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Abstract: In robotics, tactile perception is important for fine control using robot grippers and hands.
To effectively incorporate tactile perception in robots, it is essential to understand how humans use
mechanoreceptors and proprioceptors to perceive texture. Thus, our study aimed to investigate the
impact of tactile sensor arrays, shear force, and the positional information of the robot’s end effector
on its ability to recognize texture. A deep learning network was employed to classify tactile data from
24 different textures that were explored by a robot. The input values of the deep learning network
were modified based on variations in the number of channels of the tactile signal, the arrangement of
the tactile sensor, the presence or absence of shear force, and the positional information of the robot.
By comparing the accuracy of texture recognition, our analysis revealed that tactile sensor arrays
more accurately recognized the texture compared to a single tactile sensor. The utilization of shear
force and positional information of the robot resulted in an improved accuracy of texture recognition
when using a single tactile sensor. Furthermore, an equal number of sensors placed in a vertical
arrangement led to a more accurate distinction of textures during exploration when compared to
sensors placed in a horizontal arrangement. The results of this study indicate that the implementation
of a tactile sensor array should be prioritized over a single sensor for enhanced accuracy in tactile
sensing, and the use of integrated data should be considered for single tactile sensing.

Keywords: artificial tactile perception; tactile sensing; texture recognition; neural networks;
machine leaning

1. Introduction

Artificial tactile perception that mimics human tactile perception enables delicate
manipulation of robots utilizing robotic hands or grippers. Humans can accurately and
quickly recognize information regarding objects, including their shape [1] or various
properties such as roughness, material, and rigidity [2,3], when they come into contact
with them via their the hands. For instance, when touching the surface of an object, an
individual can easily discern the pattern of the fabric or the type of object being handled.
This capacity for interpreting and utilizing tactile perception is an inherent aspect of
human learning.

The implementation of artificial tactile perception in robots is crucial in enabling them
to perform delicate manipulations when handling objects. For a robot to perform tasks
based on tactile perception, it is necessary to incorporate a tactile sensor that generates
tactile signals. Various types of tactile sensors, such as capacitive [4,5], piezoresistive [6,7],
optical [8,9], piezoelectric [10,11], and magnetic sensors [12,13], have been developed for
robots to recognize their environments during interactions by generating tactile signals.
The signal generated by the aforementioned tactile sensors enables robots to execute so-
phisticated tasks using robot grippers that were once deemed challenging or unfeasible.
These tasks include stable object grasping [14,15], slip detection [16,17], in-hand manipula-
tion [18], and object information recognition, such as object recognition [19,20] and texture
classification [21,22].
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Texture recognition is a crucial task that has been the focus of various research, as
it involves the estimation of one of the important surface properties of an object through
contact between the sensor and the object. Drigalski et al. [23] performed classification after
collecting texture data by rubbing 3-axis force tactile sensors attached to a robot gripper.
Huang et al. [24] collected vibration data for textures using a single bionic tactile sensor
fixed at the end of a linear motor, and performed texture classification using a convolutional
neural network. Several studies have focused on collecting more comprehensive tactile
data for texture recognition, rather than relying solely on pressure data. Lima et al. [25] in-
vestigated the perception of tactile textures in a two-dimensional exploration by classifying
the collected data obtained using a round-shaped fingertip tactile sensor embedded with a
9-axis IMU (inertial measurement unit) sensor and barometer through machine learning.
Markert et al. [21] classified the surface of objects using random forest with a concatenated
power spectral density, using a 6-axis force/torque sensor attached to an end-effector as
the input. Using a tactile sensor attached to one tip makes it difficult to measure the spatial
features of an object along its contact path because of the narrow contact area.

Humans perceive tactile information through an ensemble of signals generated by
different types of mechanoreceptors, including Merkel, Ruffini, Meissner, and Pacinian re-
ceptors in the fingertips [26,27]. The dense distribution of sensory receptors in the fingertips
provides high spatial resolution for tactile perception in humans [28,29]. Several studies
have been conducted on artificial tactile perception to develop tactile sensor arrays for ob-
taining richer tactile signals and improving spatial resolution. These include tactile sensor
array based on PVDF (polyvinylidene fluoride) [30], PDMS (polydimethylsiloxane) [31],
and piezoelectric materials [32]. Numerous studies have employed tactile sensor arrays
for textural classification. Slepyan et al. [33] used a 3 × 3 tactile sensor array mounted on
a soft biomimetic finger to distinguish 3D-printed textured plates by employing spatial
frequency encoding. Gupta et al. [34] systematically disrupted the spatial arrangement of
sensors for the signal output from a tactile sensor array, and subsequently proceeded with
texture classification. The significant performance drop observed in the study highlights the
importance of spatial information in the tactile sensor array signal for texture recognition.
Several research groups have recently studied the development of a 3-axis tactile sensor
array capable of measuring shear force, to obtain shear forces or skin stretch information
similar to the tactile signals of the Ruffini receptors [35]. For instance, there are tactile
sensors that can calculate the three-axis force by utilizing a bumped surface [36,37], and
tactile sensor arrays consisting of 18 units that can measure the 3-axis force by employing
point cloud fitting and triangular searching techniques [38].

In addition, tactile perception can be perceived not only by the output value of the
tactile sensor but also by different types of information. Lee et al. [39] conducted a study
in which they used data collected from an accelerometer and gyroscope sensors built into
a smartphone as input values for a neural network to recognize the touched area on a
smartphone, instead of using the tactile signal from the fingertip. Lee et al. [40] and Ko
et al. [41] proposed methods that estimate the interaction force between a robot and an
object while the robot grasps the object using visual images, robot position, and electrical
current, without relying on tactile signals. Proprioception is necessary for tactile perception
in humans. Dysfunctions in proprioception can lead to difficulties in accurately judging the
shape of the object being touched and the distance to the point of contact [42] and difficulties
in perceiving the surface roughness of an object [43]. For artificial tactile perception, it is
necessary to study the effect of robot positional information and investigate strategies to
utilize tactile information in the target task.

Although several studies have been conducted to implement artificial tactile sensing,
achieving the level of accuracy in performing tasks through tactile information that humans
possess still remains a challenge. Several factors influence tactile perception. However,
previous studies on tactile sensor arrays mainly focused on improving sensor performance
and sensitivity, with limited research on the impact of various factors on artificial tactile
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perception. To achieve effective tactile perception, it is necessary to investigate the effects
of tactile sensing arrays, shear force, and robot positional information on task performance.

In this study, we focused on investigating the effects of tactile sensor arrays, shear
force, the positional information of the robot, and integration of these types of tactile
data on texture recognition through deep learning. A simple tactile sensing system was
established to collect the tactile data. The system includes a tactile sensor array that can
measure the normal force, a force-torque sensor capable of detecting shear force, and a
robot arm that performs object exploration. Using this system, the time-series tactile sensor
data and robot positions were collected for 24 textures. By varying the input values of the
same deep learning network, the type of information that affects artificial tactile perception
was investigated. To enhance the precision of artificial tactile perception, it is recommended
to use a tactile array sensor instead of a single sensor. When using a single tactile sensor, it
was observed that the texture recognition accuracy was improved by additionally utilizing
the shear force and robot position information. Additionally, the accuracy of a tactile sensor
array with the same number of sensors can vary based on the arrangement. Identifying the
factors that affect artificial tactile perception and using appropriate tactile information can
aid robots in performing target tasks accurately.

2. Materials and Methods

A simple tactile sensing system was constructed to investigate the effects of sensing
the tactile array, shear force, and robot positional information on texture classification.
In the tactile sensing system, a robot gripper was attached to the end of a 6 degrees of
freedom (6-DoF) robot arm. Each fingertip of the robot gripper has a built-in force-torque
sensor. The tactile sensor array was located above each fingertip of the gripper. The robotic
arm examined 24 types of textures to collect tactile data. A deep learning algorithm was
employed to classify the textures.

2.1. Texture Exploration Interface and Tactile Sensor Array

Figure 1a shows our tactile experimental interface, comprising a robot gripper (RG2-
FT, OnRobot, Odense, Denmark), robot arm (UR-10, Universal Robots, Odense, Denmark),
and a tactile texture plate fixed by a 3D-printed holder on the xy plane. The robotic
arm performed exploration along the z-axis (elevation) in the vertical direction of the
experimental plane. The tactile sensor array was located on both sides of the robot gripper
fingertips, and the height of the contact surface remained unchanged; thus, the robot
gripper and tactile sensor array could simultaneously come into contact with the object.

In this study, a 3 × 3 tactile array sensor consisting of nine FMA MicroForce Sensors
(FMAMSDXX005WCS3, Honeywell, Charlotte, NC, USA) was used. The FMA MicroForce
Sensor is a piezoresistive force sensor that provides a digital output proportional to the
applied force. The tactile sensor is available in different versions with various force ranges,
including 5, 15, and 25 N. In the current study, the 5 N normal force range with a 0.1 N
accuracy and an overforce limit of 15 N was used. Each 3 × 3 tactile sensor array module
comprises nine tactile sensors; therefore, we opted to use SPI communication (four wire)
instead of I2C communication, which has a limited address availability. The sensor has a
typical response time of 0.42 ms, and SPI communication allows for a higher digital clock
frequency of up to 800 kHz, and can be powered by an operating voltage of 3.3 V. The
dimensions of the sensor are 5 mm × 5 mm. The FMA MicroForce Sensors were arranged
in a 3 × 3 configuration and mounted onto a printed circuit board (PCB), as illustrated in
Figure 1c. The size of the tactile sensor array module, which included nine tactile sensors,
is 19 mm × 17 mm. The tactile sensor array measures the normal force at 500 Hz.

We covered the surfaces of the tactile sensor array modules with a soft polymer-printed
fingerprint (Figure 1b) based on a human fingertip. The soft polymer was printed using
a 3D resin printer (Form3, Formlabs, Sommerville, MA, USA). The soft cover material
was an elastic resin (Engineering Resin, Formlabs, Sommerville, MA, USA) with a shore
hardness of 50 A. Considering the durability of the soft cover’s fingerprint and the technical
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ability of the printer, the fingerprint’s ridge depth on the softcover, the width thickness,
and the gap between the ridge were calculated to be 0.25, 0.1, and 0.2 mm, respectively. The
size of the tactile sensor array module with the soft polymer cover was 20 mm × 20 mm.
By covering it with a fingerprinted polymer, the tactile sensor array can efficiently detect
the frequency of the haptic response [44]. In addition, the tactile force generated by the
interaction between the sensor and the object was evenly distributed to each individual
tactile sensor. Linear regression was employed to calibrate the tactile sensor array using
a force-torque sensor (ATI Mini40 force/torque sensor, ATI Industrial Automation, Apex,
NC, USA).
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Figure 1. Used texture exploration interface: (a) The tactile sensing system. A 3 × 3 tactile sensor
array was attached to each end of the gripper (RG2-FT, OnRobot) equipped with force-torque sensors.
The robot arm (UR-10, Universal Robots) was used for texture exploration. (b) A tactile sensor array
covered with fingerprinted soft polymer. The soft polymer made of elastic resin (Engineering Resin,
Formlabs) with a shore hardness of 50 A has a fingerprint’s ridge depth of 0.25 mm, a width thickness
of 0.1 mm, and a gap between the ridge of 0.2 mm. (c) Photographs of the tactile sensor array module
with a coin. The size of the tactile sensor array is 19 mm × 17 mm.

2.2. Experimental

Figure 2 shows the 24 textures used in this study. The textures used in the experiment
consisted of a variety of materials, including four types of patterned artificial leather
(herringbone pattern, saffiano pattern, dot pattern, and crunch pattern), six types of animal
leather (rhino, two types of snakes, alpaca, crocodile, and cow), three types of floor tile (a
rough surface, a relatively smooth but uneven surface, and a large pattern), an aluminum
plate, two types of wooden plate (rough medium density fiberboard and smooth plywood),
two types of paper (packing box and A4 paper), acrylic plates, three types of cloth fabric
(denim, soft fabric, and cotton), and two types of Styrofoam with different particle sizes.
The size of floor tiles 1–3, the aluminum plate, wooden plate 1, and wooden plate 2 were
25 cm × 25 cm, while the remaining texture plates were 15 cm × 15 cm. Textures, except for
the wooden plates, the aluminum plate, floor tiles 1–3, the acrylic plate, and paper 1 (the
part of a packing box), were stuck to both sides of an acrylic plate with a thickness of 3 mm.
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Figure 2. Twenty-four types of textures used for the experiment, including ten types of leather,
three types of ceramic floor tiles, an aluminum plate, two types of wooden plate, two types of
paper, an acrylic plate, three types of cloth fabric, and two types of Styrofoam. These 24 textures
were selected based on their surface pattern, hardness, roughness, and friction. Each image
corresponds to a 20 mm × 20 mm area of the texture surface. A scale bar of 20 mm is displayed
in the lower left corner.

Tactile data were collected by scanning vertically below the tactile texture plates, which
were positioned at the center of the experimental interface. Figure 3 shows an example
of tactile surface exploration data for four textures (leather 4, leather 10, cloth fabric 3,
and Styrofoam 1) out of the total 24 textures collected by the tactile sensing system. The
complete dataset of tactile information comprised the data collected from both tactile sensor
arrays, the two sets of 3-axis force data obtained from the force-torque sensor, and the
positional information of the robot arm’s end-effector in terms of its x, y, and z coordinates.
The sampling rate for each data point was 500 Hz for the 3 × 3 tactile array sensor, 250 Hz
for the force-torque sensor, and 125 Hz for the robot position. Owing to the difference in
sampling rates, the data were synchronized by storing at 1 kHz.

Considering the differences in the tactile sensor data based on the exploration speed,
texture exploration was conducted at 20, 30, 50, and 70 mm/s. The experiment was
conducted as follows: The tactile data collection process involved the robotic arm moving
towards the texture plate, grasping the top portion of the plate with the gripper, and
exploring downwards at a constant velocity. During this process, the tactile sensor array,
the 3-axis force data from the force-torque sensor on both sides of the fingertips, and the
positional coordinates of the end-effector were recorded. The exploration stopped after
the robot arm moved 100 mm downward from the exploration start point and the gripper
opened. The robot arm then returned to its original position, and this process was repeated
18 times. The experiment was then repeated with different velocities for exploration. The
data collection procedures were automated, and a total of 1728 trials were conducted,
involving 24 types of texture plates, 4 velocities, and 18 sets.
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Figure 3. Examples of tactile surface exploration data for four textures (leather 4, leather 10, cloth
fabric 3, and Styrofoam 1) out of the total twenty-four textures collected within the tactile sensing
system. From left to right, the data were collected using a 3 × 3 tactile sensor array with nine channels,
3-axis force data, and robot position data.

For classification, the data were cropped to unify the data length per set. Instead of
using the tactile data from the beginning and end of the exploration time, where a change
in velocity existed, we utilized the data collected from −500 ms to +500 ms from the center
of the exploration data. The training and test data consisted of the front part of each set
(0 ms to 700 ms) and the rear part of each set (700 ms to 1000 ms), respectively.

2.3. Deep Learning Network

Various methods, such as the support vector machine [45], K-nearest neighbor
(KNN) [46], convolution neural network (CNN) [47], fast Fourier transform (FFT) [48],
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and recurrent spiking neural network [49], have been suggested for texture recognition.
Long short-term memory (LSTM) [50] has been widely used in a several tasks for pro-
cessing time-series data [51], such as trajectory prediction [52], acoustic modeling [53],
and speech recognition [54]. Considering that the collected tactile data were time-series
data, an LSTM-based network was used in this study. The network used for texture
classification was the same for investigating the effects of the sensing tactile array,
shear force, and robot information, with the exception of the input values provided to
the network.

Figure 4 shows the neural network structure used in this study. The inputs were
tactile data collected over 50 ms, which were randomly cropped from the continuous
set using a window with a length of 50. The tactile data were selected or concatenated
from the values of tactile sensor arrays, 3-axis force, and robot positional information,
depending on the purpose of the investigation. The network was designed to perform
texture classification using softmax as the final layer. The output of the network
provided the probability distribution of the input data belonging to one of the twenty-
four texture classes. The network consisted of two LSTM layers and two dense fully
connected layers. The LSTM layers received n (measurements) × 50 inputs. The
measurements consisted of tactile sensor arrays (number of tactile units used × two
fingertips), 3-axis force (n = three axes × two fingertips), and robot position (n = 3 x,
y, and z coordinates). If multiple types of data were utilized as input, they were
concatenated together. The last LSTM layer outputted 64 features from the last LSTM
cell. In the last LSTM cell, the output the of 64 features was fed into the first fully
connected layer. The output of the 48 neurons from the first fully connected layer was
passed through batch normalization and Swish activation [55] before being forwarded
to the second fully connected layer. After the second fully connected layer, 24 neurons
were output, each representing one of the 24 textures. Finally, softmax was applied to
classify the input into one of the twenty-four texture categories. During model training,
a batch size was 4096 was used, and the Adam optimizer [56] was utilized. The initial
learning rate was 0.001 and the LambdaLR scheduler for decaying the learning rate by
a factor of 0.95 was used for every epoch. Cross-entropy was used as the loss function.
The model was trained for up to 100 epochs on an NDIVIA TITAN Xp GPU. The results
with the highest accuracy were selected after learning and testing each input value
three times.
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Figure 4. Neural network architecture used for the classification of 24 textures. The input to the
network consists of 3 × 3 tactile sensor arrays (left and right), 3-axis force data (left and right),
and robot position information. Sequence data cropped at 50 ms intervals (window length) are
concatenated and fed into the LSTM layer. The 64 features generated from the two LSTM layers
are finally processed through a fully connected layer (FC layer), resulting in the classification of
24 textures.

3. Results
3.1. Effect of Sensing Tactile Array on Texture Recognition

We compared the texture classification performance based on the number of tactile
sensors and their arrangement to examine the effects of the sensing tactile array. Single
sensing (at the center of the tactile array sensor), three tactile sensors (vertical and horizontal
in the direction of exploration), 2 × 2 tactile sensor arrays, and all 3 × 3 tactile sensor arrays
located on both sides of the fingertip were used as the input values for the deep learning
network (Figure 5). Table 1 shows the accuracy results of the texture classification according
to the number and arrangement of tactile sensors. Figure 6 shows the confusion matrix
for texture classification. The order of the texture labels on the x-axis (predicted label) and
y-axis (true label) of the confusion matrix is the same as that shown in Figure 2 and can also
be verified in the bottom left of Figure 6. The results revealed that the texture classification
accuracy was affected by the number of tactile sensors. Specifially, the accuracy was
observed to increase with a higher number of tactile sensors. The accuracy of a single
sensor (at the center of the tactile sensor array) was 58.913%, which was the lowest among
the results. In the case of single sensing, the textures of leather 6 and cloth fabric 2 were not
recognized, and it was difficult to distinguish the textures, with the exception of aluminum
and cloth fabric 1, which were confused with the others.

The results showed accuracies of 94.572% for the vertical arrangement and 91.648%
for the horizontal arrangement, which were over 32% higher than the accuracy achieved
with a single sensor. The study found that the arrangement of the tactile sensors during
exploration had an impact on the texture classification accuracy. When exploring in the
vertical direction, the arrangement of the sensors resulted in a 2.924% higher accuracy
than the horizontal arrangement. However, the vertical arrangement resulted in confusion
between floor tiles 1 and 2, which had hard and bumpy surfaces. Conversely, the horizontal
arrangement classified floor tiles 1 and 2 with higher accuracy than the vertical arrangement,
but had difficulty classifying leather 5, which had a dot pattern, leather 6, which had no
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pattern, and soft fur compared to the vertical arrangement. The 2 × 2 tactile sensor array
showed a higher texture classification accuracy of 95.292% compared to the use of three
tactile sensors. Leather 6, which was poorly classified by three tactile sensors (horizontal),
remained to be challenging to classify. However, Leather 5, which was poorly classified
with three tactile sensors (horizontal), was classified with a higher accuracy using the
vertical and horizontal arrays of three tactile sensors. Moreover, floor tiles 1 and 2, which
were poorly classified with three tactile sensors (vertical), were classified with a higher
accuracy than the use of three tactile sensors (vertical) and a lower accuracy than the use of
three tactile sensors (horizontal). The use of the tactile sensor array with nine sensors per
fingertip resulted in the highest accuracy of 98.876%.
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Figure 5. Tactile sensors used as inputs to the neural network for investigating the effect of sensing
tactile array on texture recognition. With single tactile sensing, the data from one sensor located at
the center of a 3 × 3 tactile sensor array were used. To investigate the effect of the arrangement of
sensors on texture recognition using the same number of tactile sensors, sensors were used consisting
of three vertical sensors passing through the center and three horizontal sensors passing through the
center. The sensor located on the remaining side of the gripper was also used in the same manner.

Table 1. Accuracy results of texture classification according to the number of tactile sensors.

Number of Tactile Sensors Accuracy (%)

3 × 3 Tactile Sensor Array 98.876
2 × 2 Tactile Sensor Array 95.292
Three Tactile Sensors (Vertical) 94.572
Three Tactile Sensors (Horizontal) 91.648
A Single Tactile Sensor 58.913

The classification accuracies of the 3-axis force and tactile sensor array were also
compared. The accuracy (95.292%) of the 2 × 2 tactile sensor array and the accuracy
(98.876%) of the 3 × 3 tactile sensor array, which could detect normal force, were higher
than that of the 3-axis single force sensing (95.08%) (Table 2). The study found that despite
the tactile sensor array being able to detect only normal force, it was still more effective in
classifying the textures used in the experiment compared to the three-axis single sensing.

3.2. Effect of Sensing Shear Force on Texture Recognition

Various tactile information is used when a person interacts with an object. Shear force
also has a significant effect on tactile perception. For example, when shear and normal
forces are sensed simultaneously during dynamic movement, the frictional characteristics
of an object can be measured. Therefore, we investigated how the addition of shear force
information to normal force affects texture classification.
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Table 2. Accuracy results of texture classification of a single 3-axis force sensor built into the
robot gripper.

Input of Neural Network Accuracy (%)

3-axis force 95.080

The tactile sensor array used in this study could only measure the normal force.
Therefore, we concatenated the shear force value of the force-torque sensors and the value
of the tactile sensor array to determine the effect of shear force sensing. The concatenated
data were provided as the input values for the deep learning network. Adding shear
force data improved the classification accuracy compared to using only the tactile sensor
array data. The integrated data, which combined the normal force values from the tactile
sensor array and the shear force values from the 3-axis single force sensing, improved the
classification accuracy of all textures, including leather 4, which had an accuracy of less
than 90% when using only the tactile sensor array. The accuracy of concatenated data with
shear force and a single tactile sensor was 96.842%, which was 37.929% higher than using a
single tactile sensor alone (58.913%), as shown in Table 3. These results indicate that it is
necessary to consider the shear force to accurately recognize the texture.

Table 3. Accuracy results of texture classification of tactile sensor concatenated with shear force and
robot position.

Concatenate
Accuracy (%)

A Single Tactile Sensor 3 × 3 Tactile Sensor Array

3-axis force and robot position 98.425 99.790
Shear force 96.842 99.396

Robot position 87.822 99.303
- 58.913 98.876

Although both acquired texture information through 3-axis single sensing, the accuracy
of the concatenated data of a single tactile sensor and shear force was 1.762% higher than
that of 3-axis force. This result was obtained because the sampling rate of the single tactile
sensor measuring the normal force was higher than that of the 3-axis force sensor.

3.3. Effect of Tactile and Proprioception Information on Texture Recognition

Proprioceptive and tactile information were combined for roughness perception [43]
and shape discrimination [57] during the exploration of an object using a human finger.
We investigated the effect of the robot position on texture recognition. Table 3 shows
a comparison of the results of the proprioceptive effects during the robot’s exploration
of objects.

The concatenated data of the tactile sensor array and the x, y, and z coordinates of the
end effector were used as input values for the deep learning network. Using the integrated
data, the textures were classified with an accuracy of 99.303%, which was higher than when
only the tactile sensor array data were used. Similar to the results in the previous section
(the effect of shear force), all textures were classified with over 90% accuracy. When the
positional information of the robot was included, the accuracy of single sensing improved
by 28.909% (Table 3). These results demonstrate that the robot positional information
increases the accuracy of artificial tactile perception.

Furthermore, we examined how the combination of tactile signals from a tactile
sensor array and a 3-axis force sensor with the position of the robot affects accuracy, as
combined tactile and proprioceptive information is required for human tactile perception.
The concatenate with the tactile sensor array, the 3-axis force, and the coordinate of the
end effector were provided as the input to the neural network. The result of texture
classification using this combined data was 99.790%, which is the highest accuracy result
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obtained in this study. When concatenated data with a single tactile sensor, 3-axis force,
and robot positional information were input into the network, the accuracy of texture
classification was 98.425%, which was the highest accuracy of the input values using a single
tactile sensor.

However, even when single tactile sensor, 3-axis force sensor, and robot position
information were used, the accuracy of the texture classification was lower than the accuracy
of a tactile sensor array. This demonstrated the importance of using a tactile sensor array
for accurate tactile perception. However, this also indicates that single tactile sensing data
combining shear force and robot position information can achieve tactile recognition as
accurately as a tactile array sensor.

4. Discussion

Human tactile perception is influenced by various factors, such as four types of
mechanoreceptors [26,27], proprioception [43,57], and visual data [58]. We conducted
24 texture classifications to evaluate the impact of the array sensor, shear force, and robot
positional information on artificial tactile perception. The accuracy of texture classification
based on the number of tactile sensors was compared to investigate the effect of a sensing
tactile array on tactile perception. The accuracy decreased in the order of the 3 × 3 tactile
sensor array, three tactile sensors, and the single tactile sensor (Table 1). Similar to the high
concentration of mechanoreceptors in human fingertips [28], which enables outstanding
texture recognition, the results of this study indicate that rich signals acquired from several
tactile sensors and the improved spatial resolution through the arrangement of tactile
sensors can accurately represent texture information in artificial tactile perception.

Moreover, Table 1 shows that there is a difference in the accuracy of texture recognition
resulting from the arrangement of tactile sensors. With the same number of tactile sensors,
the accuracy of the vertical arrangement for object exploration was higher than that of
the horizontal arrangement. The vertical arrangement scans the surface of an object with
a wider range than the horizontal arrangement; therefore, it can be concluded that the
vertical arrangement detects the spatial features of the texture better than the horizontal
arrangement. The spatial features of the texture were more helpful for texture recognition
than the temporal features detected by overlapping searches of the same part of the texture.

After searching the same texture area, the accuracy of the three tactile sensors placed
horizontally in the search direction was found to be significantly higher than that of the
single tactile sensor. This indicates that the temporal features of the textures obtained by
overlapping scans with short time intervals are useful for texture classification. Additionally,
because the tactile sensors were covered with a soft polymer that had a fingerprint pattern,
the tactile signals detected in the same area of the surface were found to be represented
differently and transmitted to each tactile sensor. This differential representation of tactile
signals could enhance tactile recognition and underscores the significance of fingerprinted
soft covers in artificial tactile perception.

The 2 × 2 tactile sensor array performed better than both versions of the three tactile
sensors in terms of accuracy. Nevertheless, the confusion matrix showed that a 2 × 2 tactile
sensor array is not necessarily better than three tactile sensors for all textures (Figure 6).
Leather 5, which was poorly distinguished by the three tactile sensors (horizontal), was also
poorly recognized by the 2 × 2 array. However, three tactile sensors (vertical) performed
well in distinguishing leather 5. This suggests that the 2 × 2 tactile sensor array has a
limitation in recognizing the spatial features of textures as it explores a smaller area than the
three tactile sensors (vertical). Furthermore, the 2 × 2 tactile sensor array showed higher
accuracy in distinguishing floor tile 1 and floor tile 2 compared to the three tactile sensors
(vertical), but a lower accuracy compared to the three tactile sensors (horizontal). It can
be inferred that the 2 × 2 array tactile sensor can detect temporal and spatial features of
textures better than three tactile sensors (vertical and horizontal) on average, but there is a
limit to recognizing the features of texture because the number of tactile sensors constituting
the array is not sufficient.
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Roughness helps to distinguish different textures [59]. The sensation of roughness is
affected not only by the normal force but also by the shear force and friction [60]. The friction
coefficient is defined as the shear force over the normal force, and it is necessary to measure
the shear force for accurate recognition of textures. Using a single 3-axis force sensor, the
accuracy of texture classification was found to be higher than that of a single normal tactile
sensor (Tables 1 and 2). A single normal sensor could distinguish textures based on the
differences in the macro features of the surfaces; however, it was difficult to distinguish
textures with similar surface patterns but different frictional properties. Conversely, single
3-axis force sensing can measure both normal and shear forces simultaneously; therefore,
the texture can be distinguished by the difference in the macro-pattern and the friction
of the texture. The accuracy of texture classification using a single 3-axis force sensor
was higher than the accuracy of three normal tactile sensors. This study confirmed the
importance of sensing the friction force of an object through shear force measurements
for texture recognition. This result does not imply that a single 3-axis force sensor is more
suitable for texture classification than a tactile sensor array. The classification accuracy
using single 3-axis force sensing was lower than the accuracy of the tactile sensing array
used in this study. The reason for this is that single sensing cannot capture the temporal
features of textures obtained through overlapping scans or the fine spatial features of
textures sensed at a higher spatial resolution.

Shear force data were added to the tactile sensor information to sense the fine surface
features and friction of the textures. The accuracy was higher than that of the measurements
obtained using only the tactile sensor array and a single tactile sensor. This indicates that
there is a limit to the expression of texture as a normal force, and that the shear force for
sensing the friction of texture is required for accurate texture recognition. Similar to the vital
role that Ruffini receptors play in detecting shear force in human tactile perception [35], the
significance of incorporating shear force in artificial tactile sensing has also been established.

In human perception, the roughness of a texture can be accurately recognized when
it is scanned through hand movements, even when the scanning speed and contact force
vary. This is possible because proprioceptive information allows the brain to perceive
the search position and speed [43]. We applied this concept to artificial tactile perception
and compared the results of our experiments with and without the coordinates of the end
effector of the robot, which can determine the scanning speed and position. The accuracy
of texture classification was increased by providing positional information about the robot
(Table 3). This improvement in accuracy indicates that providing the robot position could
assist in finding correlations between the pattern of texture and the scanning position or
perceiving signal changes at the four exploring speeds. The exploration direction and
speed can be implied through robot positional information; therefore, using the x, y, and z
coordinates of the end effector with tactile signals enables object recognition with higher
accuracy. This indicates that artificial tactile perception is not only related to tactile signals,
but also to indirect information such as the coordinates of the end effector. In addition,
in single sensing, the utilization of shear force information is more effective than using
the robot position. However, the accuracy of texture recognition was similar when using
both the tactile sensor array and robot position information, or both the tactile sensor array
and shear force information. This result suggests that a using tactile sensor array with
robot position information, which does not require the purchase of expensive force-torque
sensors or the installation of force-torque sensors in tactile systems, is an efficient way to
improve texture recognition accuracy.

In the final experiment, the use of integrated data, which consisted of the tactile
sensor array, shear force, and positional information of the end effector, resulted in the
highest accuracy in classifying textures. Based on the results, while using a tactile sensor
array with 3-axis force and robot position information numerically showed the highest
accuracy in texture recognition, the difference in accuracy between adding only shear
force information and both 3-axis force and robot position information was negligible.
Therefore, utilizing both types of information for texture recognition in tactile sensing
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arrays is ineffective. However, with the use of single sensing, a stack of these measures
clearly showed an improvement in tactile perception. This approach is a cost-effective
and straightforward manufacturing process that employs single sensors and electronic
circuits. Our results demonstrate that, similar to the complexity of human tactile percep-
tion, artificial tactile perception is influenced by multiple factors. Therefore, for precise
artificial tactile perception, single tactile sensing and other parameter measurements should
be employed.

5. Conclusions and Future Work

This study investigated the impact of a normal tactile array, shear force, and robot
positional information on tactile classification. Furthermore, real-time texture recognition
was demonstrated in the texture exploration interface (Video S1). Our findings suggest
that a tactile sensor array provides a higher accuracy of texture classification than a single
tactile sensor, and the configuration of the tactile sensor array also influences the texture
classification. This highlights the importance of utilizing a tactile sensing array rather
than a single tactile sensor in artificial tactile perception and provides insight into the
arrangement of the tactile sensors for efficient tactile recognition. Furthermore, our study
showed that combining a single tactile sensor with 3-axis force and the position of the end
effector can improve texture recognition, although the use of a tactile array sensor and all
information did not yield a significant effect. As humans use multiple senses for tactile
perception, factors other than tactile sensors have been demonstrated to impact artificial
tactile perception. Therefore, various complex measurements and a single tactile sensor
can be utilized for effective artificial tactile sensing.

In future studies, we plan to develop a tactile sensor array that includes a greater
number of tactile sensors and investigate the impact of the arrangement of tactile sen-
sors on tactile perception for the same number of tactile sensors. Moreover, we aim to
incorporate integrated measurements that have an impact on artificial tactile sensing to
perform specialized tasks that require a deeper understanding of tactile perception, such as
in-hand manipulation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/s23063201/s1, Video S1: Demonstration of texture recognition.
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