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Abstract: Classical and optimal control architectures for motion mechanics in the presence of noisy
sensors use different algorithms and calculations to perform and control any number of physical
demands, to varying degrees of accuracy and precision in regards to the system meeting the desired
end state. To circumvent the deleterious effects of noisy sensors, a variety of control architectures are
suggested, and their performances are tested for the purpose of comparison through the means of a
Monte Carlo simulation that simulates how different parameters might vary under noise, representing
real-world imperfect sensors. We find that improvements in one figure of merit often come at a
cost in the performance in the others, especially depending on the presence of noise in the system
sensors. If sensor noise is negligible, open-loop optimal control performs the best. However, in
the overpowering presence of sensor noise, using a control law inversion patching filter performs
as the best replacement, but has significant computational strain. The control law inversion filter
produces state mean accuracy matching mathematically optimal results while reducing deviation by
36%. Meanwhile, rate sensor issues were more strongly ameliorated with 500% improved mean and
30% improved deviation. Inverting the patching filter is innovative but consequently understudied
and lacks well-known equations to use for tuning gains. Therefore, such a patching filter has the
additional drawback of having to be tuned through trial and error.

Keywords: sensor fusion; sensor noise; optimization; feedback; real-time optimization; velocity-based
controller

1. Introduction

Artemis I will be the first integrated flight test of NASA’s deep space exploration
system: the Orion spacecraft, Space Launch System (SLS) rocket, and the ground systems
at Kennedy Space Center in Cape Canaveral, Florida. The first in a series of increasingly
complex missions, Artemis I (Figure 1) will be an uncrewed flight that will provide a
foundation for human deep space exploration and demonstrate our commitment and
capability to extend human existence to the Moon and beyond. During this flight, the
uncrewed Orion spacecraft will launch on the most powerful rocket in the world and travel
thousands of miles beyond the Moon, farther than any spacecraft built for humans has ever
flown, over the course of about a three-week mission [1].

1.1. Introduction to the Problem

Dealing with the fusion of potentially poor, noisy sensors is a ubiquitous challenge that
has a long lineage leading to several disparate approaches. Figure 2 illustrates a use case,
where noise from position and velocity sensors degrades the performance of state-of-the-art
nonlinear adaptive spacecraft control methods. Similar to the problem defined in Section 2,
the simulated machinery is performing an angular reorientation.
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Figure 1. Lunar lander concept sought for the Artemis program, image courtesy NASA [2], image 
use in accordance with NASA image use policy. Reprinted/adapted with permission from Ref. [3]. 
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gorithms. Others seek to develop architectures that prove robust to fused noisy sensor 
data. Wang et al. proposed a novel method for accurate, autonomous and real-time orbit 
determinations for geo-referencing with a standalone global positioning system receiver 
[5]. Xiong et al. addressed systematic centroid errors and poor attitude accuracy by aug-
menting star trackers with an image intensifier [6]. Kim et al. proposed an algorithm for 
determining the orbit of a geostationary satellite using single-epoch measurements from 
a global positioning system receiver with sparse visibility of the global positioning system 
satellites [7]. Takayama illustrated weaknesses with global navigation system signals and 
proposed novel sensor noise models used to enhance sensor sensitivity [8]. 
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1.2. Review of the State-of-the-Art Alternatives to Address the Problem

Some researchers focus on improving the sensor itself or its signal using internal
algorithms. Others seek to develop architectures that prove robust to fused noisy sensor
data. Wang et al. proposed a novel method for accurate, autonomous and real-time
orbit determinations for geo-referencing with a standalone global positioning system
receiver [5]. Xiong et al. addressed systematic centroid errors and poor attitude accuracy
by augmenting star trackers with an image intensifier [6]. Kim et al. proposed an algorithm
for determining the orbit of a geostationary satellite using single-epoch measurements from
a global positioning system receiver with sparse visibility of the global positioning system
satellites [7]. Takayama illustrated weaknesses with global navigation system signals and
proposed novel sensor noise models used to enhance sensor sensitivity [8].

Leake et al. proposed dealing with sensor issues with improved sensor algorithms,
proposing a non-dimensional star identification algorithm compared in terms of accuracy,
speed, and robustness to the so-called pyramid algorithm [9]. Marin et al. sought to
enhance star trackers by sensor and sensor fusion algorithms to provide a smoother and
faster output [10]. Perov et al. sought to utilize the principle of phase interferometer,
using multiple receiving antennas [11]. Wang et al. sought to integrate communications
navigation with global positioning system sensors [12]. Christian proposed autonomous
augmentation using optical navigation by relativistic perturbation of starlight [13]. Fan et al.
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investigated a plume noise suppression algorithm based on star point shape and the
angular distance between stars [14]. Opromolla et al. proposed dealing with sensor issues
algorithmically by using a model-based three-dimensional template matching technique
for pose acquisition of an uncooperative space object [15].

Rather than dealing with sensor issue algorithmically as proposed by Opromolla,
Chen et al. instead focused on the control algorithm using the sensor measurements
and proposed a velocity-based impedance control scheme illustrating efficacy in both
speed and robustness [16]. This manuscript parallels the insights of Chen et al. and
enhances the velocity-based logic with optimization methods of Pontryagin akin Sandberg’s
recent recitation [17]. Sandberg’s very recent improvements follow a lineage of small
improvements from its provenance in the nonlinear adaptive control methods of the 1990s,
as proposed by Slotine [18], and afterward improved by Fossen [19], Sands [20,21], who
offered experimental validation in [22]. Most recently, Raigoza [23] augmented the method
with autonomous collision avoidance, and Wilt [24] evaluated efficacy in the face of uniform
variations in mass moment of inertia (e.g., from fuel slosh). This manuscript proposes and
illustrates methods that assume velocity-based control logic like Chen but seek to induce
open-loop optimal results like Sandberg, Raigoza, and Wilt, and thus mitigate deleterious
effects of noisy sensors.

Controllers are differential equations that are designed to be able to manipulate some
state variable by arbitrarily changing a variable connected to it through a physical law or
equation. They often feature several points of adjustment and tunability to fit figures of
merit desired by the designer. The figures of merit utilized here include spacecraft tracking
accuracy (how well the controller reaches the desired target), precision (as measured by
deviation), and cost (numerical evaluation of the resources used). Computational burden is
also monitored since difficulties such as singular matrix inversions are involved. A variety
of control system architectures were evaluated, and their ability is assessed to perform
the task of a rest-to-rest reorientation normalized to unity. The different architecture’s
performance under the previously mentioned figures of merit will be compared to show
how they respond to a same noise environment, and which one best mitigates the effects of
noisy sensors.

1.3. Novelties Presented

1. Open-loop optimal results are analytically calculated providing a performance bench-
mark for comparing other methods.

2. Inspired by Opromolla, 2015 [11], velocity-based classical control is investigated,
especially since it was utilized as the comparative benchmark by Sandberg (2022) [17],
Raigoza (2022) [23], and Wilt (2022) [24], while the open-loop optimal results in item
#1 are used as comparative benchmark here.

3. Real-time optimal control is compared since it was the latest cited proposals of 2022,
and can be considered state of the art for this application, as an analytic optimal
solution is found, which is not always possible for a generic system.

4. Double-integrator patching filters are implemented seeking to match open-loop opti-
mal results amidst the fusion of noisy sensors.

5. System-inverting patching filters are implemented, also seeking to match open-loop
optimal results amidst the fusion of noisy sensors.

1.4. Feedback Control System Topology

This paper will focus on changes to the control architecture (depicted in Figure 3)
rather than making direct improvements or modifications to the sensors. Noise is accepted
as a fact of the environment, and the main effort is to test control architectures on how they
are able to perform in the presence of said noise. The desired state and system dynamics
are defined in the following section.



Sensors 2023, 23, 3169 4 of 14

Sensors 2023, 23, x FOR PEER REVIEW 4 of 14 
 

 

1.4. Feedback Control System Topology  
This paper will focus on changes to the control architecture (depicted in Figure 3) 

rather than making direct improvements or modifications to the sensors. Noise is accepted 
as a fact of the environment, and the main effort is to test control architectures on how 
they are able to perform in the presence of said noise. The desired state and system dy-
namics are defined in the following section. 

 
Figure 3. Flowchart showing the topology of a generic system, explaining the connection between 
the sensors, the control architecture, and the system dynamics. 

2. Control System Architectures 
This section offers formulas used in the study, and the implementation of the formu-

las in simulations is provided in Appendices A and B. The aim of each architecture, and 
the selection of equations thereof, is to reach the desired state outlined in Section 2.1, even 
in the presence of noise from the sensor. The formulas provided show how the control of 
different architectures is computed, but not explicitly how they work around noise. 

2.1. The Task at Hand 
The controllers will perform a rest-to-rest reorientation of one unit of rotation (indi-

cated by variable 𝜃 whose rate is indicated by variable 𝜔) scaled to unity over unit of 
time scaled to unity. The equations for such a maneuver are listed in Equations (1)–(3). 
Controller cost will be used as a key figure of merit, where a quadratic cost computation 
will be used indicated by variable J in Equation (4). 𝜃(0) = 𝜔(0) = 0 (1)𝜃(1) = 𝜃 = 1 (2)𝜔(1) = 0 (3)

𝐽 = 12 𝑢(𝑡) 𝑑𝑡 (4)

with state 𝜃(𝑡) , rate 𝜔(𝑡) , desired state 𝜃  , quadratic cost functional 𝐽(𝑡) , and control 
variable 𝑢(𝑡). The state, rate, and control are connected in accordance with Equations (5) 
and (6). 𝜔 = 𝜃 (5)
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the sensors, the control architecture, and the system dynamics.

2. Control System Architectures

This section offers formulas used in the study, and the implementation of the formulas
in simulations is provided in Appendices A and B. The aim of each architecture, and the
selection of equations thereof, is to reach the desired state outlined in Section 2.1, even in
the presence of noise from the sensor. The formulas provided show how the control of
different architectures is computed, but not explicitly how they work around noise.

2.1. The Task at Hand

The controllers will perform a rest-to-rest reorientation of one unit of rotation (in-
dicated by variable θ whose rate is indicated by variable ω) scaled to unity over unit of
time scaled to unity. The equations for such a maneuver are listed in Equations (1)–(3).
Controller cost will be used as a key figure of merit, where a quadratic cost computation
will be used indicated by variable J in Equation (4).

θ(0) = ω(0) = 0 (1)

θ(1) = θd = 1 (2)

ω(1) = 0 (3)

J =
1
2

∫ 1

0
u(t)2dt (4)

with state θ(t), rate ω(t), desired state θd, quadratic cost functional J(t), and control variable
u(t). The state, rate, and control are connected in accordance with Equations (5) and (6).

ω =
.
θ (5)

u =
1
I

.
ω (6)

for moment of inertia I, where dotted variables indicate derivatives in time.

2.2. Proportional Plus Velocity (P+V) Control

The P+V controller is a form of classical control, tuned using two different gains: a
proportional gain KP applied to the state error, added to a velocity gain KV applied to the
rate, not the rate error (see (14)). P+V controllers can be easily tuned to fit desired settling
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times and damping ratios. For a maximum tolerance of 2% error at the desired settling
time, Equation (7):

ts = −
ln
(

0.02×
√

1− ζ2
)

ζωn
(7)

can be used, where ζ is the damping ratio of the controller and ωn is its natural frequency
response. For a P+V controller, these are known to be Equations (8) and (9).

ωn =
√

KP (8)

and
ζ =

KV

2
√

KP
(9)

For a settling time of≤ 1 s and a damping ratio of 0.7, the gains are calculated to be KP = 37
and KV = 8.5.

P+V controllers are always able to reach the desired value, but it is the selection of
gains that affects how quickly it is reached. This ability is hampered by noise, especially on
the rate sensor. Because the end rate is 0, any error in rate detection will cause a control to
move the system off of the desired value. Additionally, the settling time is only for the state
target, so no estimation of the rate target settling time is used to set the gains.

2.3. Open-Loop Optimal Control

For a given problem with dynamics, boundary conditions, and a cost functional, an
optimal solution exists that minimizes the output of the cost functional, which is found
using Pontryagin’s method [25]. Using Equations (1)–(6), the task described in the task at
hand (from Section 2.1) has an optimal control u∗ of the form in Equation (10).

u∗(t) = θd(at + b) (10)

By integrating twice and applying the initial and final boundary conditions, the linear
system in Equation (11) is found:

0 0 0 1
0 0 1 0

1/6 1/2 1 1
1/2 1 1 0




a
b
c
d

 =


0
0
θd
0

 (11)

where the solution to Equation (11) can be applied to (10) to yield Equation (12):

u∗(t) = θd(−12t + 6) (12)

which has a minimal quadratic cost of J∗ = 6 and exact achievement of the target end
conditions. While open-loop optimal control yields the perfect results on paper, it is
completely blind to noise and perturbation.

2.4. Real-Time Optimal Control

Real-time optimal control, or RTOC, is a modification of the previous iteration of
optimal control that considers the current state of the system, allowing the controller to
adjust for noise and perturbations. The top two rows of the matrix in (11) are the equations
for θ∗(t) and ω∗(t), the optimal forms of the state and rate variables, evaluated at the initial
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conditions. By modifying these rows such that the forms are evaluated at the current time
t0, the linear system changes to:

t3
0/6 t2

0/2 t0 1
t2
0/2 t0 1 0
1/6 1/2 1 1
1/2 1 1 0




a
b
c
d

 =


θ(t0)
ω(t0)

θd
0

 (13)

The vector of unknowns on the left-hand side is calculated by inverting the matrix
and multiplying it by the vector of knowns on the right-hand side. The unknowns a and b
are then used in (10) to make an instantaneous optimal control, calculated for the current
state of the system. Therefore, the controller can adjust its control output in the presence of
noise and perturbations.

While being able to change course based on the current state of the system is an
advantage over open-loop optimal control, RTOC has a large computational demand in its
inversion of a 4 × 4 matrix. Additionally, the matrix becomes singular as t0 → 1 , which
causes problems as singular matrices are uninvertible. In simulation, the effect of this is
the control shooting off to infinity towards the end of the runtime, leading to huge errors
in the state and/or rate. To avoid this behavior, a switch is worked in so that, when the
matrix determinant approaches 0, the controller switches to open-loop optimal control for
the remainder of the runtime.

2.5. Patching Filter: Double Integrator

One way to combine the analytical accuracy of optimal control and the computational
simplicity and tunability of classical P+V control is to impose a ‘patching’ filter that in-
tegrates the optimal control u∗(t) twice to find the optimal state function θ∗(t), which is
given to a P+V controller as the desired value instead of a constant command θd.

2.6. Patching Filter: Double Integrator, Tuned

However, the result of the previous architecture may not be desirable. Should the
gains of the original P+V controller be modifiable, tuning them around the patching filter
is a viable strategy. This architecture is not as well studied as the original P+V control, so
handy equations based around desired settling time and damping ratio are not available.
Therefore, the gains will be tuned by hand, i.e., trial and error, until the result meets
acceptable figures of merit.

2.7. Patching Filter: Control Law Inversion

Should the gains not be modifiable, there is another way to adjust the architecture.
Instead of directly integrating the optimal control, the control law for the P+V controller
can be solved for an optimal input such that, after all the gains are applied and the control
calculated, the P+V controller output matches that of the optimal control u∗(t), where the
asterisk ‘*’ indicates optimality. The P+V control law is listed in Equation (14). Solving for
the desired state results in Equation (15).

u = KP(θd − θ)− KVω (14)

θd =
1

KP
u +

KV
KP

ω + θ (15)

Entering the optimal values u∗, ω∗, and θ∗ gives the optimal input. For a patching
filter that works in the Laplace domain as a transfer function, this can be rewritten as
Equation (16), which can be simplified to become Equation (17).

Θd(s) = U∗(s)
(

1
KP

+
KV
KPs

+
1
s2

)
(16)
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Θd(s)
U∗(s)

=

(
s2 + KVs + KP

KPs2

)
(17)

Equation (17) is the patching filter to be applied to the optimal control yielding the
optimal state trajectory input for the P+V controller.

3. Results and Analysis

The following simulations were performed in MATLAB Simulink, using the ode4
(Runge—Kutta) integrator and a 0.01s step size. Using a random number generator with
a Gaussian distribution, a noise signal was added to the state and rate with variances of
0.0001 with zero mean. The moment of inertia was also varied randomly but uniformly to
±10% of its true value.

Monte Carlo Simulation

Displayed in Figure 4 are the results of 1000 simulations of each of the control architec-
tures outlined in the previous section. Table 1 contains the numerical performances of each
architecture for direct comparison.
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Table 1. Numerical results of Monte Carlo simulations, N = 1000. σ refers to the standard deviation
of a quantity. All other numerical results represent the mean over all simulations.

Architecture θf σθ ωf σω J σJ

P+V 1 1.0176 0.0099 −0.1128 0.0140 40.1842 0.5979
Open-loop optimal 1.0029 0.0163 0.0004 0.0220 6.0000 0.0000

RTOC 1.0028 0.0225 0.0087 0.0156 5.9701 0.00001
Double Integrator 1 0.8399 0.0100 1.0640 0.0146 2.2295 0.0560
Double Int., Tuned 2 1.0227 0.0116 −0.0140 0.0510 13.3345 0.7892
Control Inversion 1 0.9996 0.0105 −0.0016 0.0155 6.0412 0.1045

P+V 1 1.0176 0.0099 −0.1128 0.0140 40.1842 0.5979
1 KP = 37, KV = 8.5. 2 KP = 78, KV = 0.65.

From Table 1, the relationships between accuracy (the final values of θ & ω), precision
(the magnitude of their spread, seen in σ), and cost (J) can be evaluated. The P+V controller,
while having the smallest standard deviations for both values, has notable error in ω f and
the highest quadratic cost, 301% the cost of the next-highest cost. Open-loop optimal has
some of the most accurate mean values, but the second-highest spread in both state and
rate. Depicted in Figures 5 and 6, RTOC is similar, with lower cost (−0.5%) and rate spread
(−29%) but higher state spread (38%) and final rate error (218%).
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approaches singularity.

The double-integrator patching filter has the second-lowest spreads in both state and
rate and the lowest cost, but the final values are completely off the mark; 16% error in state
and 943% more rate error than the next highest architecture. After some tuning, it performs
similarly to the P+V controller but with higher spreads (17.2% and 264%, respectively),
lower cost (−66.8%), and a more accurate final rate (12% the error of the P+V). Finally, the
control law inversion patching filter strikes a balance between all figures of merit: lowest
state error, third lowest state spread, second lowest rate error, third lowest state spread,
and a cost only marginally higher (0.7%) than the optimal J∗ = 6, where the asterisk ‘*’
indicates optimality. However, it took the longest to run after RTOC.
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4. Conclusions

From the results shown in Section 3 summarized in Table 2, there is no one control
that performs the best in every single regard.

Table 2. Numerical results of Monte Carlo simulations, N = 1000. σ refers to the standard deviation
of a quantity. All other numerical results represent the mean over all simulations. Percent differences
are compared to the benchmark open-loop optimal results.

Architecture θf σθ ωf σω Cost σJ

P+V 1 1% −39% −28,300% −36% 570% 60%
Open-loop optimal – – – – – –

RTOC 0% 38% 2075% −29% 0% 0%
Double Integrator 1 −16% −39% 265,900% −34% −63% 6%
Double Int., Tuned 2 2% −29% −3600% 132% 122% 79%
Control Inversion 1 0% −36% − −30% 1% 10%

1 KP = 37, KV = 8.5. 2 KP = 78, KV = 0.65.
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4.1. Recapped Research

1. Velocity-based classical control was investigated in the prequels and established as
the comparative benchmark here where open-loop optimal results in item #2 were
used for initial comparison. The controller achieved the best angle tracking deviation, but
the worst cost performance.

2. Open-loop optimal results were presented analytically providing a performance
benchmark for comparing other proposed methods.

3. Real-time optimal control was presented and compared to the benchmarks.
4. Double-integrator patching filters were introduced seeking to match open-loop op-

timal results amidst fusion of noisy sensors. These filters achieved the best velocity
tracking performance.

5. System-inverting patching filters were implemented also seeking to match open-loop
optimal results amidst fusion of noisy sensors. These patching filters achieved the best
overall performance with notable improvements amidst no dramatic performance
degradation in any categories of performance.

4.2. Concluding Results

The P+V controller has high cost and rate error, the optimal controls have low cost
and high accuracy but higher susceptibility to sensor noise, while the double-integrator
patching filter is difficult to tune and costly. The control law inversion patching filter,
however, can be seen as the best alternative to open-loop optimal control, especially in the
presence of sensor noise and inertia uncertainties, as it had a cost only slightly higher (0.7%)
with smaller standard deviations (35.6% less spread in state, 29.5% less spread in rate) and
final results more accurate than any other architecture (14.3% being the state error of the
runner-up, 18.4% the rate error of the runner-up). The key tradeoff was computational
burden since control inversion optimization took 25–40% longer to run than some of the
other architectures.

Recommendation: In instances where performance must be induced on pre-existing systems,
control inversion patching filters are advised. �
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% If you are running this script, go into the Simulink model callbacks. 
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% simulation results... n times. This cuts down total run time by about 
% half. 
 
close all 
 
n = 1000; 
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Appendix B. MATLAB Wrapper Code

% If you are running this script, go into the Simulink model callbacks.
% Under StopFcn, set ‘graphit’ to 0, or MATLAB will plot the individual
% simulation results . . . n times. This cuts down total run time by about
% half.
close all
n = 1000;
state_f = zeros(1,n);
rate_f = zeros(1,n);
J_stor = zeros(1,n);
for i = 1:n

rng(‘shuffle’);
simout = sim(‘FinalProject’);
state_f(i) = simout.state(end);
rate_f(i) = simout.rate(end);
J_stor(i) = simout.J(end);
i

end
scatter(state_f, rate_f, ‘MarkerEdgeColor’, ‘b’)
box on
grid on
hold on
title(‘Inertia, Position, and Velocity Noise’)
xlabel(‘$$\theta_{f}$$’,’interpreter’,’latex’)
ylabel(‘$$\omega_{f}$$’,’interpreter’,’latex’)
sig_theta = std(state_f);
sig_omega = std(rate_f);
sig_J = std(J_stor);
t = 0:0.01:2*pi;
x0 = mean(state_f);
y0 = mean(rate_f);
Jm = mean(J_stor);
x1 = x0 + sig_theta*cos(t);
x2 = x0 + 2*sig_theta*cos(t);
x3 = x0 + 3*sig_theta*cos(t);
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y1 = y0 + sig_omega*sin(t);
y2 = y0 + 2*sig_omega*sin(t);
y3 = y0 + 3*sig_omega*sin(t);
plot(x1,y1,’k-’)
plot(x2,y2,’k-’)
plot(x3,y3,’k-’)
plot(x0,y0,’k+’)
hold off
legend(sprintf(‘$$J$$ = %f +/− %f’, Jm, sig_J), ‘interpreter’, ‘latex’)
ax = gca;
ax.FontSize = 16;
ax.FontName = ‘Palatino Linotype’;

References
1. Hambleton, K. Artemis I Map, 9 February 2018. Available online: https://www.nasa.gov/image-feature/artemis-i-map (accessed

on 12 November 2022).
2. Mahoney, E. Fast-Track to the Moon: NASA Opens Call for Artemis Lunar Landers, 30 September 2019. Available online: https:

//www.nasa.gov/feature/fast-track-to-the-moon-nasa-opens-call-for-artemis-lunar-landers/ (accessed on 12 November 2022).
3. Media Usage Guidelines. Available online: https://www.nasa.gov/multimedia/guidelines/index.html (accessed on 12

November 2022).
4. Sands, T. Comparison and Interpretation Methods for Predictive Control of Mechanics. Algorithms 2019, 12, 232. [CrossRef]
5. Wang, F.; Gong, X.; Sang, J.; Zhang, X. A Novel Method for Precise Onboard Real-Time Orbit Determination with a Standalone

GPS Receiver. Sensors 2015, 15, 30403–30418. [CrossRef] [PubMed]
6. Xiong, K.; Jiang, J. Reducing Systematic Centroid Errors Induced by Fiber Optic Faceplates in Intensified High-Accuracy Star

Trackers. Sensors 2015, 15, 12389–12409. [CrossRef] [PubMed]
7. Kim, G.; Kim, C.; Kee, C. Coarse Initial Orbit Determination for a Geostationary Satellite Using Single-Epoch GPS Measurements.

Sensors 2015, 15, 7878–7897. [CrossRef] [PubMed]
8. Takayama, Y.; Urakubo, T.; Tamaki, H. Novel Process Noise Model for GNSS Kalman Filter Based on Sensitivity Analysis of

Covariance with Poor Satellite Geometry. Sensors 2021, 21, 6056. [CrossRef] [PubMed]
9. Leake, C.; Arnas, D.; Mortari, D. Non-Dimensional Star-Identification. Sensors 2020, 20, 2697. [CrossRef] [PubMed]
10. Marin, M.; Bang, H. Design and Simulation of a High-Speed Star Tracker for Direct Optical Feedback Control in ADCS. Sensors

2020, 20, 2388. [CrossRef] [PubMed]
11. Perov, A.; Shatilov, A. Deeply Integrated GNSS/Gyro Attitude Determination System. Sensors 2020, 20, 2203. [CrossRef] [PubMed]
12. Wang, L.; Lü, Z.; Tang, X.; Zhang, K.; Wang, F. LEO-Augmented GNSS Based on Communication Navigation Integrated Signal.

Sensors 2019, 19, 4700. [CrossRef] [PubMed]
13. Christian, J.A. StarNAV: Autonomous Optical Navigation of a Spacecraft by the Relativistic Perturbation of Starlight. Sensors

2019, 19, 4064. [CrossRef] [PubMed]
14. Fan, Q.; Cai, Z.; Wang, G. Plume Noise Suppression Algorithm for Missile-Borne Star Sensor Based on Star Point Shape and

Angular Distance between Stars. Sensors 2019, 19, 3838. [CrossRef] [PubMed]
15. Opromolla, R.; Fasano, G.; Rufino, G.; Grassi, M. A Model-Based 3D Template Matching Technique for Pose Acquisition of an

Uncooperative Space Object. Sensors 2015, 15, 6360–6382. [CrossRef] [PubMed]
16. Chen, C.; Nie, H.; Chen, J.; Wang, X. A Velocity-Based Impedance Control System for a Low Impact Docking Mechanism (LIDM).

Sensors 2014, 14, 22998–23016. [CrossRef] [PubMed]
17. Sandberg, A.; Sands, T. Autonomous Trajectory Generation Algorithms for Spacecraft Slew Maneuvers. Aerospace 2022,

9, 135. [CrossRef]
18. Slotine, J.-J.E.; Weiping, L. Applied Nonlinear Control; Prentice-Hall: Hoboken, NJ, USA, 1991.
19. Fossen, T. Comments on Hamiltonian adaptive control of spacecraft by Slotine, J.J.E. and Di Benedetto, M.D. IEEE Trans. Autom.

Control 1993, 38, 671–672. [CrossRef]
20. Sands, T.; Kim, J.; Agrawal, B. Spacecraft fine tracking pointing using adaptive control. In Proceedings of the 58th International

Astronautical Congress, Hyderabad, India, 24–28 September 2007; International Astronautical Federation: Paris, France, 2007.
21. Sands, T.; Lorenz, R. Physics-Based Automated Control of Spacecraft. In Proceedings of the AIAA Space Conference & Exposition,

Pasadena, CA, USA, 14–17 September 2009.
22. Sands, T.; Kim, J.J.; Agrawal, B.N. Spacecraft Adaptive Control Evaluation. In Proceedings of the Infotech@ Aerospace, Garden

Grove, CA, USA, 19–21 June 2012; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2012; pp. 2012–2476.
23. Raigoza, K.; Sands, T. Autonomous Trajectory Generation Comparison for De-Orbiting with Multiple Collision Avoidance.

Sensors 2022, 22, 7066. [CrossRef] [PubMed]

https://www.nasa.gov/image-feature/artemis-i-map
https://www.nasa.gov/feature/fast-track-to-the-moon-nasa-opens-call-for-artemis-lunar-landers/
https://www.nasa.gov/feature/fast-track-to-the-moon-nasa-opens-call-for-artemis-lunar-landers/
https://www.nasa.gov/multimedia/guidelines/index.html
http://doi.org/10.3390/a12110232
http://doi.org/10.3390/s151229805
http://www.ncbi.nlm.nih.gov/pubmed/26690149
http://doi.org/10.3390/s150612389
http://www.ncbi.nlm.nih.gov/pubmed/26016920
http://doi.org/10.3390/s150407878
http://www.ncbi.nlm.nih.gov/pubmed/25835299
http://doi.org/10.3390/s21186056
http://www.ncbi.nlm.nih.gov/pubmed/34577262
http://doi.org/10.3390/s20092697
http://www.ncbi.nlm.nih.gov/pubmed/32397401
http://doi.org/10.3390/s20082388
http://www.ncbi.nlm.nih.gov/pubmed/32331409
http://doi.org/10.3390/s20082203
http://www.ncbi.nlm.nih.gov/pubmed/32295068
http://doi.org/10.3390/s19214700
http://www.ncbi.nlm.nih.gov/pubmed/31671830
http://doi.org/10.3390/s19194064
http://www.ncbi.nlm.nih.gov/pubmed/31547121
http://doi.org/10.3390/s19183838
http://www.ncbi.nlm.nih.gov/pubmed/31491930
http://doi.org/10.3390/s150306360
http://www.ncbi.nlm.nih.gov/pubmed/25785309
http://doi.org/10.3390/s141222998
http://www.ncbi.nlm.nih.gov/pubmed/25479329
http://doi.org/10.3390/aerospace9030135
http://doi.org/10.1109/9.250547
http://doi.org/10.3390/s22187066
http://www.ncbi.nlm.nih.gov/pubmed/36146415


Sensors 2023, 23, 3169 14 of 14

24. Wilt, E.; Sands, T. Microsatellite Uncertainty Control Using Deterministic Artificial Intelligence. Sensors 2022, 22, 8723.
[CrossRef] [PubMed]

25. Ross, I.M. A Primer on Pontryagin’s Principle in Optimal Control; Collegiate Publisher: New York, NY, USA, 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/s22228723
http://www.ncbi.nlm.nih.gov/pubmed/36433317

	Introduction 
	Introduction to the Problem 
	Review of the State-of-the-Art Alternatives to Address the Problem 
	Novelties Presented 
	Feedback Control System Topology 

	Control System Architectures 
	The Task at Hand 
	Proportional Plus Velocity (P+V) Control 
	Open-Loop Optimal Control 
	Real-Time Optimal Control 
	Patching Filter: Double Integrator 
	Patching Filter: Double Integrator, Tuned 
	Patching Filter: Control Law Inversion 

	Results and Analysis 
	Conclusions 
	Recapped Research 
	Concluding Results 

	Appendix A
	Appendix B
	References

