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Abstract: Pipelines play a significant role in liquid and gas resource distribution. Pipeline leaks, how-
ever, result in severe consequences, such as wasted resources, risks to community health, distribution
downtime, and economic loss. An efficient autonomous leakage detection system is clearly required.
The recent leak diagnosis capability of acoustic emission (AE) technology has been well demonstrated.
This article proposes a machine learning-based platform for leakage detection for various pinhole-
sized leaks using the AE sensor channel information. Statistical measures, such as kurtosis, skewness,
mean value, mean square, root mean square (RMS), peak value, standard deviation, entropy, and
frequency spectrum features, were extracted from the AE signal as features to train the machine
learning models. An adaptive threshold-based sliding window approach was used to retain the
properties of both bursts and continuous-type emissions. First, we collected three AE sensor datasets
and extracted 11 time domain and 14 frequency domain features for a one-second window for each
AE sensor data category. The measurements and their associated statistics were transformed into
feature vectors. Subsequently, these feature data were utilized for training and evaluating supervised
machine learning models to detect leaks and pinhole-sized leaks. Several widely known classifiers,
such as neural networks, decision trees, random forests, and k-nearest neighbors, were evaluated
using the four datasets regarding water and gas leakages at different pressures and pinhole leak sizes.
We achieved an exceptional overall classification accuracy of 99%, providing reliable and effective
results that are suitable for the implementation of the proposed platform.

Keywords: acoustic emission; leakage detection; pinhole leak; machine learning; random forest;
neural network; decision tree

1. Introduction

Pipelines are the primary mechanical component required for long-distance liquid
and gas material distribution and transportation. Pipeline networks, therefore, need
unwavering quality, high safety levels, and efficiency. The current status of a pipeline
network involves colossal annual leakage rates and the corresponding waste of natural
resources. Pipeline leaks may have detrimental effects on the environment, human safety,
property, and reputation and additionally lead to financial losses from fines and cleanup
expenses. BenSaleh et al. [1] noted that it is well-documented that many countries rely
heavily on long-distance oil and water transportation from desalination plants to their
intended destinations. Unfortunately, significant quantities of these resources are lost
annually due to leaks in the pipelines, with an estimated 60% of water being wasted each
year due to pipeline leaks [2]. For pipeline operators to achieve optimal performance,
a reliable leak detection system (LDS) is imperative. An influential LDS should be able to
detect leaks promptly, provide accurate leak localization, minimize false alarms, be easy to
retrofit, function well under various operating conditions, and utilize sensors with high
dependability and low maintenance requirements. This article proposes an LDS using
acoustic emission (AE) and machine learning (ML) algorithms.
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Pipelines, as a means of long-distance distribution and transportation, must meet strin-
gent safety standards and maintain consistent efficiency and quality. However, monitoring
these pipelines over long distances poses challenges due to the difficulties in maintaining
the infrastructure. Therefore, much research has been conducted to develop robust and
reliable methods for detecting spills, explosions, and other anomalies in the pipeline infras-
tructure. These leaks can result in severe environmental damage, financial loss, and even
loss of life [3]. Wang et al. [4] discussed the ever-increasing energy needed to support oil
distribution, pipeline distribution topological complexity, and the real-time assessment of
distribution network safety. Korlapati et al. [5] surveyed and classified leakage detection
into three broad categories: visual inspections, internally determined/computational, and
externally based methods and techniques. Fiber optic cable-based leakage detection in
pipelines is carried out by laying down the cable alongside the pipes, and changes in
strain and temperature are observed. By analyzing Raman scattering, the optical fiber
cable can provide a means for measuring the temperature [6]. Although optical fiber
cable can monitor changes in temperature in various locations, it fails both in monitoring
small leakages and determining the exact location of a leakage [7,8]. Christos et al. [9,10]
proposed a low-energy and low-cost wireless sensor-based system to immediately detect
leakage in metallic pipes. They monitor the changes in the effects of the vibrational signal
appearing due to leakage on the pipeline walls. The leakage detection system is proposed
by installing the pressure sensor in the middle of the pipeline segment [11]. It is more
sensitive to detecting leaks that emerge far away, such as at the inlet and outlet. Continuous
wavelet transform is used to transform the time AE signal into an image and then the
convolutional neural network is applied to detect the leakage [12]. In summary, several
internal and external monitoring methods have been developed to detect pipeline leaks.
These include the use of negative pressure wave techniques [13], techniques based on
accelerometer [14], time-domain reflectometry [15], distributed temperature sensing sys-
tems [16], acoustic emission technology [17], ultrasonic technology [18], and magnetic flux
leakage techniques [19]. Among these, acoustic emission technology has gained significant
popularity for its ability to quickly detect leaks, with real-time responses, high sensitivity,
and ease of retrofit [20,21]. Research in this area has focused on using pattern recogni-
tion and feature extraction techniques to construct leak detection models [22]. Studies
have demonstrated the effectiveness of techniques, such as wavelet feature extraction and
support vector machine classification, for identifying leaks and using frequency-width
characteristics to train leak-detection support vector data-description models from time-
domain pipeline signals [23]. Claudia et al. [24] summarized the AE descriptor’s different
applications for damage analysis in fiber-reinforced plastics. They analyzed the amplitude,
frequency, and cumulative acoustic energy regarding fiber-reinforced plastic damage, crack
analysis, and crack propagation.

ML is a subset of artificial intelligence, namely algorithms that improve through previ-
ous data records and experience [25,26]. The algorithms focus on building mathematical
models using training data or sample data to make decisions or predictions without explicit
programming [27]. When properly executed, machine learning can enable tasks to be
automated at a breakneck pace. As such, it is critical to integrate real-world data with
artificial intelligence in fields that require rapid and precise detection, such as pipeline
leak incidents. El-Zahab et al. [28] proposed a system that utilizes accelerometer-based
monitoring for pressurized water pipelines. The experimental data were analyzed using
three machine learning algorithms: support vector machines, decision trees, and naive
Bayes. The proposed system demonstrated its effectiveness in accurately detecting leakage
events in pressurized water pipelines. Different machine learning algorithms, such as
decision trees, random forests, k-nearest neighbors, and neural networks, have been ap-
plied to further enhance detection capabilities for analyzing the collected data. Overall, the
above research works performed better for leak detection and size identification. However,
there exist some shortcomings. Traditional AE hit features can be extracted from the AE
signal by defining a threshold above the level of continuous background noise. However,
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the predefined threshold for extracting the AE features can lead to false alarms due to
noise in the AE signal. Furthermore, defining a threshold above the level of continuous
background noise requires human expertise and domain understanding. Additionally, the
type of transportation medium will also affect the AE hits in the signal. In order to address
the above-mentioned problems, it is of primary importance to develop a leak-sensitive
model for pipeline leak detection and size identification. As such, in this manuscript, an
attempt has been made to develop a leak-sensitive model for pipeline leak detection and
size identification with different transportation mediums, such as fluid and gas. Instead
of utilizing a predetermined threshold for AE feature extraction, in this paper, a sliding
window is used. In order to exploit the statistical changes in the AE signal due to the
defects in the pipeline, statistical indicators, such as kurtosis, skewness, mean value, RMS,
peak value, standard deviation, and entropy, are calculated from each sliding window.
Furthermore, the changes in the frequency spectrum due to the defect in the pipeline are
utilized by calculating spectral features from each sliding window. Additionally, a set
of classification models were tested and validated for pipeline leak detection and size
identification by considering two different transportation mediums, out of which the best
classification model is reported in this study.

The overall novelty and contribution of this work can be summarized as follows:

(i) In order to exploit the statistical changes in the AE signal due to the defects in the
pipeline, a sliding window is used, and from each sliding window, temporal statistical
indicators are calculated. Furthermore, the changes in the frequency spectrum due to
the defect in the pipeline are utilized by calculating the spectral features from each
sliding window. To the best of our knowledge, utilizing a sliding window to extract
statistical and spectral indicators from the AE signal is reported for the first time in
this work;

(ii) A pipeline health-sensitive classification model is reported in this study based on eval-
uating different classification models for pipeline leak detection and size identification
by considering two different transportation mediums, such as fluid and gas;

(iii) Real-world industrial fluid pipeline data were utilized in this study for leak detection
and size identification using machine learning algorithms.

Overall, the proposed platform achieved an exceptional overall classification accuracy
of 99%, which makes it a reliable and effective solution for pipeline leakage detection and
leak pinhole size identification.

The following sections make up the structure of the paper. Section 2 proposes the
architecture, methodology, and ML algorithms for leakage detection. The results and
pipeline experimental test rig are presented in Section 3. Section 4 presents the conclusion
of this study.

2. The Proposed Architecture and Methodology

Figures 1 and 2 show the overview of the proposed methodology for pipeline leakage
detection. The architecture is implemented using acoustic emission sensors. There are three
sensors placed on the pipeline at locations channel 3 = 0 mm, channel 2 = 1600 mm, and
channel 1 = 2500 mm. Data are transmitted to the next step, which is the data acquisition
step, in which the signals that gauge physical circumstances in the real world and transform
the resulting samples into digital numeric values (that a computer can work with) are
sampled. The acquisition of data at the defined sampling rate, 1MHz, extracts the desired
features and assigns the labels to the feature vector extracted from one second for the
complete data set. The next step is to complete the dataset, which is then processed
for testing the classification accuracy with different algorithms to detect the leakage in
the pipeline. Once the activity labels are identified, the activity gets either “leakage” or
“normal” assigned to its label. It will generate the output of the sensor data containing
the leakage or the data are “Normal”. The final step is to show the result on the display
for the monitoring supervisor. In the rest of the following subsection, we briefly explain
each subcomponent.
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2.1. Acoustic Emission

A leak in the pipeline results in a change in the structural integrity of the material.
This change in the structural integrity can be due to fatigue rupture, stress cracks, corrosion
cracks, and structural discontinuities. The structural discontinuity or leak in the pipeline
(irrespective of the cause) will disturb the flow of the fluid or gas inside the pipeline.
However, the intramolecular interactions or chemical bonding of the fluid will force the
fluid to keep its flow consistent [29]. Thus, for the fluid to keep its flow consistent inside the
pipeline, the molecule of the fluid will exert pressure on the position of pipeline structural
discontinuity or leak, which will result in the short, rapid release of energy in the form of
an elastic wave. An AE can be defined as a transient sound wave that is generated by a
short, rapid release of energy in the form of an elastic wave that is produced by the change
in the structural integrity of the material within a specimen, such as a pipeline [30]. The
physical phenomenon resulting from the fluid interaction with the structural discontinuity
is referred to as an AE event. This AE event is detected by the AE sensors in the form of AE
hits. Thus, the AE hits in the signal can be related to a leak due to fatigue rupture, stress
cracks, corrosion cracks, and structural discontinuities. For this reason, the nondestructive
method based on AE is considered ‘global’ in nature. The word global means that AE-based
monitoring allows the investigator to get a bigger picture of the overall performance of
the specimen, irrespective of the cause for degradation [31]. Specifically, in this study,
a nondestructive method based on AE was used to investigate the health conditions of the
pipeline. Based on the global nature of the AE, theoretically, the proposed method will
work to identify a leak and its size.

2.2. Acoustic Emission Sensor

An acoustic emission (AE) sensor is a device that detects and analyzes the sound waves
generated by changes in the internal structure of a material or structure. The R15I-AST,
manufactured by MISTRAS Group, Inc, is one example of such a sensor. It uses piezoelectric
transducers to convert mechanical stress or strain into electrical signals, which can then be
analyzed to determine the location and severity of structural changes. These sensors are
commonly used for non-destructive testing and the structural health monitoring of various
structures, such as bridges, pipelines, and pressure vessels. With the capability of working
under high temperatures, humidity, and pressures, R15I-AST can monitor the structural
integrity in near real-time and provide early warnings of potential issues, allowing for the
necessary actions to be taken before any damage occurs. The operating frequency range of
the R15I-AST sensor and the parameters used for the data acquisition are listed in Table 1.

Table 1. Parameter for data acquisition.

S. No Parameter Value

1 AE sensor 1 location 2500 mm

2 AE sensor 2 location 1600 mm

3 AE sensor 3 location 0 mm

4 Peak Sensitivity 109 dB

5 Operational frequency range 80–200 kHz

6 Resonant frequency 75 kHz

7 Pipeline thickness 6.02 mm

8 Pipeline material 304 stainless steels

9 Pipeline outer diameter 114.3 mm

2.3. Data Acquisition

In data acquisition, the physical conditions in the real world are measured through the
use of sensors. These measurements are then sampled and translated into digital numeric
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values that a computer can interpret. This is typically achieved by converting analog
waveforms into digital values for further processing. The key component of the current
data acquisition system is the acoustic emission sensor, which is used to convert physical
parameters into electrical signals. Once the data is acquired from the sensors, it can be used
to detect leaks or other anomalies in the pipeline. The spectrum was performed on the time
amplitude signal to instantly identify the leak time. Figure 3a–c show the time response
for the three sensors, and Figure 3d–f show the corresponding spectrum when there is no
leakage. It clearly shows that both the time amplitude and frequency amplitude are low for
both time response and frequency response under normal conditions. Figure 3g–i show
the time-domain amplitude, and Figure 3j–l show the frequency response. These figures
illustrated that when the leakage was introduced, both the time and frequency amplitude
increased two times that of the normal condition.

2.4. Features Extraction in the Time and Frequency Domains

The feature extraction and selection methods are helpful for the transformation of
data, which translates the preprocessed data into processed data to identify significant
trends. Features extraction is an essential approach for reducing data size and provides
valuable information for developing a classification model. Most researchers use statistical
characteristics approaches for feature extraction. Chai et al. [32] extracted the various
features from the AE signal, such as peak amplitude, entropy, energy, count, peak frequency,
and centroid frequency, to find crack growth under different stress ratios. Muir et al. [33]
reviewed the time domain, frequency domain, and composite features extracted from the
AE signal for the damage analysis of a structure. They mentioned around 31 various features
used in the literature. Traditional AE hit features, such as rise time, decay time, counts, etc.,
can be extracted from the AE signal by defining a threshold above the level of continuous
background noise. However, the predefined threshold for extracting the AE features can
lead to false alarms due to noise in the AE signal. Furthermore, defining a threshold
above the level of continuous background noise requires human expertise and domain
understanding. In order to address this concern, instead of utilizing a predetermined
threshold for AE feature extraction, in this paper, a sliding window is used. In order to
exploit the statistical changes in the AE signal due to the defects in the pipeline, this research
extracts 25 statistical time and frequency domain features for each AE channel using a
sliding window. A total of 75 features are extracted from the three AE channels. All these
features are provided as input to the classification model for the task of a pipeline health
assessment. The features extracted from each AE channel, comprising 11 time domain
features (such as mean, standard deviation, skewness, kurtosis, crest factor, clearance factor,
etc.) and 14 frequency domain features (namely, P1, P2, P3, P4, P5, . . . , P14). Considered
the frequency spectrum-based feature extraction that incorporated the lower and higher
frequencies into their power. Figure 4 shows the details of feature extraction and feature
vectors. Tables 2 and 3 show the mathematical formulas for the time domain and frequency
domain features, respectively.
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Figure 3. Amplitude and spectral power of the AE signals obtained from the pipeline under normal
and leak operating conditions. (a–c) AE signal under normal operating conditions. (d–f) Power
spectrum under normal operating conditions. (g–i) AE signal under pipeline leak operating condi-
tions. (j–l) Power spectrum under pipeline leak operating conditions. (a) Channel-1 Time Response
No-leakage. (b) Channel-2 Time Response No-leakage. (c) Channel-3 Time Response No-leakage.
(d) Channel-1 Frequency Response No-leakage. (e) Channel-2 Frequency Response No-leakage.
(f) Channel-3 Frequency Response No-leakage. (g) Channel-1 Time Response Leakage. (h) Channel-2
Time Response Leakage. (i) Channel-3 Time Response Leakage. (j) Channel-1 Frequency Response
Leakage. (k) Channel-2 Frequency Response Leakage. (l) Channel-3 Frequency Response Leakage.
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Table 2. Time domain features of AE channels [19].

Feature Name Equation Feature Name Equation

Mean
Xm =

N
∑

n = 1
x(n)

N
Standard deviation

Xsd =

√
N
∑

n = 1
(x(n)−Xm)

2

N−1

Root amplitude
Xroot =

 N
∑

n = 1

√
|x(n)|

N

2
Skewness

Xsk. =

N
∑

n = 1
(x(n)−Xm)

2

(N−1)X3
sd

RMS
Xrms =

√
N
∑

n = 1
(x(n))2

N
Kurtosis Xku = ∑N

n = 1(x(n)−Xm)
4

(N−1)X4
sd

Impulse factor Ximpulse =
Xpeak

1
N

N
∑

n = 1
|x(n)|

Root value Xroot =

(
∑N

n = 1

√
|x(n)|

N

)2

Shape factor Xshape = Xrms

1
N

N
∑

n = 1
|x(n)|

Crest factor Xcrest =
Xpeak
Xrms

Clearance factor Xclearnace =
Xpeak
Xroot

Table 3. Frequency domain features of AE channels.

Feature Name Equation Feature Name Equation

Mean Frequency P1 = ∑K
k = 1 s(k)

K
Fourth Moment of Frequency P8 =

√
∑K

k = 1 f 4
k s(k)

∑K
k = 1 f 2

k s(k)

Variance p2 = ∑K
k = 1(s(k)−P1)2

K−1
Flattening Factor P9 = ∑K

k = 1 f 2
k s(k)√

∑K
k s(k) ∑K

k = 1 f 4
k s(k)

Skewness P3 = ∑K
k = 1(s(k)−p1)3

k(
√

p2)
2

Coefficient of Variation of
Centroid Frequency P10 = P6

P5

Spectral kurtosis P4 = ∑K
k = 1 ((s(k)−p1))4

Kp2
2

Skewness of Centroid
Frequency P11 = ∑K

k = 1 ( fk−P5)
3 s(k)

KP3
6

Centroid frequency P5 = X f c = ∑K
k = 1 fks(k)

∑K
k = 1 s(k)

Kurtosis of Centroid
Frequency P12 = ∑K

k = 1 ( fk−P5)
4 s(k)

KP4
6

Standard Deviation of
Centroid Frequency P6 =

√
∑K

k = 1 ( fk−P5)
2 s(k)

K

Square Root of Centroid
Frequency P13 = ∑K

k = 1 ( fk−P5)
1/2 s(k)

K
√

P6

Root means square frequency P7 = Xrms f =

√
∑K

k = 1 f 2
k s(k)

∑K
k = 1 s(k)

Root Mean Square of Centroid
Frequency Deviation P14 =

√
∑K

k = 1 f (k−P5)
2 s(k)

∑K
k = 1 s(k)
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2.5. Machine Learning Algorithms for Leakage Detection and Identification

Classification algorithms are used to predict the class or label of a given set of data.
The input to these algorithms is a set of features extracted from raw sensor data, which are
associated with specific activities or classes. A decision rule or function that can accurately
predict the class of new data based on these features must be determined. This process is
known as the classification task.

Classifiers are machine learning techniques that can be used to assign labels to activi-
ties. They are trained on a dataset of labeled data, where the feature vector (also known as
the training dataset) has been given a label. The learning algorithm adjusts its parameters
to generate a model or hypothesis, which can then be used to predict the label ‘y’ for new
input data ‘x’. In this research paper, the data collected were related to a pipeline, and we
used MATLAB to extract the features of each piece of data. Then, we applied algorithms to
classify the data using the software tool MATLAB. In order to check the accuracy of the
data, four distinct algorithms were used.

A simple and successful technique for classification and regression applications is
k-nearest neighbors (KNN). It operates by locating the K closest data points in the training
set for a specific point in the test set, then making a prediction using the labels or values
of these nearest neighbors. The Euclidean distance, or the distance along a straight line
between two points, is one approach to gauge the separation between data points. The
Euclidean distance in KNN is determined as the square root of the sum of the squared
coordinate differences between the two points. The performance of the KNN model can be
influenced by the distance metric that is selected. Euclidean and Manhattan distances can
both be employed. In some instances, Euclidean distance may be more appropriate, while
the Manhattan distance may be more suitable in others. The dataset’s characteristics and
the task when deciding which distance metric to use with KNN.

A random forest is a method of categorization that relies on the construction of many
decision trees (weak learners) and, in the end, adopts the verdict reached by the majority of
such learners. The decision tree is a single tree, but the random forest has multiple trees.
Normally, Overfitting can be prevented through the use of trimming decision trees. With
pruning, you have to choose between precision and simplicity. Complexity, extra work,
and more use of resources are the results of not trimming. Equal to the parameters of a
decision tree classifier is the random forest.

Three different node types are formed while constructing a decision tree, i.e.,

- The root node is the node with no input link and can have no or some output links;
- Internal nodes have one input link and two or more output links;
- Leaf nodes are the end nodes that have exactly one input link and no output link.

The neural network can be used for more complex models, which can be utilized in
multi-class classification. Neural networks are inspired by the brain, which is a network of
neurons. The neuron model consists of some inputs with input weights, a hidden layer, and
an output (hypothesis). They translate information through a sort of machine recognition,
marking, or grouping of the information. The examples they observe are numerical in
vector form, into which all correct information, might be pictures, sound, content, or
time arrangement, must be deciphered. A neural network is a collection of “neurons”
with “synapses” which are connecting. Hidden layers are vital when the neural system
needs to realize something truly confounded, relevant, or non-self-evident, like picture
acknowledgment. The circles speak to the neurons, and the lines speak to the synapses.
Synapses take the input and multiply it by weight. The neurons add the outputs from all
synapses and apply an activation function.

2.6. Performance Metrics

In order to evaluate the performance of the proposed method in comparison to
the reference method, metrics such as accuracy, precision, and recall were employed.
Equations (1)–(3) were used to determine these metrics:
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Precision =
∑A

a na ×
(

TPa
RPa +FPa

)
N

(1)

Recall =
∑A

a na ×
(

TPa
RPa +FNa

)
N

(2)

Accuracy =
∑A

a na ×
(

TPa
RPa +FNa

)
N

(3)

In this context, TPa, FPa, and FNa refer to the true-positive, false-positive, and false-
negative results, respectively, obtained from the features that are representative of class a;
na represents the total number of samples from class a; A represents the overall number
of classes in the dataset. The variable N denotes how many samples there are in all of the
testing sets.

3. Results and Discussion

In this section, the experimental setup and the performance comparison of the machine
learning algorithms are described.

3.1. Experimental Setup

The proposed technique was experimentally validated using a specific experimental
setup, as illustrated in Figure 5. The setup consists of a stainless-steel pipeline with a
thickness of 6.02 mm and an outer diameter of 114.3 mm, and it is used for transporting
water or gas and is equipped with AE sensors and a data collection system. The sensors
used in this setup are R15I-AST-type sensors manufactured by MISTRAS Group, Inc. The
sensors were fixed to the pipeline by using adhesive gels and mounting tapes. The data
collection system comprised a NI-9223 National Instruments Data Acquisition system and
a computer system that was set up to record information on the pipeline data conditions.
In order to ensure the sensor’s sensitivity to the applied stresses, the sampling frequency
was adjusted to 1 MHz, and pencil lead break tests were carried out.
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Leak simulation was conducted by incorporating a valve into the pipeline and con-
ducting tests at pressure levels of 13 and 18 bar. The process involved initially closing the
valve and collecting data for 2 min while the pipeline was in normal operation. The valve
was then opened to introduce a 1 mm leak, and data were collected for an additional 4 min.
When the valve was closed again, the pipeline’s flow was stabilized. This process was
repeated at both pressure levels for the same leak pinhole size. In total, 360 signal samples
were collected for each test, with 120 samples from the normal condition and 240 samples
from the leak condition being used for further analysis and evaluation.

Dataset Collection and Description

In this study, the pipeline provides a transportation medium for fluid and gas. For
each transportation medium, a pressure of 13 and 18 bar was adjusted with the help of
a centrifugal pump. First, the valve was kept closed, and the pipeline was operated to
transport fluid under 13 bar pressure; thus, the normal operating conditions data were
acquired. After the acquisition of the normal condition data, under the same pressure
condition, the leak valve was opened to 1 mm, and data were acquired, which formed
Dataset-1. After the acquisition of data under a pressure of 13 bar, the leak valve was kept
closed, and the pipeline was operated to transport fluid under a pressure of 18 bar, and the
normal conditions data were acquired. After the acquisition of the normal condition data,
under the same pressure condition, the leak valve was opened to 0.7 mm, and data were
acquired, which formed Dataset-3. The same process was repeated for the acquisition of
Dataset-2 and Dataset-4. However, for safety purposes, the leak valve was only opened up
to 0.5 mm during the data acquisition for Dataset-2 and Dataset-4. A detailed description
of each dataset is given in Table 4.

Table 4. Datasets acquisition configuration description.

Datasets Pressure-
Substance

Leak Pinhole
Size

Acquisition
Duration

Number of Feature
Vector Samples
(Normal/Leak)

Dataset-1 13 bar-Water 1 mm 6 min 120/240

Dataset-2 13 bar-Gas 0.5 mm 6 min 120/240

Dataset-3 18 bar-Water 0.7 mm 6 min 120/240

Dataset-4 18 bar-Gas 0.5 mm 6 min 120/240

3.2. Performance Comparison of Machine Learning Algorithms for Pipeline Leakage Detection
3.2.1. Neural Network

The dataset was divided into 70% for training, 15% for testing, and 15% for validation,
respectively. The ‘logsig’ activation function and two configurations of neurons were used,
i.e., 10 and 50 neurons. Figure 6 shows the convergence curves for the best validation value
3.6829 × 10−7 at epochs 24 and 1.44345 × 10−7 at epochs 28 for 10 and 50 neurons, respec-
tively. The convergence clearly depicts improved accuracy when increasing the number of
neurons but also costs an increase in training time. Figure 7 shows the confusion matrices
obtained using the 10 and 50 neurons, respectively. The neural networks achieved the
highest accuracy for both the 10- and 50-neuron setups for training, testing, and validation.
Confusion matrix “1” represents “No Leakage/Normal”, and “2” represents “Leakage”.

Figure 8 shows the convergence curves for the best validation value 2.8079 × 10−7

at epochs 24 and 1.5926 × 10−7 at epochs 30 for 10 and 50 neurons, respectively. The
convergence clearly depicts improved accuracy when increasing the number of neurons
but also costs an increase in training time. Figure 9 shows the confusion matrices obtained
by using 10 and 50 neurons. The neural networks achieved the highest accuracy for both
the 10- and 50-neuron setups for training, testing, and validation.
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Figure 10 shows the convergence curves for the best validation value 4.1322 × 10−7

at epochs 26 and 1.2969 × 10−7 at epochs 31 for 10 and 50 neurons, respectively. The
convergence clearly depicts improved accuracy when increasing the number of neurons
but also costs an increase in training time. Figure 11 shows the confusion matrices obtained
by using the 10- and 50-neuron setups. The neural networks achieved the highest accuracy
for both the 10- and 50-neuron setups for training, testing, and validation.
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Figure 10. The convergence of the neural network for Dataset-3. (a) 10 Neurons and (b) 50 Neurons 
in the hidden layers. 

Figure 9. Confusion matrices of Dataset-2, where class label 1 shows the Normal operating conditions
and class label 2 shows the Leak operating conditions of the pipeline using (a) 10 Neurons and
(b) 50 Neurons.

Figure 12 shows the convergence curves for the best validation value 0.00067013
at epochs 20 and 1.5746 × 10−7 at epochs 29 for 10 and 50 neurons, respectively. The
convergence clearly depicts improved accuracy when increasing the number of neurons
but also costs an increase in training time. Figure 13 shows the confusion matrices obtained
by using 10 and 50 neurons. The neural networks achieved the highest accuracy for both
the 10- and 50-neuron setups for training, testing, and validation.
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3.2.2. K-Nearest Neighbor

The datasets were divided into 90–10%, 80–20%, and 70–30%, and used K = 5 and
the Manhattan distance as a similarity metric to predict the closest label for the test sam-
ple. Figure 14 shows the accuracy of the four datasets; the highest accuracy of 100%
was achieved.
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3.2.3. Random Forest

The dataset was divided into 90–10%, 80–20%, and 70–30%, and the number of
trees = 100, and the Gini index was used for splitting the trees. Figure 15 shows the
accuracy of the four datasets; the highest accuracy of more than 99% was achieved.
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3.2.4. Decision Tree

The dataset was divided into 90–10%, 80–20%, and 70–30%, and we used the Gini
index for splitting the tree. Figure 16 shows the accuracy of the four datasets; the highest
accuracy of more than 99% was achieved for each dataset.
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3.2.5. The Overall Performance Comparison of the Applied ML Algorithms

Figure 17 shows the overall performance comparison of the applied ML algorithms in
terms of prediction accuracy. It shows that the neural networks show the highest accuracy
among all the algorithms, and also, the KNN algorithms for all datasets in all splits were
the best.
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4. Conclusions

This article presents a machine learning-based platform for detecting and localizing
pipeline leaks using acoustic emission (AE) technology. By extracting various statistical
measures from AE signals and using them as features to train machine learning models,
the platform can accurately identify and locate leaks in pipelines. In order to preserve
the characteristics of both bursts and continuous-type emissions, a sliding window with
an adaptive threshold was used, allowing for real-time data collection and analysis. The
article also presents an evaluation of the proposed platform by using four datasets that
contain water and gas leaks at different pressures and various machine learning classifiers
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like neural networks, decision tree random forests, and k-nearest neighbors. An overall
classification accuracy of 99% was achieved, indicating that the proposed platform is a
reliable and effective solution for pipeline leak detection and localization. Overall, the article
emphasizes the significance of pipeline leaks and how the proposed machine learning-based
platform can be an effective solution for this problem. The severe consequences of pipeline
leaks include wasted resources, health risks, distribution downtime, and economic losses,
so it is important to develop efficient leak detection systems. The success of the proposed
platform in detecting and localizing leaks with high accuracy provides a strong indication
of its potential for use in real-world applications. It is also notable that AE technology is a
promising solution for detecting pipeline leaks, as it is capable of leak diagnosis, which has
been significantly demonstrated. The current study is capable of detecting and identifying
the size of a leak in the pipeline. However, the classification model cannot predict the
condition of the pipeline, along with the pressure and transportation medium. For this
reason, in the future, a classification model can be developed that can predict the condition
of the pipeline, along with the pressure and transportation medium.
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