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Abstract: Deep-learning-based registration methods can not only save time but also automatically ex-
tract deep features from images. In order to obtain better registration performance, many scholars use
cascade networks to realize a coarse-to-fine registration progress. However, such cascade networks
will increase network parameters by an n-times multiplication factor and entail long training and
testing stages. In this paper, we only use a cascade network in the training stage. Unlike others, the
role of the second network is to improve the registration performance of the first network and function
as an augmented regularization term in the whole process. In the training stage, the mean squared
error loss function between the dense deformation field (DDF) with which the second network has
been trained and the zero field is added to constrain the learned DDF such that it tends to 0 at each
position and to compel the first network to conceive of a better deformation field and improve the
network’s registration performance. In the testing stage, only the first network is used to estimate a
better DDF; the second network is not used again. The advantages of this kind of design are reflected
in two aspects: (1) it retains the good registration performance of the cascade network; (2) it retains
the time efficiency of the single network in the testing stage. The experimental results show that the
proposed method effectively improves the network’s registration performance compared to other
state-of-the-art methods.

Keywords: brain image registration; generation adversarial network; deep learning

1. Introduction

Image registration is one of the basic tasks in medical image processing. It involves
the acquisition of a dense deformation field (DDF) when a moving image is matched with
a fixed image so that the two to-be-aligned images and their corresponding anatomical
structures are aligned accurately in space [1]. The traditional registration method optimizes
the cost function through a large number of iterations, a process that usually requires a
significant amount of computation and time [2]. With the popularization and application
of deep learning in the field of medical image registration, the deep learning registration
method is now faster than the traditional image registration method. Therefore, for moving
and fixed images, deformation fields can be generated by training a neural network,
thus achieving rapid registration for a forward pass in the testing stage. Fan et al. [3]
studied the computational costs of seven different deformable registration algorithms. The
results showed that the assessed deep-learning network (BIRNet) without any iterative
optimization needed the least time. Additionally, the registration accuracy improved after
applying the deep learning method. For example, Cao et al. [4] proposed a deep learning
method for registering brain MRI images, and it was revealed that the method’s Dice
coefficient was improved in terms of registering white matter (WM), gray matter (GM),
and cerebrospinal fluid (CSF).

The unsupervised learning image registration method has been widely applied be-
cause it is not difficult to obtain gold-standard registration [5]. Balakrishnan et al. [6]
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optimized the U-Net neural network by defining the loss function as a combination of the
mean square error similarity measure and the deformation field’s smoothing constraint.
de Vos et al. [7] accomplished affine and deformable registration by superimposing sev-
eral networks through unsupervised training. Kim et al. [8,9] used cyclic consistency to
provide implicit regularization for maintaining topology and realizing 2D or 3D image
registration. Moreover, a multi-scale strategy was adopted during the experiment to solve
the relevant storage problem. Jiang et al. [10] proposed an unsupervised network frame-
work (MJ-CNN) that adopted a multi-scale joint training scheme to achieve end-to-end
optimization. Kong et al. [11] designed a cascade-connected channel attention mechanism
network. During cascade registration, the attention module is incorporated to learn the
features of the input image, thereby improving the expression ability of the image features.
Through five iterations of the deformation field, improved bidirectional image registration
was realized. Yang et al. [12] used multiple cascaded U-Net models to form a network
structure. In their structure, each U-Net is trained with smooth regularization parameters
to improve the accuracy of 3D medical image registration. Zhu et al. [13] helped a network
develop high-similarity spatial correspondence by introducing a local attention model and
integrated multi-scale functionality into the attention mechanism module to achieve the
coarse-to-fine registration of local information. Ouyang et al. [14] trained their designed
subnetworks synergistically by training the residual recursive cascade network to realize
cooperation between the subnetworks. Through the connection of the residual network,
the registration speed was accelerated. Guo et al. [15] improved the image registration
accuracy and efficiency of CT-MR and used two cyclic consistency methods in a full convo-
lution neural network to generate the spatial deformation field. Sideri-Lampretsa et al. [16]
considered that it was easy to obtain edge images, so they used the image’s edges to drive
the multimodal registration training process and thus help the network learn more effective
information. Qian et al. [17] proposed a cascade framework of a registration network, and
then registered images in training stages. The authors compared the performance of the
cascade network framework with the traditional registration methods, subsequently, it
was determined that the registration efficiency of the proposed method was significantly
improved. Golkar et al. [18] proposed a hybrid registration framework of vessel extraction
and thinning for retinal image segmentation, which improved the registration accuracy of
complex retinal vessels.

Inspired by the idea of two-person zero-sum game from game theory, Goodefellow
et al. [19] proposed a generation adversarial network (GAN) that used two neural networks
for adversarial training and continuously improved the performance of the network in all
directions during a game between the two networks. In addition to the in-depth study of
the generative adversarial network (GAN), the application of an adversarial network has
been integrated with techniques and aims from other fields, for instance, the combination
of GAN and image processing. Therefore, GANs are also widely used in image registration.
Santarossa et al. [20] used generation adversarial networks combined with ranking loss for
multimodal image registration. Fan et al. [21,22] implemented a GAN in the unsupervised
deformable registration of 3D brain MR images. In this approach, the discrimination
network identifies whether a pair of images are sufficiently similar. The resulting feedback
is then used to train the registration network. Simultaneously, GANs have been applied to
single- and multi-mode image registration. Zheng et al. [23] used a GAN network to realize
symmetric image registration and then transformed the symmetric registration formula
of single- and multi-mode images into a conditional GAN. To align a pair of single-mode
images, the registration method constitutes a cyclical process of transformation from one
image to another and its inverse transformation. To align images with different modes,
mode conversion should be performed before registration. In the training process, the
method also adopts the semi-supervised method and trains using labeled and unlabeled
images. Many registration methods have been produced based on the application of
generation adversarial networks [24–28]. Huang et al. [29] fused a difficulty perception
model into a cascade neural network composed of three networks. These networks are used
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to predict the coarse deformation field and the fine deformation field, respectively, so as to
achieve accurate registration. GANs showed excellent performance in the aforementioned
studies. In the previous study, a GAN based on dual attention mechanisms was proposed,
which showed good registration performance in areas with relatively flat edges, but poor
registration performance in narrow and long-edge areas. To this end, based on previous
research, this paper proposes a method to assist GANs in realizing the registration of long
and narrow regions at the peripheries of the brain, which differs from the methods of coarse
registration and fine registration. Our main contributions are summarized as follows:

1. During training, the cascade networks are trained simultaneously to save network
training time.

2. The second network is used as a loss function. The mean square error loss function
added to the second network can constrain the deformation field output by the second
network such that it tends to 0. Only the first network is used during testing, which
saves testing time.

3. Coupled with the adversarial training of GANs, the registration performance of the
first network is further improved.

The rest of this paper is organized as follows. Section 2 introduces the networks
proposed in this paper in detail. Section 3 introduces the experimental datasets and
evaluation indicators. Section 4 introduces the experimental results obtained from the HBN
and ABIDE datasets. In Section 5, we provide a discussion. Finally, the conclusions are
given in Section 6.

2. Methodology

This paper proposes a method combining adversarial learning with cascade learning.
Joint training of cascaded networks can allow them to predict more accurate deformation
fields. The first (registration) network is used to study the deformation field φ1. The
second (augmented) network enables the first network to learn more deformations. A
discrimination network improves the first network’s performance through adversarial
training. The structures of each cascading network are similar to those of VoxelMorph [6].
The proposed overall learning framework is illustrated in Figure 1.
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2.1. First (Registration) Network

The registration network is the first network in cascading framework. Its inputs are
the fixed image F and the moving image M. Its output is the deformation field φ1, i.e.,
φ1 = G(F, M). This network realizes the alignment from M to F, i.e., F = M( φ1), where
M(φ1) is the warped image. Subsequently, the loss function between M(φ1) and F is
calculated to drive the training process. This loss function includes three parts: intensity
similarity loss Lsim, adversarial loss Ladv, and smooth regularization term Lsmooth.

The adversarial loss function of the registration network is:

Ladv(p) =
{
−log(1− p), c ∈ P+

−log(p), c ∈ P−
(1)

where p is the output value of the discrimination network and c indicates the registration
network input.

Local cross-correlation metric is used to calculate the similarity of the intensity between
fixed image F and warped image M(φ1). The specific formula of the loss function is:

CC(F, M(φ1)) = ∑
p∈Ω

(
∑
pi

(F(pi)− F(p))(M(φ(pi))−M(φ(p)))

)2

(
∑pi

(F(pi)− F(p))2
)(

∑pi
(M(φ(pi))−M(φ(p)))2

) (2)

where pi denotes the iteration of the n3 volume center at voxel p, and Ω represents a
three-dimensional voxel. In this paper, n = 9 F(pi), and M(φ1(pi)) represents the voxel
intensities of F and M(φ1) at pi, respectively. F(p) and M(φ1(p)) are the local mean values
of n3 volume. A higher CC indicates a more accurate alignment. According to the definition
of CC, the intensity similarity loss Lsim is defined as follows:

Lsim(F, M(φ1)) = −CC(F, M(φ1)) (3)

Additionally, L2 regularization is implemented to smooth the deformation field φ1:

Lsmooth(φ1) = ∑
p∈Ω
‖∇φ1(p)‖2 (4)

2.2. Successive (Augmented) Network

The inputs of the successive network are F and M(φ1); the output is DDF φ2. φ2 is
used to deform M(φ1) to obtain φ2(M(φ1)). Simultaneously, to clarify the warped image,
we perform a composed operation on φ1 and φ2, i.e., φ1

◦φ2. M(φ 1
◦φ2) is obtained by the

moving image M with the composed DDF. Next, two intensity loss functions, namely,
Lsim( F, M(φ 1

◦φ2)) and Lsim(F, φ2(M(φ1))), are calculated between M(φ 1
◦φ2) and F and

between φ2(M(φ1)) and F, respectively. The DDF φ2 is also constrained as it approaches
zero deformation field through the following MSE loss function, allowing the deformation
field φ1 to learn more accurate deformations.

The formula of MSE loss function is defined as:

Lmse(φ2) = Lmse(φ2, 0) = ∑
p∈Ω
‖∇φ2(p)‖2 (5)

Through this function, the output effect of the first network can achieve fine registra-
tion after the two networks are connected in series.

The loss function for the registration network is as follows:

LG =Ladv (p) + αLsim(F, M(φ1)) + λLsmooth(φ1) (6)
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In addition, the loss function used by the second network is:

LA =Lsim(F, M(φ1))+Lsim(M(φ 1
◦φ2))+Lsim(F, φ2(M(φ1)))+ Lmse (φ2)

+Lsmooth (φ1)+Lsmooth (φ2)+Lsmooth(φ1
◦φ2)

(7)

The total loss function is:
Ltotal = LG + LA (8)

2.3. Discrimination Network

The discrimination network consists of four convolutional layers combined with
leakyReLU activation layers. Finally, the sigmoid activation function is used to output the
probability value. The discrimination network is shown in Figure 2. The discrimination
network distinguishes the authenticity of image. The harder it is to distinguish the warped
image from the fixed image, the harder it is to judge the authenticity of the image by the
discrimination network.
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3. Experiment
3.1. Experimental Details

Python and TensorFlow were used to implement the experimental process. The
program was trained and tested with GPU NVIDIA GeForce GTX 2080 Ti [30].

In the training process, the patch-based training method is adopted to reduce the occupied
memory. Herein, 127 blocks are obtained from each image with a size of 182 × 218 × 182.
Each block size is 64× 64× 64. The stride is 32. The learning rates for training the registration
and discrimination networks are set to 0.00001 and 0.000001, respectively.

The traditional methods of Demons and SyN are used as comparative experiments.
The deep learning model VoxelMorph is also trained. VoxelMorph is a model of medical
image registration based on unsupervised learning. Therefore, VoxelMorph is selected
as the comparative experiment for deep learning. The Dice score, structural similarity,
and Pearson’s correlation coefficient are used as the evaluation indicators to verify the
superiority of the experimental results. Moreover, the influence of the MSE and Lsim loss
functions on the experimental results is investigated.

3.2. Datasets

To prove the flexibility and superior performance of the proposed method, the
HBN [31] and ABIDE datasets [32] are used for training and testing. The HBN dataset
consists of brain data obtained from patients with ADHD (aged 5–21 years). Herein, 496
and 31 T1-weighted brain images are selected for training and testing, respectively. ABIDE
is a dataset consisting of brain images from patients with autism (aged 5–64 years). Herein,
928 and 60 T1-weighted brain images are used for training and testing, respectively. The
fixed image used in training comprises a pair of images randomly selected from the training
set such that each image is linearly aligned to the fixed image. The image size of both the
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HBN and ABIDE datasets is 182 × 218 × 182 voxels with a resolution of 1 × 1 × 1 mm3.
Both these datasets contain segmentation marker images of CSF, GM, and WM.

3.3. Evaluation Indicators
3.3.1. Dice Score

The Dice coefficient (Dice) index is used to evaluate the degree of overlap between a
warped segmentation image and the segmentation image of the fixed image. This index
reflects the similarity between the experimental and the standard segmentation images. It
is defined as follows:

Dice = 2
∣∣∣∣Xseg ∩Yseg

Xseg ∪Yseg

∣∣∣∣ (9)

where Xseg and Yseg represent the standard and warped segmentation images, respec-
tively. The range of Dice values is 0–1, corresponding to a range in the gap between the
warped and the standard segmentation images progressing from large to small values,
respectively. Alternatively, the closer the experimental result is to 1, the more similar the
warped segmentation image is to the standard segmentation image, and the better is the
registration result.

3.3.2. Structural Similarity

The structure similarity index measure [33] can measure the similarity of two images.
The SSIM is calculated as:

SSIM(X, Y)=
(2µXµY + c1)(2σXY + c2)(

µ2
X + µ2

Y + c1
)(

σ2
X + σ2

Y + c2
) (10)

where X, Y represent the two input 3D images; µX and µY represent the average value of
X and Y, respectively. σ2

X and σ2
Y are the variances of X and Y, respectively. σX and σY

represent the standard deviation of X and Y, respectively. σXY represents the covariance of
X and Y. c1 and c2 are constants used to avoid system errors caused by a denominator equal
to 0. The SSIM can measure the structural similarity between the real and warped images.
A SSIM value close to 1 indicates that the two images have a high degree of similarity.

3.3.3. Pearson’s Correlation Coefficient

Pearson’s correlation coefficient (PCC) was used to measure the similarity between
two 3D images. The calculation formula of PCC is:

ρ(X, Y)
∑n

i=1

(
Xi −

−
X
)(

Yi −
−
Y
)

√
∑n

i=1

(
Xi −

−
X
)2
√

∑n
i=1

(
Yi −

−
Y
)2

(11)

The closer the value of PCC is to 1, the greater is the correlation. A PCC of 0 indicates

no correlation. X, Y refer to the two input 3D images.
−
X and

−
Y represent the mean value of

X and Y, respectively.

4. Results

The proposed methodology is compared with the following approaches: (1) Demons
and SyN, two traditional registration methods; (2) Voxelmorph (VM), an unsupervised deep
learning registration method; and (3) VM + A, a method consisting of a simultaneously
trained registration network and augmented network.

First, the proposed GAN method (VM + A + GAN) is compared with Demons and
SyN, which are two traditional methods. Tables 1 and 2 summarize the test results obtained
through different datasets, and all indicators show that our experimental results are the best.
Figure 3 shows the comparison of the test results of the two datasets. The first row of the
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experimental image represents the original image obtained from the HBN dataset, and the
second row represents the segmentation image corresponding to the original image derived
from the HBN dataset. Similarly, the third row represents the original image based on the
ABIDE dataset, and the fourth row represents the segmentation image corresponding to
the original image derived from the ABIDE dataset. Compared with Demons and SyN, the
image obtained by the proposed GAN method is closer in appearance to the fixed image,
and the parts with differences are shown in the enlarged image on the right.

Table 1. Dice values obtained with the HBN and ABIDE datasets. Bold numbers indicate the
best results.

HBN ABIDE

Methods CSF GM WM CSF GM WM

Demons 0.513 ± 0.158 0.335 ± 0.320 0.345 ± 0.330 0.410 ± 0.228 0.312 ± 0.305 0.332 ± 0.320
SyN 0.585 ± 0.026 0.768 ± 0.022 0.786 ± 0.015 0.593 ± 0.041 0.749 ± 0.019 0.791 ± 0.023

VM + A + GAN 0.653 ± 0.041 0.829 ± 0.029 0.855 ± 0.015 0.646 ± 0.046 0.801 ± 0.024 0.847 ± 0.019

Table 2. SSIM and PCC metrics obtained with the HBN and ABIDE datasets. Bold numbers indicate
the best results.

HBN ABIDE

Methods SSIM PCC SSIM PCC

Demons 0.781 0.886 0.763 0.886
SyN 0.904 0.962 0.870 0.958

VM + A + GAN 0.956 0.984 0.920 0.985
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Second, the proposed GAN method is compared with the VM and VM + A methods.
Figure 4 shows the registered moving image and the fixed image. Moreover, the first row
represents the original image from the HBN dataset, and the second row represents the
segmentation image corresponding to the original image from the HBN dataset. Similarly,
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the third row represents the original image from the ABIDE dataset, and the fourth row
represents the segmentation image corresponding to the original image from the ABIDE
dataset. Additionally, the enlarged figure on the right shows that the result for the proposed
method regarding the training of the registration, augmented, and discrimination networks
together is closer to the fixed image. Through the experimental results, the performance
of the registration, augmented, and discrimination networks when trained together is
verifiably better than that of the registration network trained individually and of the
registration and augmented networks trained simultaneously.
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Tables 3 and 4 summarize the Dice, SSIM, and PCC indices corresponding to the
different datasets. Considering Table 3, for the HBN dataset, the proposed method improves
the precision values by 0.030, 0.032, and 0.034 compared with the VM method. For the
ABIDE dataset, the proposed method improves the accuracies by 0.008, 0.004, and 0.004
compared with the VM method. Considering Table 4, for the HBN dataset, the proposed
method increases the SSIM and PCC indices by 0.02 and 0.008, respectively, compared with
the VM method. For the ABIDE dataset, the proposed method improves the SSIM and PCC
indices by 0.006 and 0.003, respectively, compared with the VM method.

Table 3. Dice indicator based on deep learning. Bold numbers indicate the best results.

HBN ABIDE

Methods CSF GM WM CSF GM WM

VM 0.623 ± 0.037 0.797 ± 0.027 0.821 ± 0.015 0.638 ± 0.048 0.797 ± 0.024 0.843 ± 0.018
VM + A 0.642 ± 0.042 0.821 ± 0.029 0.846 ± 0.014 0.639 ± 0.048 0.796 ± 0.023 0.841 ± 0.018

VM + A + GAN 0.653 ± 0.041 0.829 ± 0.029 0.855 ± 0.015 0.646 ± 0.046 0.801 ± 0.024 0.847 ± 0.019

Table 4. SSIM and PCC metrics for deep-learning-based registration methods. Bold numbers indicate
the best results.

HBN ABIDE

Methods SSIM PCC SSIM PCC

VM 0.936 0.976 0.914 0.982
VM + A 0.936 0.976 0.914 0.982

VM + A + GAN 0.956 0.984 0.920 0.985

5. Discussion

The usage of a registration and discrimination networks for image registration is a
common method. Such a registration method has been investigated experimentally in
previous work [34]. However, this adversarial method for training a GAN only limitedly
improves a registration network’s performance, and the registration capacity in some
narrow and long edge areas needs to be further improved. Therefore, this paper proposes a
method of training three networks together to allow the registration network to learn more
deformations, further improving the registration performance. When the three networks are
trained together, the use of different loss functions has a certain impact on the experimental
results, which is discussed in the following subsections.
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5.1. Importance of MSE

When two networks (VM + A) were trained together, both the Lsmooth loss function of
the deformation field φ2 and the MSE loss function were calculated. An experiment was
also performed without the MSE loss function (VM + A −MSE) to verify its effectiveness.
Additionally, when the three networks (VM + A + GAN) were trained together, the MSE loss
function was removed again (VM + A + GAN −MSE), and experiments were performed to
verify the impact of the MSE loss function on the experimental results. Through comparison,
the best registration effect was achieved when the three networks were trained together
and combined with the MSE loss function. The results are shown in Figure 7.
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Figure 7. Experimental results regarding the use of the MSE loss function when employing the HBN
and ABIDE datasets. Among them, VM + A −MSE indicates that the MSE loss function has been
removed when training the registration network and the enhanced network, VM + A indicates the
experimental results when the MSE loss function is retained when training the registration network
and the enhanced network, VM + A + GAN − MSE indicates our method’s experimental results
following the removal of the MSE loss function, and VM + A + GAN represents our experimental
results with the MSE loss function retained.

Table 5 summarizes the experimental results regarding the removal of the MSE loss
function (VM + A − MSE) when two networks were trained together (VM + A) and the
removal of the MSE loss function (VM + A + GAN − MSE) when three networks were
trained together (VM + A + GAN). When comparing the results, note that the removal of the
MSE loss function reduces registration accuracy, thus verifying that registration performance
can be improved by adding the MSE loss function when these three networks are trained
together. Comparing the SSIM and PCC metrics in Table 6, the loss function used by the
proposed method achieves good results. Figure 4 shows the comparison of the experimental
results after the MSE loss function was removed (VM + A −MSE) when two networks were
trained together and after the MSE loss function was removed (VM + A + GAN −MSE)
when three networks were trained together. Evidently, the proposed method obtained a
result that is closer to the fixed image, which confirms the effectiveness of training three
networks simultaneously; moreover, note that the proposed method intuitively shows a good
registration effect in the narrow and long regions of the peripheries of the brain images. The
first row of the resulting images represents the original image from the experimental results
for the HBN dataset, and the second row represents the segmentation image corresponding
to the original image from the experimental results for the HBN dataset. Similarly, the third
row represents the original image from the experimental results for the ABIDE dataset, and
the second row represents the segmentation image corresponding to the original image from
the experimental results for the ABIDE dataset.
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Table 5. Dice values when using the MSE loss function and the HBN and ABIDE datasets. Bold
numbers indicate the best results.

Methods
HBN ABIDE

CSF GM WM CSF GM WM

VM + A −MSE 0.641 ± 0.041 0.821 ± 0.029 0.840 ± 0.014 0.638 ± 0.048 0.797 ± 0.024 0.843 ± 0.018
VM + A 0.642 ± 0.042 0.821 ± 0.029 0.846 ± 0.014 0.639 ± 0.048 0.796 ± 0.023 0.841 ± 0.018

VM + A + GAN −MSE 0.652 ± 0.041 0.829 ± 0.028 0.854 ± 0.014 0.645 ± 0.047 0.800 ± 0.024 0.846 ± 0.019
VM + A + GAN 0.653 ± 0.041 0.829 ± 0.029 0.855 ± 0.015 0.646 ± 0.046 0.801 ± 0.024 0.847 ± 0.019

Table 6. SSIM and PCC values when using the MSE loss function and the HBN and ABIDE datasets.
Bold numbers indicate the best results.

Methods
HBN ABIDE

SSIM PCC SSIM PCC

VM + A −MSE 0.950 0.982 0.911 0.982
VM + A 0.952 0.983 0.910 0.981

VM + A + GAN −MSE 0.957 0.985 0.919 0.985
VM + A + GAN 0.956 0.984 0.920 0.985

5.2. Importance of Lsim

When the three networks (VM + A + GAN) are trained together, the Lsmooth loss
functions between the φ2(M(φ1)) image and the fixed image F as well as the M(φ1

◦φ2)
image and the fixed image F are removed for experimental comparison. After removing
the two Lsim loss functions, the registration accuracy decreases significantly. Through this
experimental analysis, it is evident that the Lsim loss function can restrict the similarity
among the images to a certain extent, which proves the effectiveness of adding the Lsim loss
function. By observing the histogram in Figure 8, it is evident that the proposed method
improves the Dice, SSIM, and PCC indices. In Figure 8, note that (a) shows the importance
of verifying the Lsim loss function for the HBN dataset; (b) shows the difference between
verifying the proposed method for the ABIDE dataset and removing the Lsim loss function
in the Dice index; (c) shows the impact of removing the Lsim loss function on the SSIM
and PCC indices for the HBN dataset; and (d) shows the impact of removing the Lsim loss
function on the SSIM and PCC indices for the ABIDE dataset.
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5.3. Importance of Different Deformation Fields

The Dice values for when two networks were trained simultaneously are calculated
and discussed next to verify φ1, φ2, and φ1

◦φ2 in the images.
For φ1, the similarity is calculated between the warped moving image segmentation

image Mseg(φ1) and the fixed image segmentation image Fseg, expressed as Mseg(φ1)− Fseg.
For φ2, the similarity is calculated between the warped

(
Mseg(φ1)

)
(φ2) and the fixed image

segmentation image Fseg, expressed as
(

Mseg(φ1)
)
(φ2)− Fseg. For φ1

◦φ2, the similarity is
calculated between the warped moving image segmentation image Mseg(φ1

◦φ2) and the
fixed image segmentation image Fseg, expressed as Mseg(φ1

◦φ2)− Fseg.
Considering the Dice values in the Table 7, the deformation field ( φ2) still plays

a certain role in image registration, but a significantly miniscule role. Therefore, the
registration network still allows the deformation field (φ1) to learn more deformations, and
the augmented network only plays a secondary role.

Table 7. Test results of output images from registration and augmented network for two datasets.
Bold numbers indicate the best results.

Methods
HBN ABIDE

CSF GM WM CSF GM WM

Mseg(φ1)− Fseg 0.642 ± 0.042 0.821 ± 0.029 0.846 ± 0.014 0.639 ± 0.048 0.796 ± 0.023 0.841 ± 0.018(
Mseg(φ1)

)
(φ2)− Fseg 0.644 ± 0.042 0.825 ± 0.030 0.853 ± 0.015 0.642 ± 0.048 0.802 ± 0.023 0.848 ± 0.018

Mseg(φ1
◦φ2)− Fseg 0.643 ± 0.042 0.821 ± 0.028 0.845 ± 0.013 0.640 ± 0.048 0.796 ± 0.023 0.839 ± 0.018

6. Conclusions

In this paper, a method wherein three networks (registration, augmented, and dis-
crimination networks) are trained together is proposed, for which the MSE loss function is
introduced into the augmented network to improve the registration network’s performance.
It was demonstrated that the registration network’s performance was further improved
when coupled with the adversarial capacity of a GAN. Then, it was proven that the pro-
posed method offers significant advantages over the existing methods. In addition, it was
clarified that the proposed training method is easy to implement, and that the implemented
loss function is easy to obtain.

In the future, a more novel GAN will be used to further improve image registration
performance; moreover, more indicators will be used for comparison. The developed model
will then be tested on different datasets to prove its excellent generalizability.
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