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Abstract: The Shor’s algorithm can find solutions to the discrete logarithm problem on binary
elliptic curves in polynomial time. A major challenge in implementing Shor’s algorithm is the
overhead of representing and performing arithmetic on binary elliptic curves using quantum circuits.
Multiplication of binary fields is one of the critical operations in the context of elliptic curve arithmetic,
and it is especially costly in the quantum setting. Our goal in this paper is to optimize quantum
multiplication in the binary field. In the past, efforts to optimize quantum multiplication have centred
on reducing the Toffoli gate count or qubits required. However, despite the fact that circuit depth
is an important metric for indicating the performance of a quantum circuit, previous studies have
lacked sufficient consideration for reducing circuit depth. Our approach to optimizing quantum
multiplication differs from previous work in that we aim at reducing the Toffoli depth and full depth.
To optimize quantum multiplication, we adopt the Karatsuba multiplication method which is based
on the divide-and-conquer approach. In summary, we present an optimized quantum multiplication
that has a Toffoli depth of one. Additionally, the full depth of the quantum circuit is also reduced
thanks to our Toffoli depth optimization strategy. To demonstrate the effectiveness of our proposed
method, we evaluate its performance using various metrics such as the qubit count, quantum gates,
and circuit depth, as well as the qubits-depth product. These metrics provide insight into the resource
requirements and complexity of the method. Our work achieves the lowest Toffoli depth, full depth,
and the best trade-off performance for quantum multiplication. Further, our multiplication is more
effective when not used in stand-alone cases. We show this effectiveness by using our multiplication
to the Itoh–Tsujii algorithm-based inversion of F(x8 + x4 + x3 + x + 1).

Keywords: binary field; quantum multiplication; Toffoli depth; quantum inversion

1. Introduction

Large-scale quantum computers in the near future are considered a major threat to the
cryptography community. Quantum computers using quantum algorithms are expected to
efficiently model and solve security problems that cryptographic algorithms are based on.
Prominent quantum algorithms that can be used for cryptanalysis are the Grover search
algorithm [1] and the Shor algorithm [2].

The Grover search algorithm is one of the leading quantum algorithms that reduces
the classical search complexity of O(n) to the square root of n (i.e.,

√
n). Grover’s search can

decrease the security of symmetric key ciphers by a factor of the square root. In response,
various symmetric key ciphers are being analysed under the Grover search algorithm [3–6].
It is worth noting that the quantum resources (elements that make up a quantum circuit
such as quantum gates, qubits, and circuit depth) for applying the Grover’s search to
AES [3,7–9] are being used as a standard for estimating post-quantum security strength by
NIST [10].

Sensors 2023, 23, 3156. https://doi.org/10.3390/s23063156 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063156
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5963-7127
https://orcid.org/0000-0002-9007-2280
https://orcid.org/0000-0003-0069-9061
https://doi.org/10.3390/s23063156
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063156?type=check_update&version=2


Sensors 2023, 23, 3156 2 of 14

In the cryptography community, it is considered that the threat of quantum computers
is greater towards asymmetric key cryptography. Quantum computers equipped with the
Shor algorithm are expected to solve the discrete logarithmic problems aand factorization
of elliptic curve cryptography (ECC) and Rivest–Shamir–Adleman (RSA). Thus, it can be
said that the Shor algorithm is the most powerful attack that can break the security of
asymmetric key cryptography. In such circumstances, for a robust security system [11,12],
analysis of potential quantum computer attacks on asymmetric key cryptography should
be considered.

In [13], Häner et al. studied the quantum cryptanalysis of RSA under the Shor algo-
rithm and presented a quantum circuit requiring 2n + 2 qubits when an n-bit key is used.
In another study, Gidney showed that applying the Shor algorithm [14] to RSA with an
n-bit key requires 2n + 1 qubits.

For quantum cryptanalysis of ECC, Roetteler et al. in Asiacrypt’17 [15] estimated the
quantum resources required to solve discrete logarithm problems on elliptic curves. As
a result, it was shown that ECC can be solved with fewer quantum resources than RSA.
Later, Häner et al. improved the work of [15] in PQCrypto’20 [16], reducing the qubit count
and circuit depth. Both studies [15,16] mainly optimized scalar multiplication for elliptic
curves to reduce the cost of quantum attacks, and both targeted prime curves.

In CHES’20 [17], Banegas et al. presented a quantum analysis of binary curves and
found that their method required fewer qubits and had a lower circuit depth than methods
for prime curves. In their study, Banegas et al. utilized the technique developed by Van
Hoof [18] to implement quantum multiplication in binary fields. Van Hoof’s quantum
multiplication method, which is based on the Karatsuba algorithm, has a space-efficient
implementation that reduces the qubit count and Toffoli gate count.

Optimizing binary field multiplication on a quantum computer is a crucial step to-
wards achieving high-performance quantum cryptanalysis, as demonstrated in previous
research. Most recent studies on quantum multiplication concentrate on reducing the use
of qubits or Toffoli gates, but consider the circuit depth less [18–22]. Previously, quantum
computers had a restricted qubit count, but contemporary quantum computers have grown
significantly in size and capability. Additionally, it is clear that upcoming quantum com-
puters will not be small, as indicated by IBM’s quantum computer development roadmap
(https://research.ibm.com/blog/ibm-quantum-roadmap, accessed on 1 January 2023).

Toffoli depth is a major metric in quantum computing for correcting errors, and full
depth determines the operating time of the circuit [23]. The full depth is a crucial factor in
the calculation of the cost of quantum attacks according to the National Institute of Stan-
dards and Technology’s (NIST) post-quantum security requirements (https://csrc.nist.gov/
CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-
dec-2016.pdf, accessed on 1 January 2023.) [10]. The cost of quantum attacks is determined
by the product of the gate count and the full depth, with the number of qubits not being
taken into account.

The aim of this paper is to optimize the multiplication of binary fields on a quantum
computer (particularly in terms of Toffoli depth and full depth). We propose a quantum
binary field multiplication that is optimized with a minimal Toffoli depth and has the
lowest full depth. However, the proposed quantum multiplication requires the use of
additional qubits. Therefore, to run our multiplication on an actual quantum computer,
a quantum computer that can use many qubits is required (i.e., a large-scale quantum
computer is needed). However, if we count the physical number of qubits rather than the
number of logical qubits that do not cause errors, the depth also affects the number of
qubits required for error correction.

In this trade-off, we evaluate our work using various metrics including the qubit count
(M), quantum gates, Toffoli depth (TD), and full depth (FD). We seek to minimize these
measures while still achieving good performance in quantum multiplication. As a result,
our method provides the best performance in terms of the trade-off metrics of the product

https://research.ibm.com/blog/ibm-quantum-roadmap
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
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of Toffoli depth and qubit count (i.e., TD · M), and the product of full depth and qubit
count (i.e., FD ·M).

Most quantum-related research involves simulating quantum circuits on classical
computers using quantum simulation tools, such as Qiskit [24], Q# [25], and ProjectQ [26].
These simulations can be performed at the logical level, so they do not take into account
errors that may occur in actual quantum computation. Although it can be simulated on the
physical level, the result of this paper focuses on the logical level. We utilize the quantum
simulation tool ProjectQ to simulate our proposed quantum circuits, and to analyse the
detailed quantum resources.

1.1. Our Contribution

This paper makes the following contributions:

1. Optimization of quantum binary field multiplication with the Karatsuba algorithm
(Sections 3.1 and 3.2). We have developed an optimized method for performing quan-
tum binary field multiplication using a quantum circuit with a Toffoli depth of one.
The Toffoli gates in this circuit operate in parallel, allowing all products to be generated
simultaneously. The full depth of quantum multiplication is primarily determined by
the depth of Toffoli gates. Our proposed method for quantum multiplication has a
Toffoli depth of one, which naturally reduces the full depth of the multiplication.

2. Efficient techniques for implementing quantum circuits. We present efficient imple-
mentation techniques, including methods for offsetting the overhead of increasing
qubits in quantum multiplication (Section 3.3), using quantum multiplication with a
T-depth of one (Section 3.4), and performing optimal modular reduction (Section 3.5).

3. Efficient implementation of quantum inversion built on the Itoh–Tsujii algorithm. By
using the proposed quantum multiplication and efficient techniques, we implement
quantum inversion built on the Itoh–Tsujii algorithm [27]. This demonstrates the
effectiveness of our multiplication when used in non-stand-alone cases.

4. Optimization of primitives for quantum cryptanalysis of elliptic curve cryptography.
Our work can be used to optimize the implementation of quantum arithmetic for
cryptanalysis of elliptic curves over binary fields. Quantum binary field multiplication
is a key component of the Shor algorithm to solve discrete logarithm problems on
binary elliptic curves. Our work demonstrates the optimal balance between Toffoli
depth and the number of qubits for this application.

1.2. Extended Version of WISA’22

The work presented in WISA’22 is revisited in this paper [28]. Efficient quantum
multiplication of binary fields was presented in [28]. In this paper, the proposed quantum
multiplication is analysed for larger (various) field sizes.

Further, this time we show the effectiveness of the proposed multiplication when not
used in stand-alone cases. We present an efficient quantum circuit for inversion using our
work in implementing the inner multiplications of Itoh–Tsujii-based inversion.

The source code (https://github.com/starj1023/Binary_mul, accessed on 1 February
2023.) for our work is open to the public.

2. Background

This section lays out the groundwork for understanding our work. The multiplica-
tion of binary fields, the Karatsuba algorithm adopted in our implementation, quantum
computing, and quantum gates for implementing quantum circuits are covered.

2.1. Multiplication of Binary Fields

Multiplication of F2n , with n-bit polynomials, performs modular reduction using an
irreducible polynomial N. The multiplication of f and g in F2n is described as follows.

h = f · g mod N (1)

https://github.com/starj1023/Binary_mul
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The generated product of f and g is subjected to modular reduction over n bits in
length, resulting in h, the product of f and g, becoming an element of F2n .

2.2. Karatsuba Algorithm

The Karatsuba algorithm [29] is well-known for its ability to simplify the process of
multiplication through the use of addition. Using the Karatsuba algorithm, the two input
polynomials f and g of n size (resulting in h = f · g) are divided into two halves of size
s = n/2 as follows:

f = f1xs + f0
g = g1xs + g0

(2)

After dividing the polynomials ( f and g) as described, the Karatsuba algorithm pro-
ceeds with the multiplication as follows:

f0 · g0 + {( f0 + f1) · (g0 + g1) + f0 · g0 + f1 · g1}xs + f1 · g1x2s (3)

By utilizing the Karatsuba algorithm, the complexity of multiplying polynomials is
reduced from O(n2) to O(nlog2 3) through the use of addition operations.

2.3. Quantum Computing

Quantum computers utilize the properties of superposition and entanglement of
qubits (quantum bits) to enable computing in a different dimension than classical comput-
ers. Quantum algorithms can efficiently model and solve problems that are difficult to
solve on classical computers. However, quantum computers can also compromise security
in symmetric key cryptography through Grover’s algorithm [1], and in public key cryptog-
raphy through Shor’s algorithm [2]. To run quantum algorithms on quantum computers,
classical operations need to be efficiently translated into the quantum domain. As a result,
research is being conducted to optimize arithmetic operations used in cryptography for
quantum computing [15–20,30].

2.4. Reversible Quantum Gates

Reversible quantum gates can compute a unique input from a given output by revers-
ing the previous quantum gates. By performing the reverse operation on the output of the
quantum gates in Figure 1, the original input can be recovered by reversing the previous
quantum gates. This section briefly explains how the CNOT and Toffoli gates can be used
to perform binary field multiplication, which involves XOR and AND operations.

x • x

y x⊕ y

x • x

y • y

z z⊕ (x · y)
Figure 1. Quantum gates: CNOT (left) and Toffoli (right) gates.

The left side of Figure 1 shows a quantum CNOT gate, which can take the place of the
classical XOR operation. In the CNOT gate, the value of the result qubit is controlled by
the state of the control qubit (CNOT(x, y) = (x, x⊕ y)). The right side of Figure 1 shows
a quantum Toffoli gate, which can take the place of the classical AND operation. In the
Toffoli gate, the value of the result qubit is controlled by the states of two control qubits
(Toffoli(x, y, z) = (x, y, z⊕ (x · y))).

The Toffoli gate has a high implementation cost due to the combination of quantum
gates required [31]. We use one of the decomposition methods in [31], 8 Clifford gates
+ 7 T gates, resulting in a full depth of eight and a T-depth of four for the Toffoli gate.
Figure 2 shows the decomposition of the Toffoli gate. Since this decomposition method has
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been frequently adopted in previous works, we also employ it to facilitate a comparison
of performances.

x T† T T† T x

y T† • • • • y

z H • T • T† H z⊕ (x · y)

Figure 2. Decomposition of the Toffoli gate.

3. Quantum Binary Field Multiplication

In quantum multiplication, a significant portion of the cost is incurred by using
Toffoli gates to compute products (i.e., AND operations). The Karatsuba algorithm reduces
the number of multiplication operations and is therefore a highly efficient technique in
quantum computers. That is, by reducing the number of AND operations (classical), we
can optimize the Toffoli-related metrics (quantum).

We propose a special form of quantum Karatsuba multiplication that reduces the
Toffoli gate count, Toffoli depth, and full depth, leading to more efficient quantum computa-
tion. By using this technique, we implement a quantum binary field multiplication that has
a Toffoli depth of one and can simultaneously perform all multiplication operations. Our
proposed quantum multiplication technique reduces the full depth of the quantum circuit
by reducing the Toffoli depth in multiplication, which plays a key role in determining the
full depth.

3.1. Parallel Quantum Multiplication Using the Karatsuba Algorithm

Denote the product of two polynomials f and g of size n as h (i.e., h = f · g). As shown
in Figure 3, using Schoolbook multiplication (which is a general method) to compute f · g
requires n2 Toffoli gates.
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f0 · g0 + {(f0 + f1) · (g0 + g1) + f0 · g0 + f1 · g1}xs + f1 · g1x
2s (3)

Using the Karatsuba algorithm, the multiplication complexity of O(n2) is
reduced to O(nlog2 3) by performing more addition operations.

3 Proposed Method

In this section, quantum multiplication using the Karatsuba algorithm with Tof-
foli depth one for any field size is described first. Then, quantum multiplication of
T -depth one is presented by applying the To↵oli gate of T -depth one introduced
in [2].

We apply the Karatsuba algorithm recursively, making all multiplication op-
erations independent. With this technique, we present a quantum multiplication
of To↵oli depth one that performs all multiplication operations simultaneously.
The proposed quantum multiplication also reduces the full depth, since the Tof-
foli depth in multiplication has an impact on counting the full depth.

3.1 Quantum Multiplication of To↵oli Depth One

...
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Fig. 1. Caption

Figure 3. Overview of the proposed method.

Our proposed method involves applying the Karatsuba algorithm once to reduce the
size of the multiplication, which we refer to as Level-1. In Level-1, the multiplication
is divided into three parts: f0 · g0, f1 · g1, and ( f0 + f1) · (g0 + g1). The size of each
multiplication is reduced to (n/2) and a total of 3 · (n/2)2 Toffoli gates are needed. This
result reduces the number of Toffoli gates from n2 to 3 · (n/2)2, but the three multiplications
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may not be performed simultaneously, meaning it may not be fully parallel. In the Level-1
layer shown in Figure 3, the multiplications f0 · g0 and f1 · g1 (the lower and upper parts
of the multiplication, respectively) are performed simultaneously, but the multiplication
( f0 + f1) · (g0 + g1) (the middle part of the multiplication) is carried out sequentially after
the previous multiplications are completed. The operands of the multiplication in the
middle part ( f0 + f1, g0 + g1) can be overwritten in f0, g0 or f1, g1 (i.e., f0 = f0 + f1,
g0 = g0 + g1) just as described in [18,20,21], but this can only occur after the multiplications
in the upper and lower parts are completed (i.e., sequential).

In contrast to the lower and upper parts of the multiplication, the middle part requires
a different approach. To begin the multiplications, we first allocate clean qubits (as shown
in the rectangle in the Level-1 layer of Figure 3). Then we independently prepare the
operands for the middle part of the multiplication, ( f0 + f1) and (g0 + g1) to the clean
qubits using CNOT gates. In order to prepare the middle part of the multiplication, n clean
qubits and 2n CNOT gates are needed. Specifically, 2/n clean qubits are used for f0 + f1
and 2/n clean qubits are used for g0 + g1. Then, we can perform the low, middle, and high
multiplications independently and simultaneously. This approach allows for a quantum
multiplication method with reduced Toffoli depth in the Level-1 layer. If all products f0 · g0,
f1 · g1, and ( f0 + f1) · (g0 + g1) are generated, we can use CNOT gates to complete the
Karatsuba multiplication by performing the remaining addition operations. However, we
use the Karatsuba algorithm in a recursive manner to optimize the Toffoli and full depths
(will be described in Section 3.2).

The quantum resources required for multiplication at each Karatsuba level are pre-
sented in Table 1. Actually, the Toffoli gate is typically decomposed (implemented) using a
mixture of various quantum gates. In this work, we use a frequently adopted method [31]
to decompose the Toffoli gate into 8 Clifford gates + 7 T gates, resulting in a full depth of
eight and a T-depth of four. However, for a high-level comparison, in Table 1, only the full
depth of the Toffoli gate is assumed to be eight without decomposing it. In the following
resource estimates, we fully decompose the Toffoli gates.

Table 1. Quantum resources required for multiplication at each Karatsuba level.

Field Size 2n #CNOT #Toffoli Toffoli Depth #Qubit Full Depth

Schoolbook · n2 3n− 2 4n− 1 8 · (3n− 2)
Karatsuba

Level-1 5n− 4 3 · (n/2)2 3n/2− 2 3 · (2n− 1) 8 · (3n/2− 2) + 5

Karatsuba
Level-2 (5n− 4) + 3 · (5n/2− 4) 32 · (n/22)2 3n/22 − 2 32 · (n− 1) 8 · (3n/22 − 2) + 10

Karatsuba
Level-3

(5n− 4) + 3 · (5n/2− 4)
+9 · (5n/4− 4) 33 · (n/23)2 3n/23 − 2 33 · (n/2− 1) 8 · (3n/23 − 2) + 15

Modular reduction is not included in the estimation presented in Table 1, and will be
further discussed in Section 3.5. This is because the complexity of modular reduction may
vary slightly depending on the specific irreducible polynomial of the field, but it does not
have a significant impact on the cost.

3.2. Optimizing Toffoli Depth with the Recursive Karatsuba Algorithm

In Level-2, the Karatsuba algorithm is applied individually to each of the three multi-
plications that were divided into smaller parts in the previous level (i.e., Level-1). There
is a dependency on the middle part of each of the multiplications (in Level-2), similar to
the dependency on the middle multiplication in Level-1. We allocate new 3× clean qubits
and use CNOT gates to prepare the middle parts again (shown as rectangles in the Level-2
layer of Figure 3) To prepare these middle parts, we need 3 · (n/2) clean qubits and 3n
CNOT gates. Through this process, the nine multiplications become totally independent
from one another and can be performed simultaneously. In Level-2, the Toffoli gate count
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and the Toffoli depth that were reduced in Level-1 are further reduced to 32 · (n/22)2 and
(3n/22 − 2), respectively.

By using this method, the Karatsuba algorithm is applied recursively until the multi-
plications are reduced to size one (i.e., 1× 1 multiplications), which allows all the depen-
dencies between multiplications to be eliminated. As a result, we can perform quantum
multiplication with a Toffoli depth of one by generating all the products in parallel. The
quantum multiplication circuit that is proposed ultimately achieves the best performance
with a Toffoli depth of one, even for full depth, resulting in high performance.

The required Karatsuba Level for multiplication with a Toffoli depth of one differs
based on the field size 2n. This can be calculated as Level-log2 n for a field size of 2n. For
example, the required Karatsuba Level is two for a field size of n = 4 and three for a field
size of n = 8. In Table 2, we compare the quantum resources needed for multiplication with
a Toffoli depth of one by field size. As the Karatsuba Level increases, there is a trade-off
among the number of Toffoli gates, depth, and number of qubits (refer to Table 1). From
Table 2, it can be seen that when the field size doubles, the qubit count triples. In contrast,
it is observed that the full depth does not increase much because the Toffoli depth is always
optimized at one.

Table 2. Quantum resources needed for multiplication with a Toffoli depth of one.

Field Size 2n Karatsuba Level #CNOT #1qCliff #T T-Depth ※ #Qubit Full Depth

n = 4 2 88 18 63 4 27 17
n = 8 3 300 54 189 4 81 23

n = 16 4 976 162 567 4 243 28
n = 127 7 29,298 4370 15,295 4 6555 48
n = 163 8 56,642 8774 30,709 4 13,161 52
n = 233 8 84,890 12,646 44,261 4 18,969 53
n = 283 9 134,370 20,546 71,911 4 30,819 56
n = 571 10 410,410 62,342 218,197 4 93,513 61

※: Toffoli depth one has a T-depth of four.

The proposed quantum multiplication provides the best performance at the highest
Karatsuba Level, but the implementation designer can adjust the Karatsuba Level based on
this trade-off as desired.

3.3. Reusing Qubits Through Reverse Operation

Our quantum multiplication method requires the allocation of new qubits for the mid-
dle parts each time the Karatsuba algorithm is applied, which incurs overhead. However,
these qubits can be reset using the inverse operation of the CNOT gates previously applied
to the middle parts.

The qubits are initialized after the Toffoli gates that generate the products have com-
pleted their operation. If all products are generated at the same time in the lowest layer,
we reset (clean) the ancilla qubits from the lower layer to the upper layer by applying the
reverse of the operations used to prepare the middle parts. In other words, to initialize the
ancilla qubits, one simply needs to perform all the CNOT gates applied to these qubits in
reverse. This initialization process causes the qubits allocated for the middle parts to be
reset to the zero state.

This qubit cleaning process, called initialization, can be utilized when the multipli-
cation is part of a larger computation (i.e., not a stand-alone multiplication). This means
that in later multiplications, the initialized qubits from the previous multiplication can be
reused instead of allocating new qubits for the middle parts. The initialized qubits can
also be utilized for other operations that require clean qubits, not just multiplication. The
qubit initialization method is particularly useful in cryptography because multiplication is
a fundamental operation. We also found that the reverse operation used for initialization
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does not add to the circuit depth, as it can be carried out while the multiplication is taking
place (e.g., during the process of combining products or performing modular reduction).
This technique allows us to effectively mitigate the overhead of qubits in our quantum
multiplication. In our multiplication, these ancilla qubits make up most of the total number
of qubits. However, thanks to the initialization technique that enables reusability, we can
significantly reduce the number of qubits by not allocating this many ancilla qubits for
the following multiplications. By reusing qubits in subsequent multiplications, we only
need 17, 43, 113, 2439, 4713, 6789, 10,839, and 32,313 qubits for n = 4, 8, 16, 127, 163, 233,
283, and 571, respectively, (compared to 27, 81, 243, 6555, 13,161, 18,969, 30,819, and 93,513
qubits without reuse). In Section 4, quantum inversion using this cleaning technique will
be described.

3.4. T-Depth One Quantum Multiplication

For the purpose of optimizing T-depth, we employ the quantum AND gate with a
T-depth one from [7] instead of the Toffoli gate. In Figure 4, the AND gate uses a single
ancilla qubit and has a T-depth one. After the AND gate is performed, the single ancilla
qubit is initialized to zero and can be reused in subsequent AND gates. However, this
reuse imposes a sequential operation of AND gates. We assign a new ancilla qubit for each
AND gate, allowing them to operate in parallel. As a result, a quantum multiplication with
T-depth of one is successfully implemented, with all AND gates operating in parallel.

|a〉 • T† • |a〉

|b〉 • T† • |b〉

|0〉 H • • T • • H S |a · b〉

|0〉 T |0〉

Figure 4. Quantum AND gate.

AND gates require additional qubits, but these qubits are initialized at the end. The
ancilla qubits that are used in AND gates can be reused in future multiplications or other
operations that require clean qubits. This technique is similar to the method described in
Section 3.3. The AND dagger gate (i.e., AND reverse gate) in Figure 5 is designed based on
measurements and the T gate is not used. The quantum resources required for quantum
multiplication of T-depth one using the AND gate are shown in Table 3.

Optimized Quantum Polynomial Multiplication with To↵oli Depth One 5

|ai • T † • |ai

|bi • T † • |bi

|0i H • • T • • H S |a · bi

|0i T |0i
(a) Quantum AND gate.

|ai S • • |ai

|bi S S† |bi

|0i H X |0i
(b) Quantum AND† gate.

Fig. 2: Quantum AND gate of T -depth one introduced in [5]
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Table 3. Resources required for quantum multiplication at T-depth one using AND gates.

Field Size 2n Karatsuba Level #CNOT #1qCliff #T T-Depth #Qubit Full Depth

n = 4 2 106 27 36 1 36 16
n = 8 3 354 81 108 1 108 22

n = 16 4 1138 243 324 1 324 27
n = 127 7 33,668 6555 8740 1 8740 47
n = 163 8 65,416 13,161 17,548 1 17,548 51
n = 233 8 97,536 18,969 25,292 1 25,292 52
n = 283 9 154,916 30,819 41,092 1 41,092 55
n = 571 10 472,752 93,513 124,684 1 124,684 60

3.5. Quantum Modular Reduction

Quantum multiplication can be customized to fit the modular reduction based on the
irreducible polynomial of the field (actually, liner layer optimization). In this Section, we
explore the customization of modular reduction for F28 /(x8 + x4 + x3 + x + 1) (field of
S-box in AES) and the quantum resources required.

In a previous study [20], the authors eliminated the step of combining products and
instead calculated the results using linear combinations of products following modular
reduction. This means that the steps of combining and modular reduction are merged
into a single step, and the coefficients are calculated. For the field F28 /(x8 + x4 + x3 +
x + 1), merging the steps of combining and modular reduction into a single step and
calculating the linear combinations of products requires 70 CNOT gates and a full depth
of 27. However, if the combining step and modular reduction are kept separate and the
coefficients are calculated separately, 85 CNOT gates are used and the full depth is 17 for
F28 /(x8 + x4 + x3 + x + 1).

In our implementation, we choose to separate the combining step and modular reduc-
tion in order to prioritize reducing the depth over using more CNOT gates. This approach
is more general and allows for greater flexibility in optimization. Efficient CNOT opera-
tions on linear combinations of combining are performed first (62 CNOT gates) and then
efficient CNOT operations on linear combinations of modular reduction are completed
(23 CNOT gates).

After completing the combining step in our quantum Karatsuba multiplication, we
obtain 2n − 1 products of c0, c1, . . . , c2n−2. Furthermore, we customize the quantum
implementation of modular reduction under the irreducible polynomial x8 + x4 + x3 +
x + 1). The coefficients after performing modular reduction of F28 /(x8 + x4 + x3 + x + 1)
are shown in Table 4. It is efficient to generate the elements with the same colours in
Table 4 only once, and pass them (using only one CNOT gate) on as coefficients when
preparing xn. For example, to prepare the red-coloured c8 = c8 + c9 + c14 in qubit c8, we
perform CNOT(c9, c8) and CNOT(c14, c8). Then, we can use qubit c8 as a coefficient for x4

and x1 by performing CNOT(c8, c4) and CNOT(c8, c1). The naïve implementation needs 30
CNOT gates, while the customized version only requires 23 and has a reduced depth. The
quantum resources needed for the multiplication in F28 /(x8 + x4 + x3 + x + 1), including
the modular reduction are reported in Table 5.

Actually, modular reduction corresponds to linear operations. Furthermore, indepen-
dent of this work, there are several papers dedicated to optimizing (heuristic-based) linear
operations. These optimization techniques can be applied to modular reduction. However,
to the best of our knowledge, there is no work to optimize large-size linear layers. Current
linear operation optimization techniques cannot be applied to modular reduction when the
field size is large.
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Table 4. Results of modular reduction of F28 /(x8 + x4 + x3 + x + 1).

xn Coefficient

n = 0 c0 + c8 + c12 + c13
n = 1 c1 + c8 + c9 + c12 + c14
n = 2 c2 + c9 + c10 + c13
n = 3 c3 + c8 + c10 + c11 + c12 + c12 + c13 + c14
n = 4 c4 + c8 + c9 + c11 + c14
n = 5 c5 + c9 + c10 + c12
n = 6 c6 + c10 + c11 + c13
n = 7 c7 + c11 + c12 + c14

Table 5. Resources required for quantum multiplication of F28 /(x8 + x4 + x3 + x + 1).

Field Size 2n Karatsuba Level #CNOT #1qCliff #T T-Depth #Qubit Full Depth

n = 8 ? 3 323 54 189 4 81 32
n = 8 ♦ 3 377 81 108 1 108 31

?: Using the Toffoli gate decomposition in [31]. ♦: Using AND gate.

4. Efficient Implementation of Quantum Binary Field Inversion

This section shows how effective the proposed quantum multiplication can be in im-
plementing quantum inversion. As explained in Section 3.3, the ancilla qubits used within
our quantum multiplication can be recycled, which is effective when used to implement
quantum inversion. The proposed quantum inversion quantum circuit is implemented built
on the Itoh–Tsujii algorithm [27]. So, the inverse of element a in F28 /(x8 + x4 + x3 + x + 1)
is computed as: a−1 = a254 = ((a · a2) · (a · a2)4 · (a · a2)16 · a64)2. Multiple multiplications
are required here, so the ancilla qubits used within the first multiplication are recycled until
the last multiplication. In other words, the overhead of requiring many ancilla qubits does
not apply except for the first multiplication. Thanks to this, the overhead for ancilla qubits
is reduced while maintaining a low Toffoli depth and full depth.

For Squaring, modular reduction can be represented as a linear matrix and then imple-
mented using LUP decomposition. Therefore, Squaring is implemented in place using only
CNOT gates as described in Algorithm 1 (x7 represents x7). Squaring is not a major focus
for optimizing quantum inversion due to the very few quantum resources required.

Algorithm 1 Quantum circuit for Squaring of F28 /(x8 + x4 + x3 + x + 1).

Input: a(a7, a6, a5, a4, a3, a2, a1, a0)
Output: a2

1: CNOT(a4, a0), CNOT(a6, a0), CNOT(a5, a1)
2: CNOT(a4, a2), CNOT(a7, a2), CNOT(a5, a3)
3: CNOT(a6, a4), CNOT(a7, a4), CNOT(a6, a5)
4: CNOT(a6, a7), CNOT(a4, a6), CNOT(a5, a6)
5: return a(a7, a3, a5, a2, a6, a1, a4, a0)

Algorithm 2 describes a quantum circuit for Inversion of F28 /(x8 + x4 + x3 + x+ 1). The
notation CNOT8 means the operation of CNOT gates for 8-qubit arrays. KaratsubaMulL3
is a Level-3 version of the proposed multiplication. Note that the last KaratsubaMulL3
of Algorithm 2 (i.e., line 13) does not clean the ancill qubits. In summary, Inversion of
F28 /(x8 + x4 + x3 + x + 1) is implemented by performing KaratusbaMulL3 4 times and
Squaring 11 times.
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Algorithm 2 Quantum circuit for Inversion of F28 /(x8 + x4 + x3 + x + 1).

Input: a
Output: a−1 (a254)
//Copy x to a1 using 8 CNOT gates

1: a← 8-qubit allocation
2: CNOT8(a, a1)

//(a · a2) · a64

3: a1← Squaring(a1)
4: a2← KaratsubaMulL3(a, a1)
5: for i = 0 to 4 do
6: a1← Squaring(a1)
7: a3← KaratsubaMulL3(a2, a1)

//(a · a2) · (a · a2)4 · a64

8: for i = 0 to 1 do
9: a2← Squaring(a2)

10: a4← KaratsubaMulL3(a3, a2)

//(a · a2) · (a · a2)4 · (a · a2)16 · a64

11: for i = 0 to 1 do
12: a2← Squaring(a2)
13: a5← KaratsubaMulL3(a4, a2) //Omit cleaning of ancill qubits

//((a · a2) · (a · a2)4 · (a · a2)16 · a64)2

14: a5← Squaring(a5)
15: return a5

Table 6 reports the quantum resources needed for the quantum inversion that has been
proposed. Compared to stand-alone multiplication (see Table 5), the number of qubits does
not increase as expected, even though four multiplications are performed. Since the Toffoli
depth of each of the multiplications is one, the Toffoli depth of the inversion is only four.

Table 6. Quantum resources needed for inversion of F28 /(x8 + x4 + x3 + x + 1).

Field Size 2n Karatsuba Level #CNOT #1qCliff #T T-Depth #Qubit Full Depth

n = 8 ? 3 1720 216 756 16 162 182
n = 8 ♦ 3 1936 324 432 4 189 174

?: Using the Toffoli gate decomposition in [31]. ♦: Using AND gate.

5. Performance

In this section, we summarize the previous research on quantum multiplication and
assess the effectiveness of the proposed implementation method.

In a paper by Banegas et al. ([19]), quantum binary field multiplication was introduced
as one of the techniques for solving discrete logarithm problems for binary elliptic curves. In
this case, quantum multiplication of F2n was implemented using n2 Toffoli gates, following
the Schoolbook method. To optimize the number of qubits, the authors prioritized the
upper products cn, cn+1, . . . , c2n−2 (reduction part) during the calculation of h = f · g. The
result of modular reduction of the upper products is then stored in an n-qubit register
representing h. This method allows for the implementation of quantum multiplication
using 3n qubits for f , g, and h. This method employs a minimal number of qubits, but relies
on a maximum number of Toffoli gates (n2) and has a high Toffoli depth due to its reliance
on general Schoolbook multiplication. Table 7 reports the quantum resources needed for the
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multiplication of F28 /(x8 + x4 + x3 + x + 1) using the Schoolbook multiplication method
described in [19].

Table 7. Evaluation of quantum resources needed for multiplication of F28 /(x8 + x4 + x3 + x + 1).

Field Size 2n Source #CNOT #1qCliff #T Toffoli Depth #Qubit Full Depth TD · M FD · M

n = 8

This work (Section 3.5) 323 54 189 1 81 32 81 2592
[19] 405 30 448 28 24 216 672 5184
[20] 270 54 189 8 43 88 344 3784
[18] 382 54 189 N/A 24 N/A N/A N/A

TD = Toffoli depth, M = number of qubits, FD = full depth, N/A = not reported.

Kepley et al. in [20] introduced a method for quantum multiplication using the
Karatsuba algorithm, which is known to classically reduce the multiplication complexity.
The Karatsuba algorithm, which uses the divide-and-conquer method to reduce the number
of multiplication operations, was applied to quantum multiplication in [20]. This resulted
in a method that uses fewer Toffoli gates for quantum multiplication. Table 7 reports the
quantum resources needed for the multiplication of F28 /(x8 + x4 + x3 + x + 1) using the
Karatsuba multiplication method described in [20].

Van Hoof in [18] introduced another method for quantum multiplication that uses
the Karatsuba algorithm. The method described in [18] used fewer qubits compared to
the one presented in [20]. In [20], extra qubits are needed to store the intermediate results
of the Karatsuba algorithm. However, the work in [18] employs the LUP decomposition
to avoid the need for additional qubits, resulting in a quantum multiplication method
that uses the same qubit count as the Schoolbook method (i.e., 3n qubits). In the work
of Van Hoof in [18], the number of gates and qubits used in their implementation of the
Karatsuba algorithm for quantum multiplication is reported, but the full depth is not given
(only reported at the NCT level: NOT, CNOT, Toffoli). The works of [20] and [18] both
utilize the Karatsuba algorithm for quantum multiplication, but the latter uses fewer qubits.
However, it is assumed that the full depth of the implementation in [18] is higher than
that in [20]. This is due to the use of gates in a reduced space hindering parallelism and
increasing the depth. According to the estimates in the reference [18], the depth of the field
F28 /(x8 + x4 + x3 + x + 1) is 139 at the NCT level, and this depth becomes even greater
when the full depth is considered. In Banegas et al.’s work [17], a quantum circuit (Shor’s
algorithm) for the binary ECC is constructed using Van Hoof’s quantum multiplication
technique.

A comparison of the quantum resources needed for the multiplication of the field
F28 /(x8 + x4 + x3 + x + 1) can be found in Table 7. In [18], no exact full depth is given, but
it is noted that the NCT depth reported in [18] is greater than the full depth reported in [20].

Recently, we have come across a new approach for space-efficient quantum binary
field multiplication [30]. The authors of [30] show that the Toffoli gate count can be further
reduced while maintaining the qubit count to a minimum (but the circuit depth is high).
The results from [30] are not included in our comparison (i.e., Table 7) because the fields
considered and the resource metrics used are different.

Our quantum multiplication method has been optimized to have a Toffoli depth of
one for any field size. In quantum multiplication, the Toffoli depth significantly affects the
full depth count. Therefore, thanks to the optimized Toffoli depth, our work attains the
lowest full depth.

Even though quantum computers in the NISQ era are not necessarily small, they
still need quantum error correction. When it comes to error correction, the Toffoli depth
metric is likely to be the most critical. However, it is important to consider the trade-off
among qubits and depth because the qubit count is still a significant factor. Our quantum
multiplication technique requires more qubits on average, but it offers the best compromise
between Toffoli depth and the qubit count. This metric (TD ·M), where TD is Toffoli depth
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and M is the qubit count, represents the balance for quantum circuits and is used in [3].
Even on another metric representing the trade-off performance, FD ·M (FD is full depth),
our quantum multiplication achieves the highest performance.

As mentioned in Section 3.3, the increased use of qubits can be compensated for if the
multiplication is not a stand-alone multiplication. We have confirmed the effectiveness of
the proposed multiplication in quantum inversion based on the Itoh–Tsujii algorithm (see
Section 4). Not limited to just inversion, the proposed multiplication can be utilized in a
variety of cases where multiplication is used internally in cryptographic operations.

6. Conclusions

This paper presents an optimized quantum binary field multiplication technique,
which is a key component for quantum cryptanalysis of ECC. Further, this technique can be
used for the quantum cryptanalysis of ciphers requiring the multiplication of binary fields.

The aim of our work is the optimization of quantum multiplication to achieve a
Toffoli depth of one for any field size. In addition, we present a reverse operation to
offset the overhead of ancilla qubits, an optimization with T-depth one, and an efficient
implementation of modular reduction.

For performance evaluation, our work is compared to previous implementations on
various metrics. Furthermore, our work achieves the lowest full depth and provides the
best trade-off performance.

Future work is to find another optimization for quantum cryptanalysis building blocks
of ECC. As the post-quantum era approaches, the cryptographic community is interested
in ways to optimize quantum cryptanalysis. We will note the direction of optimization that
should be pursued in quantum implementations.
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