability (>~50%) to be capable of
detecting human motions as the strain associated with some human motions (e.g., joint
bending) can reach about 50% [11]. Thus, the sensor made from solid TPU thin film with
CNFs electro-sprayed, which shows the highest sensitivity and sufficient stretchability, will
be the focus in the following studies.

3.3. Influences of Electro-Spray Parameters and CNF Area Density

There are several parameters that need to be determined during electro-spray, in-
cluding the applied voltage, spinneret-to-collector distance, and flow rate, as well as the
concentration of the CNFs IPA dispersion. The CNF concentration was set to be 1 wt.%
since a stable dispersion (no clear agglomerates were observed after 12 h) can be achieved
at this concentration. The electro-spray voltage and spinneret-to-collector distance were
determined by observing the sprayed CNFs to ensure that there are no obvious droplets
(agglomerates) during spraying. Three voltages, i.e., 20 kV, 23 kV, and 25 kV, and three
spinneret-to-collector distances, i.e., 5 cm, 10 cm, and 15 cm, were examined. It was noted
that a 23 kV voltage and 10 cm spinneret-to-collector distance could produce uniform
electro-spray without any droplet formation on the substrate. However, the influence of
the flow rate on electro-sprayed CNFs on the substrates cannot be readily seen based on
the appearance of the specimens.

Thus, the piezoresistivity of specimens prepared by three different flow rates, i.e., 10,
20, and 30 mL/h, were compared. It should be noted that the area density of CNFs was
fixed at 0.35 mg/cm2 in all these three cases. From Figure 5a–c, we can see that the CNFs
layer sprayed at TPU thin film has a bright area (CNFs islands) separated by a dark area
where CNFs of a much lower density are observed. Upon increasing the flow rate, the
area with sparse CNFs seems to be decreased, indicating that CNFs are distributed more
uniformly across the entire area. Figure 5d shows the relative resistance change (∆R/R0)
under tensile strain up to 80% strain. It is seen that the sensor prepared using a lower flow
rate shows a higher gauge factor (Figure 5e), which is calculated using linear regression
fit, indicating higher sensitivity. The larger resistance changes when subjected to the same
level of strain may be attributed to the difference in the CNF distribution. When sprayed at
the low flow rate, the CNF-rich islands are bridged by the CNF-sparse areas which form a
continuous network. It is believed that this continuous network with a low centration of
CNFs plays a dominant role in contributing to the piezoresistivity. It has been demonstrated
that a lower concentration of conductive nanomaterials usually results in higher sensitivity
because it is easier to destruct the conductive networks if the nanomaterials are initially
less overlapped and have a lower contact area [11,37,39]. Hence, a 10 mL/h flow rate was
selected for electro-spray due to the higher sensitivity.

Moreover, the area density of CNFs is believed to be critical and the piezoresistivity of
sensors having CNFs of different area densities was investigated. Notably, the area density
was evaluated based on the quantity of CNF solution spray-coated over the TPU substrate
of a certain area. Figure 6a shows the relative change in resistance versus the tensile strain
for S-TPU-CNF-ES sensors of area densities 0.2, 0.35, 0.5, 0.65, and 0.8 mg/cm2 up to the
failure strain while Figure 6b gives the relative resistance changes in the strain range 0–80%,
based on which the gauge factor and linearity (R2) values are obtained. Figure 6c,d shows
the gauge factors and stretchability of these sensors and Figure 6e gives the corresponding
figure of merit. Notably, the sensor made of 0.65 mg/cm2 CNFs has the highest sensitivity
(GF ~ 28.2). The gauge factor increased gradually from GF ~ 4.1 at 0.2 mg/cm2 to GF ~ 28.2
at 0.65 mg/cm2 and then decreased to GF ~ 28 at 0.8 mg/cm2. In addition, upon increasing
the area density (thickness of the deposition), the cracks tend to form more easily at lower
strains, which may account for the increase in GF. In contrast, the stretchability decreased
from 361% at 0.2 mg/cm2 down to 112% at 0.8 mg/cm2. By considering the sensitivity and
stretchability, the sensor with CNFs of 0.65 mg/cm2 having 184% stretchability and 28.2 GF
was chosen for the studies below.
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3.4. Durability, Response Time, and Responses to Different Strain Rates

To study the durability, 3000 loading–unloading cycles of up to 50% were applied to
the S-TPU-CNF-ES sensor (0.65 mg/cm2). Figure 7a presents the relative resistance changes
of S-TPU-CNF-ES. The resistance increases by 655% under 50% strain. Moreover, minimal
variations (variation in the maximum ∆R/R0 at the peak strain for the first and the last
cycle = 1.98%) in the relative resistance change even after 3000 cycles of stretching–releasing
are detected, indicating that the samples show excellent durability. The ∆R/R0 (%) versus
strain curves for the first and second cycles are presented in Figure 7b,c. The hysteresis
was estimated to be around 7.2% based on a previously reported method [36] and it was
slightly higher than a previously reported hydrogel-based sensor [40]. Figure 7d shows
that the strain rate has negligible effects on the sensor as it exhibits consistent resistance
changes when subjected to the tensile strain applied at different rates. The response time is
another key parameter that indicates the response rate of the sensor when subjected to an
externally applied strain. A shorter response time means the sensor is more responsive.
Based on Figure 7e which depicts the response time when a 50% strain was applied at
13 mm/s, the response time was determined to be ~30 ms, which is quicker or comparable
to other sensors [41–44].
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second (c) cycle with a peak strain of 50%; (d) the effect of strain rate on the resistance changes for
5 cyclic stretching–releasing with a peak strain of 50%; (e) the response time of the sensor by applying
50% strain at a strain rate of 130%/s.
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3.5. Piezoresistivity Mechanism

To understand the sensing mechanism and different performance between the four
types of sensors, an optical microscope and SEM were used to observe the structure
change of the carbon nanofibers sensing layer under stretching. Figures 8 and 9 show the
corresponding optical and SEM images, respectively. The stretching direction is horizontal.
By comparing Figure 8a–d, it is seen that the sensors with CNFs air-sprayed and electro-
sprayed show a slightly different morphology. A “Bicontinuous” structure is observed
in sensors (Figure 8b,d) with CNFs electro-sprayed while those with CNFs air-sprayed
display a uniform, relatively feature-less structure (Figure 8a,c). The corresponding SEM
shows a similar morphology, i.e., CNFs are uniformly sprayed on the substrate when they
are air-sprayed while sensors with CNFs electro-sprayed show a “bicontinuous” structure
with CNFs in both dense and sparse regions (i.e., the grey and dark areas, respectively, in
Figure 9b,d). This unique morphology may be due to the different drying processes during
the spraying. It was noted that the air-spray technique is a much quicker process, the
electro-spray and liquid droplets are much smaller, and that the solvent dries much more
quickly, which may lead to much more uniform deposition on the substrate [45]. It should
be also noted that the substrates (both solid TPU film and electrospun TPU nanofibers)
were not treated by plasma before the electro-spraying process, which may also account for
the different deposition.
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Figure 8. Optical microscope images of S-TPU-CNF-AS when subjected to (a) 0%, (a1) 30%, (a2) 60%,
and (a3) 100% strain; S-TPU-CNF-ES when subjected to (b) 0%, (b1) 30%, (b2) 60%, and (b3) 100%
strain; NF-TPU-CNF-AS when subjected to (c) 0%, (c1) 30%, (c2) 60%, and (c3) 100% strain; NF-TPU-
CNF-ES when subjected to (d) 0%, (d1) 30%, (d2) 60%, and (d3) 100% strain. Notably, the stretching
direction is indicated by the white arrow.
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Figure 9. SEM images of S-TPU-CNF-AS when subjected to (a)0%, (a1) 30%, (a2) 60%; S-TPU-CNF-ES
when subjected to (b) 0%, (b1) 30%, and (b2) 60% strain; NF-TPU-CNF-AS when subjected to (c) 0%,
(c1) 30%, and (c2) 60% strain; NF-TPU-CNF-ES when subjected to (d) 0%, (d1) 30%, and (d2) 60%
strain. (a3–d3) are the corresponding high-magnification SEM images. (e) Schematic of the cracking
mechanism of TPU/CNFs-based sensors.

When the sensors are stretched, cracks are formed in the CNFs sensing layer, as
indicated by the optical micrographs (Figure 8). Cracks are especially obvious in
Figure 8(b1–b3,c1–c3,d1–d3) taken from the sensor S-TPU-CNF-ES, NF-TPU-CNF-AS, and
NF-TPU-CNF-ES. The cracks continue to open when the strain increases, which explains
the increase in resistance when the sensors are stretched to higher strains. The formation of
cracks can also be confirmed by the SEM images (Figure 9(b1–b3,c1–c3,d1–d3)). A schematic
illustrating the cracking mechanism in the as-developed TPU/CNFs is shown in Figure 9e.
The cracking mechanism has been recognized as a very effective sensing principle for
achieving highly sensitive sensors based on conductive polymer thin films [24–26,46–48].
As for the S-TPU-CNFS-AS, cracks can be observed in Figure 9(a1–a3) at a higher mag-
nification, although no clear cracks are seen in the optical micrographs (Figure 8(a1–a3)).
Moreover, smaller crack opening (means smaller increase in resistance) is seen for S-TPU-
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CNFS-AS as compared to the other three types of sensors, which accounts for the sensor’s
higher stretchability and lower sensitivity.

3.6. Application Demonstration

To illustrate the prospective applications of the as-developed thin film sensors as
wearable sensors, S-TPU-CNF-ES, with an area density of 0.65 mg/cm2 and showing the
highest sensitivity, is examined for its ability to detect human motions to measure the finger
and wrist joint bending by using a wooden hand. Detecting joint bending requires a sensor
with high sensitivity as well as stretchability. This sensor succeeded in detecting these
movements. The sensor was first positioned on the index finger which was then bent at
a 45◦ and a 90◦ angle, respectively, as displayed in Figure 10a,b. The change in relative
resistance was measured to be ~ 25% at a bending angle of 45◦ and 40% at a 90◦ bending
angle, indicating a strain of 17.2% and 26.3%, respectively. These results are consistent with
those reported in the literature [24]. Resistance changes associated with wrist bending at
15◦ and 45◦ angles are displayed in Figure 10c,d. The relative resistance change is 22% at
15◦ angle bending and 38% at 90◦ angle bending, indicating a strain of 9.58% and 13.7%,
respectively, in good agreement with the previous report [49].
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4. Conclusions

In conclusion, piezoresistive strain sensors with high sensitivities and broad working
strain ranges were developed by the systematic investigation and comparison of the per-
formance of sensors made of different thermoplastic polyurethane substrates (either solid
thin film or electrospun nanofibers) with either electro-sprayed or air-sprayed conductive
sensing layer. It is found that sensors made of electro-sprayed CNFs generally showed
higher sensitivity as compared to those with air-sprayed CNFs. Meanwhile, the influence
of the substrate, whether a solid or porous electrospun nanofiber, seems to be minimal as
there are no obvious trends observed. The sensors made from a solid thin film TPU sub-
strate with CNFs electro-sprayed (S-TPU-CNF-ES) at an area density of 0.65 mg/cm2 have
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demonstrated the highest sensitivity (GF ~ 28.2), a wide failure strain range (184%), high
linearity (R2 = 86%), excellent durability over 3000 cycles, and a fast response (response
time ~30 ms). This sensor successfully demonstrated its application in human movement
measurement, indicating its potential use in detecting joint bending, thereby facilitating
the application of these sensors in health monitoring, e-skin, human-machine interference,
and soft robotics. This research provides a futuristic strategy to develop a simple yet robust
technique to produce piezoresistive strain sensors that are highly sensitive and stretchable
and can be used for monitoring human motions.
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