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Abstract: The smooth movement of hand/surgical instruments is considered an indicator of skilled, 

coordinated surgical performance. Jerky surgical instrument movements or hand tremors can cause 

unwanted damages to the surgical site. Different methods have been used in previous studies for 

assessing motion smoothness, causing conflicting results regarding the comparison among surgical 

skill levels. We recruited four attending surgeons, five surgical residents, and nine novices. The 

participants conducted three simulated laparoscopic tasks, including peg transfer, bimanual peg 

transfer, and rubber band translocation. Tooltip motion smoothness was computed using the mean 

tooltip motion jerk, logarithmic dimensionless tooltip motion jerk, and 95% tooltip motion fre-

quency (originally proposed in this study) to evaluate their capability of surgical skill level differ-

entiation. The results revealed that logarithmic dimensionless motion jerk and 95% motion fre-

quency were capable of distinguishing skill levels, indicated by smoother tooltip movements ob-

served in high compared to low skill levels. Contrarily, mean motion jerk was not able to distinguish 

the skill levels. Additionally, 95% motion frequency was less affected by the measurement noise 

since it did not require the calculation of motion jerk, and 95% motion frequency and logarithmic 

dimensionless motion jerk yielded a better motion smoothness assessment outcome in distinguish-

ing skill levels than mean motion jerk. 

Keywords: movement smoothness; motion jerk; surgical skill assessment; motion tracking;  

minimally invasive surgery 

 

1. Introduction 

Surgical complications threaten patients’ safety and impose significant costs on the 

healthcare system. It was reported that the frequency rate of surgical complications is 8–

12% worldwide [1]. In the United States alone, surgical complications resulted in 32,600 

deaths, 2.4 million extra days in hospitals, and USD 9.3B of costs in a year [2]. Therefore, 

it is essential to ensure that surgeons and surgical residents acquire sufficient surgical 

skills prior to performing surgeries in operating rooms because unskilled surgical perfor-

mance is associated with increased surgical complications [3]. Differing from the assess-

ment of medical knowledge via written/oral examinations, the assessment of technical 

hands-on surgical skills can be more challenging [4]. 

Currently, the assessment of technical surgical skills is often carried out by senior 

surgeons using checklists such as OSATS (Objective Structured Assessment of Technical 

Skills) [5] for open surgeries, GOALS (Global Operative Assessment of Laparoscopic 

Skills) [6] for laparoscopic surgeries, and GEARS (Global Evaluative Assessment of Ro-

botic Skills) [7] for robotic surgeries. Specifically, senior surgeons observe the perfor-

mance of surgical residents/junior surgeons during operations or post-operatively by 
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watching recorded videos. However, this approach is subjective, bias-prone, and labour-

intensive.  

To tackle the shortcomings associated with surgical skill assessments using check-

lists, motion analysis of surgical instruments/hands has been implemented to assess sur-

gical skill levels quantitatively and objectively. The motion data recorded from surgical 

instruments and hands can characterize skill-related factors such as depth perception and 

bimanual dexterity, which have been included in checklists [6]. Various motion tracking 

approaches, such as electromagnetic motion tracking [8,9], image processing [10,11], and 

video recordings [12,13], have been implemented to assess the motion of surgical instru-

ments/hands.  

While interpreting the motion data of surgical instruments/hands, motion smooth-

ness is one of the metrics that has been used to classify surgical skill levels. It was asserted 

that smooth movements can indicate a skilled performance [14,15]. Although surgical in-

strument path length and task duration can reveal significant differences among surgical 

skill levels [10,12,16], they cannot reveal all the aspects of surgical expertise. In real-world 

surgical tasks, surgical trainees may finish the tasks with a relatively low path length and 

task duration, but they may commit detrimental mistakes due to the jerky movements of 

surgical instruments or hand tremors. Jerky movements or hand tremors can affect surgi-

cal outcomes and can cause damage to the delicate tissues of a surgical site, especially in 

delicate surgical procedures such as microsurgery [17–19]. Hence, elements such as re-

spect for tissue and instrument handling, which are related to motion smoothness, are 

included in the surgical skill assessment checklists, e.g., OSATS [5] and GOALS [6]. Most 

expert surgeons move their hands and surgical instruments smoothly without sudden 

changes in movement acceleration, whereas novice surgeons are not able to regulate their 

hand movements due to insufficient movement control. Therefore, the assessment of mo-

tion smoothness is a feasible way to distinguish between expert and novice surgeons. Var-

ious metrics were used for motion smoothness assessment [10,16,20–24], which caused 

some extent of inconsistency in the reported results.  

Chmarra et al. [16] reported the time-integrated squared motion jerk of surgical in-

struments for simulated laparoscopic tasks and showed that gynecologists and gyneco-

logic residents moved surgical instruments more smoothly than medical interns. Never-

theless, this finding was only observed from the dominant hand but not from the non-

dominant hand. Using the mean motion jerk of surgical instruments, Davids et al. [20] 

found that expert surgeons had lower mean motion jerk than novice surgeons during a 

neurosurgery dissection task. However, Maithel et al. [21] did not report significant dif-

ferences between junior and senior residents using the same metric (mean motion jerk) to 

calculate motion smoothness. They implemented the mean motion jerk of surgical instru-

ments during a triangular item transfer task in a simulated laparoscopic surgery setting. 

Sanchez-Margallo et al. [22] used the mean motion jerk of surgical instruments to evaluate 

the instrument motion smoothness between intermediate and expert surgeons in simu-

lated laparoscopic tasks such as synthetic fabric cutting, organic tissue dissection, and or-

ganic tissue suturing tasks. They found that the expert surgeons had significantly lower 

mean instrument motion jerk values of the dominant hand compared to intermediate sur-

geons in the synthetic fabric cutting task. Mansoor et al. [23] found that expert surgeons 

compared to novice surgeons had a higher mean motion jerk of the instrument held in the 

left hand during suture and tie along with tube ligation tasks, whereas novice surgeons 

had higher mean motion jerk of both instruments in a precision cutting task using a lapa-

roscopic simulator.  

Dimensionless motion jerk, instead of motion jerk, has been used in other studies as 

a metric to analyse instrument motion smoothness. Using this metric, Ghasemloonia et al. 

[24] revealed significant differences between surgeons–surgical residents and gamers–en-

gineers’ groups in terms of surgical instrument motion smoothness during simulated 

tasks, i.e., peg-in-hole tasks. They stated that surgeons–surgical residents had smoother 

instrument movements than gamers–engineers. However, when Oropesa et al. [10] used 
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this metric, they could not find that motion smoothness significantly differed across ex-

pert surgeons, surgical residents, and novices during a peg transfer task in a simulated 

laparoscopic setting. This may have resulted from the formula used by them as they used 

the magnitude of the position vector, which is discussed in the discussion section in detail.  

We believe that the conflicting results in previous studies regarding motion smooth-

ness assessment among surgical skill levels were due to the different metrics used for cal-

culating motion smoothness. Hence, we aimed to implement several motion smoothness 

metrics in our study and evaluate their outcomes for surgical skill assessment. Particu-

larly, we introduced a novel metric called 95% frequency of surgical tooltip motion. Pre-

vious metrics calculating motion smoothness in the time domain rely on motion jerk cal-

culation, which is inherently affected by differentiation noise. Our method reported mo-

tion smoothness in the frequency domain, which is more robust to the data noise. The 

metrics implemented in the present study were: (i) mean motion jerk of surgical tooltips, 

(ii) logarithmic dimensionless motion jerk of surgical tooltips, and (iii) 95% frequency of 

surgical tooltips motion. We hypothesized that higher surgical skill levels, such as expert 

surgeons, have higher motion smoothness compared to lower surgical skill levels, such as 

novices.  

2. Materials and Methods 

2.1. Research Environment 

A control laboratory study was conducted in the Surgical Simulation Research Lab 

of the University of Alberta. We used a laparoscopic surgical tower (Stryker Corporation, 

Kalamazoo, MI, USA) along with a laparoscope (Stryker Corporation, Kalamazoo, MI, 

USA) to capture the simulated surgical site view (Figure 1a). We placed a surgical task 

board inside a box (30.5 cm × 30.5 cm × 21.5 cm) to simulate a laparoscopic surgical setting 

(Figure 1a).  

 

Figure 1. (a) Simulated laparoscopic surgical setting, including a box, surgical graspers, a laparo-

scope, and a Stryker laparoscopic surgery setup, and (b) a surgical grasper with markers placed on 

its handle. 
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2.2. Participants 

Four attending general surgeons as the expert group (1177 ± 355 minimally invasive 

surgery cases), five surgical residents as the intermediate group (26 ± 13 minimally inva-

sive surgery cases), and nine participants without minimally invasive surgery cases as the 

novice group took part in the study. Informed consent was obtained from each participant 

before entering the study. The study protocol was approved by the Research Ethics Re-

view Board of the University of Alberta (Study ID: Pro00114163).  

2.3. Tasks  

Prior to data collection, the author (FA) demonstrated the tasks to participants, and 

they were asked to practise each task once to get acquainted (self-assessed) with the tasks. 

We included three tasks in this study: 

(1) Peg transfer task: The participants grasped a peg (1.6 cm × 1.4 cm × 1.6 cm) from a 

pin on the task board inside a box (Figure 1a) using the laparoscopic grasper (Ethicon 

Endo-Surgery, Cincinnati, OH, USA) held in the non-dominant hand. After that, they 

delivered the peg to the grasper held in the dominant hand, moved it to the target (a 

pin 10 cm away from the initial pin), and dropped it there. Then, the same procedure 

was conducted for the second peg. Once the two pegs were placed on the dominant 

hand’s side, the participants conducted the reverse procedure in order to transfer the 

pegs back to the original position. The peg transfer task is included in the Fundamen-

tals of Laparoscopic Surgery (FLS) curriculum [25].  

(2) Bimanual peg transfer task: Using both surgical graspers held in the dominant and 

non-dominant hands, the participants grasped the two pegs simultaneously from the 

non-dominant hand’s side, moved them to the targets (pins 10 cm away from the 

initial pins’ position), and dropped them there. Afterwards, participants grasped the 

pegs from the dominant hand’s side and moved them back to the initial positions. 

This task required a high level of bimanual coordination. 

(3) Rubber band translocation task: A rubber band was placed around four pins on the 

task board, and participants grasped the rubber band with two laparoscopic graspers, 

translocated the rubber band to the distal pins (5.5 cm away from the initial pins), 

released the rubber band, re-grasped it, and moved it back to the original position. 

This task was included as it had tool–tissue interaction that could affect surgical per-

formance. This task also required a high level of bimanual coordination. 

2.4. Motion Tracking of Surgical Tooltip 

To acquire the position data of surgical instruments, we used the OptiTrack Flex 13 

(NaturalPoint, Inc., Corvallis, OR, USA) motion capture system with a sampling fre-

quency of 120 Hz, accuracy and precision of 0.2 mm, based on the manufacturer’s pro-

vided information and our preliminary observations. Afterwards, the high-frequency 

noise in the recorded position data was removed by low-pass filtering the position data 

using a zero-lag fourth-order Butterworth filter with a cut-off frequency of 5 Hz. 

The surgical tooltips were placed inside the training box, not visible to motion cap-

ture cameras (Figure 1a). We could not place markers on them to track their position. 

Therefore, we placed three markers on the front side (Figure 1b) and an additional marker 

on the back side of the tool handles. Moreover, prior to actual data collection, the config-

uration of the motion capture system was adjusted to minimize marker occlusions. Plac-

ing an additional marker and adjusting the motion capture configuration ensured that at 

least three markers were visible during the actual trials. Hence, we were able to compute 

the relative position of the surgical tooltips with respect to the tool handle markers. Com-

pared to other motion capture approaches, our proposed approach has the potential to be 

implemented in real-world surgeries since it is not sensitive to laparoscope movements 

and light changes, which frequently take place in real-world surgeries. In comparison, 

other methods, such as image processing algorithms and video recordings used for 
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computing surgical tooltip position, are often interrupted by laparoscope movements and 

light changes. Electromagnetic motion tracking systems are affected by interference with 

other metallic instruments, such as laparoscopes, which is critical in any laparoscopic sur-

gery.  

2.5. Motion Smoothness Derivation Algorithms 

Having derived the right and left tooltips’ positions, we were able to derive the 

tooltip motion smoothness metrics (Table 1). Three tooltip motion smoothness algorithms 

were used in this study:  

(1) Mean tooltip motion jerk (J) was defined as the mean value of the magnitude of the 

tooltip motion jerk (the third time derivative of the tooltip position). 

(2) Logarithmic dimensionless tooltip motion jerk (DJ) was derived from tooltip motion 

jerk converted into a dimensionless metric via normalizing by tooltip path length (PL) 

and task duration (T). The term ∫ |
𝑑3𝑟

𝑑𝑡3|
2

𝑇

𝑡=0
𝑑𝑡 in Table 1 has a dimension of 𝑃𝐿2. 𝑇−5; 

hence, it is normalized using 
𝑇5

𝑃𝐿2. This normalization is in accordance with [10,14,24]. 

Since dimensionless motion jerk values had different orders of magnitude across the 

skill levels, logarithmic values were used to report the results. To derive this metric, 

we required the tooltip path length, computed by integrating the tooltip velocity 

magnitude with respect to time.  

(3) The 95% tooltip motion frequency (f95%) was calculated in the frequency domain, as 

opposed to the first two metrics above that were calculated in the time domain. To 

calculate f95%, we converted the tooltip position data into the frequency domain using 

the power spectral density of the tooltip position. The power spectral density of the 

tooltip position was calculated by the pwelch function (10 s Hamming windows and 

50% overlap) of MATLAB 2020, implementing Welch’s method. Then, we identified 

the frequency below which contained 95% of the total power of the tooltip position 

(Figure 2). We intended not to include the high-frequency and low-amplitude con-

tent of the tooltip position signal in the motion smoothness metric calculation, which 

resulted from the measurement noise. Therefore, we considered 95% of the total 

power of the tooltip position to derive the motion smoothness metric, neglecting the 

area under the power spectral density generated from the measurement noise (5%). 

 

Figure 2. The power spectral density of a representative tooltip position signal. f95% was calculated 

as the frequency below which contains 95% of the total power of the tooltip position signal, indi-

cated by the red dashed line. The red-shaded area accounts for 95% of the total power of the tooltip 

position signal. 
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Table 1. Tooltip motion smoothness metrics for surgical skill assessment and their formulas. The 

tooltip position of the surgical instruments is denoted by 𝑟. 𝑃𝐿 and 𝑇 represent tooltip path length 

and task duration, respectively. 

Motion Smoothness Metric Formula 

Mean tooltip motion jerk  𝐽 =  
1

𝑇
 ∫ |

𝑑3𝑟

𝑑𝑡3
| 𝑑𝑡

𝑇

𝑡=0

 

Logarithmic dimensionless 

tooltip motion jerk  
𝐷𝐽 = 𝑙𝑛 (

𝑇5

𝑃𝐿2
∫ |

𝑑3𝑟

𝑑𝑡3
|

2

𝑑𝑡
𝑇

𝑡=0

) 

95% tooltip motion frequency  
𝑓95% = The frequency below which contains 95% of the 

total power of the tooltip position signal. 

𝑇 =
𝑛

𝑓𝑠
 , 𝑛:  number of motion tracking samples, 𝑓𝑠 : motion tracking sampling frequency, 𝑃𝐿 =

∫ |
𝑑𝑟

𝑑𝑡
| 𝑑𝑡

𝑇

𝑡=0
. 

2.6. Statistical Analysis 

A Shapiro–Wilk test indicated that the motion smoothness metrics were not normally 

distributed (p < 0.05). Therefore, we used the non-parametric test of Kruskal–Wallis to 

investigate the significant differences in tooltip motion smoothness among the three sur-

gical skill levels. The significant differences between each pair of the two surgical skill 

levels were perused using the Mann–Whitney U test. The significance level was chosen at 

p < 0.05, and the statistical analysis was conducted via SPSS v. 26 (SPSS Inc., Chicago, IL, 

USA). The p-values associated with the Kruskal–Wallis and Mann–Whitney U tests are 

shown in Table 2. 

Table 2. Tooltip motion smoothness, tooltip path length, and task duration comparison among the 

three surgical skill levels. p-values associated with the three motion smoothness metrics, path 

length, and task duration in the three tasks for the instruments held in the dominant and non-dom-

inant hands are presented in the table. p-values below the significance level (0.05) are shown in bold 

font and (*). 

Metric Task The Instrument Held in the Dominant Hand 
The Instrument Held in the Non-Domi-

nant Hand 

  All N-E N-I I-E All N-E N-I I-E 

Mean tooltip 

motion jerk 

(J) 

Peg transfer 0.580 0.825 0.438 0.413 0.043 * 0.003 * 0.438 0.556 

Bimanual peg transfer 0.736 0.825 0.518 0.730 0.970 0.940 0.797 1.000 

Rubber band  

translocation 
0.698 0.604 0.518 0.730 0.114 0.050 0.438 0.286 

Logarithmic di-

mensionless 

tooltip motion 

jerk (DJ) 

Peg transfer 0.002 * 0.003 * 0.019 * 0.016 * 0.002 * 0.003 * 0.019 * 0.016 * 

Bimanual peg transfer 0.001 * 0.003 * 0.001 * 0.016 * 0.001 * 0.003 * 0.001 * 0.032 * 

Rubber band  

translocation 
0.006 * 0.003 * 0.060 0.063 0.011 * 0.003 * 0.147 0.111 

95% tooltip 

motion  

frequency (f95%) 

Peg transfer 0.020 * 0.020 * 0.029 * 0.905 0.004 * 0.003 * 0.007 * 0.730 

Bimanual peg transfer 0.023 * 0.011 * 0.083 0.413 0.024 * 0.020 * 0.083 0.190 

Rubber band  

translocation 
0.024 * 0.011 * 0.060 0.905 0.004 * 0.003 * 0.007 * 0.730 

Tooltip path 

length (PL) 

Peg transfer 0.003 * <0.001 * 0.240 0.008 * 0.005 * 0.002 * 0.083 0.056 

Bimanual peg transfer 0.002 * <0.001 * 0.012 * 0.095 <0.001 * <0.001 * <0.001 * 0.095 

Rubber band  

translocation 
0.007 * <0.001 * 0.112 0.222 0.004 * <0.001 * 0.042 * 0.222 

Task duration 

(T) 

Peg transfer All: 0.001 * N-E: 0.001 * N-I: 0.007 *  I-E: 0.016 * 

Bimanual peg transfer All: 0.001 * N-E: 0.001 * N-I: 0.001 * I-E: 0.016 * 

Rubber band  

translocation 
All: 0.004 * N-E: 0.001 * N-I: 0.112 I-E: 0.056 
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3. Results 

3.1. Mean Tooltip Motion Jerk 

Mean tooltip motion jerk (J) did not discriminate among the three surgical skill levels 

in terms of tooltip motion smoothness except for the instrument held in the non-dominant 

hand during the peg transfer task (Figure 3a,b). Surprisingly, studying pairwise compar-

isons, J represented higher values for experts compared to novices in the peg transfer task 

and for the instrument in the non-dominant hand. In other words, this indicated that ex-

perts compared to novices had jerkier tooltip movements as opposed to our hypothesis 

that experts perform smoother tooltip movements. 

 

Figure 3. Tooltip motion smoothness metrics in the three tasks: Peg transfer, Bimanual peg transfer, 

and Rubber band translocation. (a) Mean tooltip motion jerk (J) of the instrument held in the domi-

nant hand, (b) mean tooltip motion jerk (J) of the instrument held in the non-dominant hand, (c) 

logarithmic dimensionless tooltip motion jerk (DJ) of the instrument held in the dominant hand, (d) 

logarithmic dimensionless tooltip motion jerk (DJ)  of the instrument held in the non-dominant 

hand, (e) 95% tooltip motion frequency (f95%) of the instrument held in the dominant hand, and (f) 

95% tooltip motion frequency (f95%) of the instrument held in the non-dominant hand. N, I, and E 

indicate Novice, Intermediate, and Expert groups, respectively. 

3.2. Logarithmic Dimensionless Tooltip Motion Jerk 

Logarithmic dimensionless tooltip motion jerk (DJ) differed significantly across the 

surgical skill levels for both instruments and in all the tasks (Figure 3c,d). DJ showed a 

lower value in the higher surgical skill level. Pairwise comparisons revealed that experts 

had a lower DJ value than novices for both instruments and in all the tasks. Additionally, 

a lower DJ value was observed for experts compared to intermediates in the peg and bi-

manual peg transfer tasks for both instruments. Also, intermediates showed a lower DJ 

value compared to novices in the peg and bimanual peg transfer tasks for both instru-

ments. 



Sensors 2023, 23, 3146 8 of 13 
 

 

3.3. The 95% Tooltip Motion Frequency 

The 95% tooltip motion frequency (f95%) represented significant differences across the 

three skill levels for both instruments and in all the tasks. A decreasing trend of f95% was 

observed from lower surgical skill levels to higher ones (Figure 3e,f). According to pair-

wise comparisons, experts had lower f95% values than novices in all the task-instrument 

conditions. Intermediates revealed lower f95% values than novices in the peg transfer task 

for both instruments and in the rubber band translocation task for the instrument held in 

the non-dominant hand. 

3.4. Tooltip Path Length and Task Duration 

Since tooltip path length (PL) and task duration (T) values were employed to derive 

DJ values from tooltip motion jerk, PL and T can play an important role in understanding 

the difference between the J and DJ values. Therefore, we compared PL and T across the 

three surgical skill levels (Figure 4). PL for both instruments and T differed significantly 

across the surgical skill levels in all the tasks. Perusing pairwise comparisons, we observed 

that experts accomplished all the tasks with a significantly shorter PL of both instruments 

and a significantly shorter T compared to novices. Additionally, intermediates compared 

to novices, had a shorter PL of both instruments in the bimanual peg transfer task and a 

shorter PL of the instrument held in the non-dominant hand in the rubber band translo-

cation task. Intermediates also performed the peg transfer and bimanual peg transfer tasks 

with a significantly shorter T than novices. Experts, compared to intermediates, conducted 

the peg transfer and bimanual peg transfer tasks with a significantly shorter T and had a 

shorter PL for the instrument held in the dominant hand. Moreover, the sample tooltip 

trajectories, tooltip PL and T for the peg transfer, bimanual peg transfer, and rubber band 

translocation tasks are shown in Figures 5–7, respectively. 

 

Figure 4. Tooltip path length (PL) and task duration (T) in the three tasks: Peg transfer, Bimanual 

peg transfer, and Rubber band translocation. (a) Path length of the instrument held in the dominant 

hand, (b) path length of the instrument held in the non-dominant hand, and (c) task duration. N, I, 

and E indicate Novice, Intermediate, and Expert groups, respectively. 
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Figure 5. Representatives of tooltip trajectory with tooltip path length (PL) and task duration (T) 

values in the peg transfer task: (a) instrument held in the dominant hand of a novice participant, (b) 

instrument held in the dominant hand of an intermediate participant, (c) instrument held in the 

dominant hand of an expert participant, (d) instrument held in the non-dominant hand of a novice 

participant, (e) instrument held in the non-dominant hand of an intermediate participant, and (f) 

instrument held in the non-dominant hand of an expert participant. 

 

Figure 6. Representatives of tooltip trajectory with tooltip path length (PL) and task duration (T) 

values in the bimanual peg transfer task: (a) instrument held in the dominant hand of a novice par-

ticipant, (b) instrument held in the dominant hand of an intermediate participant, (c) instrument 

held in the dominant hand of an expert participant, (d) instrument held in the non-dominant hand 

of a novice participant, (e) instrument held in the non-dominant hand of an intermediate partici-

pant, and (f) instrument held in the non-dominant hand of an expert participant. 
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Figure 7. Representatives of tooltip trajectory with tooltip path length (PL) and task duration (T) 

values in the rubber band translocation task: (a) instrument held in the dominant hand of a novice 

participant, (b) instrument held in the dominant hand of an intermediate participant, (c) instrument 

held in the dominant hand of an expert participant, (d) instrument held in the non-dominant hand 

of a novice participant, (e) instrument held in the non-dominant hand of an intermediate partici-

pant, and (f) instrument held in the non-dominant hand of an expert participant. 

4. Discussion 

In this study, we used three algorithms to compute the motion smoothness by taking 

data from tooltips in a simulated laparoscopic surgery setting. We evaluated the motion 

smoothness algorithms for distinguishing three surgical skill levels. 

We found that mean tooltip motion jerk (J) was not capable of discrimination be-

tween surgical skill levels; therefore, it was not a responsive metric for motion smoothness 

assessment. This conflicting observation originated from how J was computed. J was de-

rived based on the third time derivative of the tooltip position, which is a function of task 

duration and path length [14]. In other words, J would have different values if the same 

level of motion smoothness was maintained during the trials of the same task with differ-

ent trial durations, e.g., with different rest periods. In this case, the trial with the longer 

duration represents lower J values, whereas both trials should have the same level of mo-

tion smoothness. Path length may be another element that needs to be considered while 

interpreting J values. For instance, a high variability in the J values was observed for in-

termediates, especially for the instrument held in the dominant hand. However, in dimen-

sionless motion jerk (DJ), we did not observe a high variability among intermediates since 

higher motion jerk values of the intermediate group were associated with lower task du-

ration (T) and higher path length (PL) values. Therefore, after normalization (multiplica-

tion by 𝑇5. 𝑃𝐿−2 factor) to derive DJ from J, the variability was reduced. Furthermore, sig-

nificantly longer task durations and path lengths observed in novices compared to experts 

[10,12,16] could undermine the accuracy of J as a metric for motion smoothness assess-

ment. Hence, the assessment of motion smoothness using mean tooltip motion jerk (J) 

which is not normalized with respect to task duration and path length can lead to errone-

ous results, especially if task durations and path lengths differ significantly across the skill 

levels. 

Logarithmic dimensionless tooltip motion jerk (DJ) used tooltip motion jerk and nor-

malized it with respect to path length and task duration, transforming it to a dimension-

less metric. As opposed to J which failed to show smoother tooltip movements in the 
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experts’ group, experts had lower DJ values than novices and intermediates, indicating 

smoother tooltip movements. Observation of significant differences in DJ values among 

skill levels is in accordance with [24]. However, using the DJ metric, Oropesa et al. [10] 

could not find significantly different values of DJ across expert surgeons, surgical resi-

dents, and novices. The reason underlying not observing significant differences might be 

originated from the formula used by them. They used the magnitude of the position vector 

rather than the position vector, which was used in this study, to calculate DJ. Using the 

magnitude of the position vector to calculate the motion jerk could affect the motion jerk 

as using the magnitude eliminates the differences resulting from the sign changes. Our 

analysis revealed significant differences in the tooltip path length and task duration across 

the surgical skill levels (Figure 4 and Table 2). This can explain why the outcome for com-

parison among the three skill levels based on J and DJ were not similar due to the sensi-

tivity of the former to task duration and path length. 

Originally, 95% tooltip motion frequency (f95%) was proposed in this study to charac-

terize tooltip motion smoothness using the frequency spectrum of the tooltip position. f95% 

attributed lower values to smoother tooltip movements since jerky movements occur in 

the high-frequency ranges of the tooltip position time series. The other two previous mo-

tion smoothness metrics, i.e., J and DJ, were obtained from the third time derivative of the 

tooltip position, which were affected by differentiation noise. However, our proposed 

metric (f95%) did not require a third time derivative of tooltip position calculation; there-

fore, it was not affected by differentiation noise. Furthermore, it did not require normali-

zation, eliminating the need for path length calculation. f95% differed significantly across 

different surgical skill levels, indicating its value for motion smoothness assessment. f95% 

showed a lower value for experts, representing a smoother tooltip movement than inter-

mediates and novices. This was in accordance with the results of DJ. 

In this study, tooltip path length and task duration differed significantly across the 

surgical skill levels, attributing shorter tooltip path lengths and task durations to higher 

skill levels (Figure 4 and Table 2). Experts were able to reduce unnecessary surgical in-

strument movements, which led them to move tooltips into shorter trajectories and, in 

turn, shorter task durations (Figures 5–7). This finding was aligned with previous studies, 

which showed that experts were able to accomplish the tasks with shorter instrument path 

lengths and in shorter durations [10,12,26,27]. This observation was due to the fact that 

higher surgical skill levels benefit from better depth perception and eye–hand coordina-

tion skills. Owing to the fulcrum effect, causing the opposite direction movements of 

tooltips and hands, and 2D surgical site view, depth perception, and eye–hand coordina-

tion play a vital role in acquiring minimally invasive surgery skills. 

This study had some limitations. We included relatively simple tasks in this simula-

tion study as we intended to recruit novice participants. The implemented tasks were not 

actual surgical tasks as we did not intend to hurt patients during data collection. Cautions 

will be needed for the generalization of our findings to real and advanced laparoscopic 

procedures. Furthermore, a relatively small number of expert surgeons and surgical resi-

dents were recruited in this study. To draw a generalized conclusion based on the findings 

of this study, larger groups of expert surgeons and surgical residents should be recruited 

in future studies. 

5. Conclusions 

In this study, we evaluated three motion smoothness metrics to identify the respon-

sive metrics for surgical skill assessment. Our findings showed that motion smoothness 

metrics derived based on tooltip motion jerk without normalization, such as mean tooltip 

motion jerk, are not responsive metrics for motion smoothness assessment. On the other 

hand, dimensionless tooltip motion jerk and 95% tooltip motion frequency (originally pro-

posed in this study) were able to reveal tooltip motion smoothness differences among 

surgical skill levels. These two metrics indicated that higher surgical skill levels were as-

sociated with smoother tooltip movements. Hence, we recommend these two metrics for 
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objective surgical skill assessments, which can, in turn, lower the damage to body organs, 

blood vessels, and nerves due to jerky surgical instrument movements or hand tremors. 

In future studies, these motion smoothness metrics should be implemented for each sub-

task, in addition to the entire task. In addition, larger groups of experts and intermediates 

should be recruited along with more complex surgical tasks to further characterize the 

impact of surgical skill level on the tooltip motion smoothness. 
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