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Abstract: The demand for pipeline inspection has promoted the development of pipeline robots
and associated localization and communication technologies. Among these technologies, ultra-
low-frequency (30–300 Hz) electromagnetic waves have a significant advantage because of their
strong penetration, which can penetrate metal pipe walls. Traditional low-frequency transmitting
systems are limited by the size and power consumption of the antennas. In this work, a new type of
mechanical antenna based on dual permanent magnets was designed to solve the above problems.
An innovative amplitude modulation scheme that involves changing the magnetization angle of
dual permanent magnets is proposed. The ultra-low-frequency electromagnetic wave emitted by the
mechanical antenna inside the pipeline can be easily received by the antenna outside to localize and
communicate with the robots inside. The experimental results showed that when two N38M-type
Nd–Fe–B permanent magnets with a volume of 3.93 cm3 each were used, the magnetic flux density
reached 2.35 nT at 10 m in the air and the amplitude modulation performance was satisfactory.
Additionally, the electromagnetic wave was effectively received at 3 m from the 20# steel pipeline,
which preliminarily verified the feasibility of using the dual-permanent-magnet mechanical antenna
to achieve localization of and communication with pipeline robots.

Keywords: mechanical antenna; ultra-low frequency; amplitude modulation; communication

1. Introduction

Oil and gas pipelines underground and underwater need to be tested to ensure
their safety, which necessitates the development of pipeline detection robot systems [1–3].
Achieving localization of and communication with cable-free pipeline robots is one of
the key problems to be solved [4]. There are several localization methods, including the
wheel odometer method, ray method, acoustic method, and electromagnetic wave method.
The wheel odometer method can only provide off-line position information, and skidding
between the wheels and pipe wall and wheel-locked situations result in accumulated
position errors [5]. To improve its accuracy, some signal-processing methods including the
prior-backtracking, data fusion, and point cloud registration methods have been proposed
and achieved good results [6,7]. The ray method uses rays released by radioactive elements
to achieve localization of robots. Although these rays can easily penetrate metal pipe walls,
they are harmful to biological systems and the environment [8]. The acoustic method uses
acoustic sensors to monitor the robot’s position, but it is susceptible to environmental
noise and requires high sensitivity of the acoustic sensors. Moreover, when a robot stops
running due to unexpected factors, it cannot be located [9,10]. The electromagnetic wave
method uses magnetic sensors to receive electromagnetic wave signals emitted by the
pipeline robots for localization with little external interference [11–13]. However, metal
pipelines shield high-frequency electromagnetic waves. In contrast, ultra-low-frequency
electromagnetic waves have low attenuation and can penetrate metal pipelines, making this
the preferred frequency band for localization of and communication with pipeline robots.
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Conventional low-frequency antennas generate electromagnetic waves through an
energized coil [14–16], and the power loss and volume of equipment are inevitably large.
Permanent-magnet-type mechanical antennas have recently received wide attention in
the field of underwater and underground communications. They can produce a strong
magnetic field by using a small permanent magnet of high magnetic energy density [17],
which provides a new method for the localization of and communication with pipeline
robots [18].

According to their structure, permanent-magnet-type mechanical antennas can be
mainly classified into three types. (a) Modulation is realized by changing the rotational
speed of the permanent magnets [19–22]. For example, the frequency of the signal can
be modulated by adjusting the speed of a three-phase induction motor. This type is easy
to implement, but the power consumption is large and the bandwidth is narrow due to
the inertia of the magnets. (b) The permanent magnet rotation speed is maintained as
constant and a modulator is added to achieve the signal modulation. For example, when
placing a cylinder with a coil wrapped around a spherical permanent magnet rotating at a
constant speed, the amplitude of the magnetic field can be modulated by controlling the coil
current [23,24]. The phase of the magnetic field can be modulated by changing the position
of two pairs of orthogonal bow-tie-shaped shielding layers [25,26]. Such schemes do not
require the speed of the motor to be changed, reducing the power consumption. However,
the additional modulator increases the complexity of the system. (c) The permanent magnet
is maintained at rest and signal modulation is realized through a special modulator. For
example, the frequency of the magnetic field can be modulated by varying the rotational
speed of a louvered rotary shutter structure made from soft magnetic materials which
periodically shields the magnetic field generated by the magnets [27]. This type reduces the
requirement for mechanical strength of the system, as the permanent magnets are stationary.
However, it has high demands regarding the structure and performance of the modulator.

Practical applications of the permanent-magnet mechanical antenna require the de-
sign of a suitable signal-modulation scheme considering the size, power consumption,
and communication bandwidth of the antenna. The common modulation schemes for
mechanical antennas are frequency modulation (FM), amplitude modulation (AM), and
phase modulation (PM). Among them, AM can provide sufficient bandwidth and its im-
plementation structure is not complex, but it is sensitive to noise [26]. In this work, a
new AM scheme is proposed using a dual-permanent-magnet mechanical antenna with
an innovative modulator. It has a large modulation depth which reduces the sensitivity to
noise and is more suitable for the localization of and communication with pipeline robots.
Its comparison with the existing modulation schemes is shown in Table 1.

Table 1. Comparison of the antenna in this work with previously published works.

Modulation Type Literature Implementation Characteristics

FM [19–22] Change drive
motor’s speed

Simple structure
High power consumption

Low bandwidth

PM [25,26] Needs a modulator
Complicated structure

Insensitive to noise
Complex in demodulation

AM

[23,24] Needs a modulator Normal in structure
Sensitive to noise

This work Needs a modulator Normal in structure
Lower sensitivity to noise

The rest of this paper is organized as follows. Section 2 describes the structure and
working principles of the new mechanical antenna. Section 3 presents its prototype and
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describes the experimental verification of its effectiveness in both air and pipelines. Finally,
Section 4 provides the conclusions and discussion.

2. Theoretical Analysis of the Novel Mechanical Antenna
2.1. Theoretical Fundamentals

As shown in Figure 1, a cylinder-shaped permanent magnet with uniform magneti-
zation along the radial direction is placed in infinite space. Its diameter and height are D
and h, respectively, and its magnetic moment m0 = M0V where M0 is the magnetization
intensity and V is the volume. A single stationary magnet can be equivalent to a magnetic
dipole with the moment m0 when r >> max(D,h). If it rotates counterclockwise at a uniform
angular velocity ω, the magnet can be equivalent to two time-varying dipoles orthogonal
in both time and space, and this moment m0(t) = mx(t)ex+ my(t)ey and

.
mx = j

.
my.
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where k is the propagation constant and k = ω
√

ε0µ0 in which µ0 and ε0 are the permeability
and dielectric constant of the vacuum, respectively. The magnetic flux density generated
by the dipole mx can be expressed as follows:

.
Bmx (r, θ, ϕ,

.
my) =

.
Bmy(r, θ, ϕ +

π

2
, j

.
my) (2)

Therefore, the magnetic flux density generated by a single rotating permanent magnet
is as follows: .

Bs(r, θ, ϕ) =
.
Bmx (r, θ, ϕ) +

.
Bmy(r, θ, ϕ) (3)
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Based on the magnetic field distribution of a single rotating permanent magnet, the
dual-permanent-magnet mechanical antenna model is presented, as shown in Figure 2. In
this model, the permanent magnets A and B rotate uniformly around the z axis with the
same angular velocity ω, and their centers are both at a distance d from the coordinate
origin O. The dimensions of the permanent magnets are same as those in Figure 1, and
the angle between the magnetic moments is α. Assume that the magnetic flux densities
generated by A and B are expressed by

.
BA and

.
BB, and then the magnetic flux density

generated by the model shown in Figure 2 is as follows according to Equation (3):

.
Bd(x, y, z) =

.
BA + ejα

.
BB

=
.
Bs(x, y, z− d) + ejα

.
Bs(x, y, z + d)

(4)
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In particular, when r >> max(D,h,d), the impact of d is ignored and d ≈ 0; thus,

.
Bd

(
x, y, z) = (1+ ejα

) .
Bs(x, y, z). (5)

From Equation (5), the amplitude of
.
Bd changes when α changes and amplitude

modulation is achieved. Suppose that a message comprising code elements 0 and 1 must
be sent. When element 0 is sent, let α = 0 and B0 =

∣∣∣2 .
Bs

∣∣∣. When element 1 is sent, let α =

α1, and B1 =
∣∣∣(1 + ejα1)

.
Bs(x, y, z)

∣∣∣. Figure 3 shows the waveforms of the ideal amplitude
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modulation signal in the time domain. If the difference between B0 and B1 is not significant
and the ambient background magnetic field noise is large at the receiver, the quality of the
amplitude modulation signal will become poor, which increases the bit error rate during
demodulation. Here the modulation depth Tm is defined as in Equation (6). According to
Equation (5), Tm = 1− cos(α1/2). Tm can reach the value of 1 when α = 180◦. The larger
the α1, the larger the Tm, and the stronger the antinoise performance of the system and the
more reliable the communication.

Tm =
∣∣∣B1−B0

B0

∣∣∣ = ∣∣∣∣∣
∣∣∣ .
Bs(x,y,z−d)+ejα1

.
Bs(x,y,z+d)

∣∣∣−∣∣∣ .
Bs(x,y,z−d)+

.
Bs(x,y,z+d)

∣∣∣
.
Bs(x,y,z−d)+

.
Bs(x,y,z+d)

∣∣∣∣∣ (6)
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2.2. Effectiveness of the Analytical Formula

The derivation of Equation (4) requires that a single rotating permanent magnet be
equivalent to two time-varying magnetic dipoles. The effectiveness of this equivalence is
verified by maintaining the volume V of the cylindrical permanent magnet as a constant
and changing the outer dimension, i.e., the ratio of cross-sectional diameter to height D/h.
The magnetic field distribution obtained using Equation (4) is compared with that obtained
using finite-element calculations. Assume a radially magnetized permanent magnet is
N38M-type and its volume V = 3.93 cm3, and the rotation frequency f = 30 Hz. For different
values of (D/h), the magnetic field distribution along the y axis direction is shown in
Figure 4, in which the errors are considerable when the spatial position r is close to the
permanent magnets. However, when r/max(D,h) ≥ 4, the errors between two methods are
approximately less than 5%, in which case the magnetic field calculated using Equation (4)
is more accurate and the influence of the magnets’ dimensions can be ignored.
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3. Development of the Novel Mechanical Antenna
3.1. Dual-Permanent-Magnet Mechanical Antenna

The structure of the dual-permanent-magnet mechanical antenna is shown in Figure 5a
and the physical prototype of the antenna is shown in Figure 5b. It consists of a carrier
module, a modulation module, and a control and monitoring module. The carrier module
comprises a carrier motor, a rotating shaft, and permanent magnets A and B, in which the
carrier motor drives A and B through the rotating shaft to rotate at a constant speed so that
the magnetic field is radiated outward steadily. In Figure 5b, the carrier motor is a 12 V
RK-370CA permanent magnet DC motor with a maximum speed of 5400 rpm, and both A
and B are N38M-type radially magnetized permanent magnets with a remanence of 1.25 T,
D = 25 mm, h = 8 mm, and d = 32.5 mm. The modulation module comprises a modulation
motor, limiters, and brushes. The modulation motor is a 6 V geared motor rated at 300 rpm
which is used to adjust the angle α of magnetic moments between A and B, and the limiters
can limit the value of α. The modulation motor rotates along with the rotating shaft of
the carrier motor, and the brushes are installed to prevent the wires at the outlet of the
modulation motor from becoming entangled during the rotation process. The control and
monitoring module comprises an Arduino UNO microcontroller, an AQMH2407ND DC
motor driver, and a photoelectric sensor, which are used to control the rotation of the carrier
and modulation motors and collect their status information through the photoelectric
sensor. The power grid working frequency of 50 Hz should be avoided as the operating
frequency of the antenna. The smaller the operating frequency, the deeper the wave will
penetrate underground and underwater.
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Figure 5. Dual-permanent-magnet mechanical antenna: (a) principle of the structure; (b) physical
prototype.

3.2. Experiment in Air

The operating frequency of the antenna was maintained at 30 Hz. By switching α
between 0◦ and 120◦, the antenna transmitted codes 0 and 1 at a rate of 1 bit/s. Figure 6a
shows the waveforms of the magnetic flux densities Bx, By, and Bz measured at y = 5 m
along the positive y axis using a three-dimensional symmetrical induction coil [28]. In
addition to the spectral component at 30 Hz, the components at 50 Hz and its harmonic
frequencies were also measured. The waveforms after filtering these components are shown
in Figure 6b. The distribution of magnetic flux density B and the modulation depth Tm
along the positive y axis are shown in Figure 7 when α = 0 and α = 120◦. It can be seen the
magnetic field reached 2.35 nT at y = 10 m when α = 0 and the values of Tm ranged from
50% to 60%.
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3.3. Simulation and Experiments in Pipelines

Due to the shielding effect of the metal pipe wall, when the antenna is placed inside
a pipeline, the magnetic field signal will be weakened. To verify the effectiveness of
the antenna in a pipeline, finite-element simulations were conducted. The simulation
model is shown in Figure 8, wherein the mechanical antenna was placed at the center
of the pipeline. The pipeline’s outer radius rp = 0.07 m, length lp = 1 m, and thickness
hp = 0.005 m. The material of the pipeline was set to be air (no pipeline), aluminum, or
iron. The aluminum’s conductivity σAl = 3.77 × 107 S/m. The iron’s relative permeability
µFe = 4000 and conductivity σFe = 1.12 × 107 S/m. The magnets had a diameter D = 0.025
m, height h = 0.008 m, distance 2d = 0.065 m, and rotation frequency f = 30 Hz.
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Figure 8. The simulation model.

The distribution of magnetic flux density B is shown in Figure 9 when y = 0.2 m. It
can be seen that when the antenna was placed in the pipeline, B was about 10−5 T and it
was attenuated due to the shielding effect of the pipe wall. The shielding effect of the iron
pipeline with high permeability was more obvious than that of the aluminum pipeline.
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Pipelines made of 20# steel are mainly used for boilers and heat exchangers to transport
fluids, which are widely used in petrochemical, power stations, and large-scale equipment.
In the experiment, the antenna was placed in a practical 20# steel pipeline with an outer
radius of 180 mm, length of 1200 mm, thickness of 8 mm, and conductivity of about
4.22 MS/m, as shown in Figure 10. The measured results are shown in Table 2. It can be
seen that when a 20# steel pipeline was used, the magnetic flux density was effectively
received at 3 m from the carbon steel pipeline with a receiving antenna able to measure a
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magnetic flux density of as low as 0.15 pT. Bx, By, and Bz all had high attenuation which
was consistent with the simulation results. When α was changed, the amplitudes of Bx, By,
and Bz changed significantly, indicating a good modulation.
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Table 2. Measured results.

Condition α (◦) Distance (m) Bx (nT) By (nT) Bz (nT)

Without pipeline 0 3 40.57 38.35 4.43
With pipeline 0 3 6.59 5.40 0.67

Without pipeline 120 3 19.17 18.16 2.83
With pipeline 120 3 2.88 2.51 0.46

4. Conclusions and Discussion

For pipeline robot positioning, compared with the wheel odometer, ray, and acoustic
wave methods, the proposed method utilizes ultra-low-frequency electromagnetic waves
with low attenuation, long transmission distance, and strong penetrability generated by the
new small mechanical antenna made of permanent magnets. In this method, the amplitude
modulation of the magnetic flux density is realized by changing the angle of the magnetic
moments between the two permanent magnets. The effects of the mechanical antenna
size on the magnetic field signal were studied using analytical theory and finite-element
simulations. When r/max(D,h) ≥ 4, the influence of the magnets’ outer dimensions can be
ignored. The experimental results showed that using the developed antenna, the quality of
magnetic signal was satisfactory for communication at 10 m in the air and 3 m from a 20#
steel pipeline, which preliminarily verified the feasibility of the antenna for localizing and
communicating with pipeline robots.

The main factors affecting the communication quality of the proposed antenna can be
summarized as follows:

a. The magnetization M0 and volume V of the permanent magnet. According to (3)
and (4), the amplitude of the magnetic flux density increases linearly with M0 and V.
Thus, M0 and V affect only the strength of the magnetic field and do not affect the
modulation performance. Increasing M0 and V can improve the signal propagation
distance. However, if V is substantially large, the overall volume and rotational
inertia of the antenna will increase. Therefore, for a fixed propagation distance, a
permanent magnetic material with a larger M0 can be selected without increasing the
antenna volume.

b. The spacing d between the permanent magnets affects the near-field distribution
and modulation performance of the antenna. When r >> max(D,h), the effect of d is
negligible.
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c. The rotational speeds ω of the carrier motor and ω1 of the modulation motor. Due
to the limits of power consumption and long communication distance in conductive
media such as underground or underwater, ω cannot be too large. However, the
symbol transmission rate v (bit/s) depends on both ω and ω1. Assume the time
required for the change of α: α = 0→ α1 or α = α1 → 0 is t1, which is the switch
time of the modulation motor from start to stop, and, to improve the demodulation
accuracy at the receiver, the conditions v << 1/t1 and v ≤ ω/π should be satisfied.

The new dual-permanent-magnet mechanical antenna has many application prospects
in the field of communication through conductive media and finite space, such as in
pipelines, underwater, undersea, and underground. However, there is still much work to
be done before it can be applied. For the positioning of and communication with pipeline
robots, its size needs to be further reduced, which can be implemented by using permanent
magnets of higher magnetic energy density and optimizing the antenna structure. In
addition, the current amount of data for validation is not very large. The antenna should
be placed in industrial pipelines with different electromagnetic characteristics to test its
ability to function despite electromagnetic interference from low-frequency atmospheric
noise and noise from human sources, or the low-frequency magnetic field transmitted by
the robot itself. Moreover, we also need to study the high-efficiency receiving antenna and
the high-accuracy positioning algorithm based on the received signals. In the future, this
method will become more practical.
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