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Abstract: This review article summarizes recent achievements in developing portable electrochemical
sensing systems for the detection and/or quantification of controlled substances with potential
on-site applications at the crime scene or other venues and in wastewater-based epidemiology.
Electrochemical sensors employing carbon screen-printed electrodes (SPEs), including a wearable
glove-based one, and aptamer-based devices, including a miniaturized aptamer-based graphene field
effect transistor platform, are some exciting examples. Quite straightforward electrochemical sensing
systems and methods for controlled substances have been developed using commercially available
carbon SPEs and commercially available miniaturized potentiostats. They offer simplicity, ready
availability, and affordability. With further development, they might become ready for deployment
in forensic field investigation, especially when fast and informed decisions are to be made. Slightly
modified carbon SPEs or SPE-like devices might be able to offer higher specificity and sensitivity while
they can still be used on commercially available miniaturized potentiostats or lab-fabricated portable
or even wearable devices. Affinity-based portable devices employing aptamers, antibodies, and
molecularly imprinted polymers have been developed for more specific and sensitive detection and
quantification. With further development of both hardware and software, the future of electrochemical
sensors for controlled substances is bright.
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1. Introduction

The illegal use of controlled substances has various detrimental impacts on individ-
uals, families, and the whole of society. Relevant people and authorities are rightfully
concerned. Quick, affordable, and reliable tools and methods are needed to detect such
substances under certain circumstances so that early intervention can be deployed, and
relevant laws can be justifiably and timely enforced while preventing or minimizing injus-
tice and unnecessary stigmatization. Over the years, many methods have been proposed
and/or developed [1-11]. Although color tests for drugs are quick, and they are still being
used by law enforcement agencies and sometimes even by the general public [12-14], false
results from such presumptive tests are not that uncommon. What is more, color test
reagents are often corrosive, toxic, and/or carcinogenic, which makes them unfriendly to
the users and the environment. Although the workhorse and gold standard of forensic drug
analysis, gas chromatography in tandem with mass spectrometry (GC-MS) [15-18], pro-
duces reliable results, highly trained personnel are needed to operate the often bulky and
expensive instruments that are connected with (helium) gas cylinders and vacuum pumps,
making them not suitable for field operations, especially high-throughput field operations.
High-performance liquid chromatography coupled with (tandem) mass spectrometers
(LC-MS or LC-MS/MS) can be quite useful [19-23], although they are not portable either.
Hand-held spectrometers, including portable Raman spectrometers, have been used for
field operations [24-26]. However, they face a number of challenges. A number of issues
are in the process of being tackled by specialized Raman methods [27-29], some of which
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are summarized in a recent review by this author [30]. Another promising and seemingly
more straightforward, cost-effective, and accurate way to solve such problems is using
electrochemical sensors [31-33]. A lot of effort has been put into developing electrochem-
ical sensors for a variety of drugs, and they are included in several reviews [11,34-44].
This review article focuses on recent developments within the last few years of portable
electrochemical devices for the detection and/or quantification of controlled substances
with potential on-site applications at the crime scene or other venues.

2. Sensing Using Commercially Available Carbon Screen-Printed Electrodes and
Portable Potentiostats

Carbon screen-printed electrodes (SPEs) are very suitable for the electrochemical
analysis of many analytes using portable devices [45]. They are commercially available or
can be fabricated easily in-house at very affordable costs. Many illegal drugs contain groups,
such as various amino groups, that are electroactive in the potential window of simple
carbon SPEs, producing peaks in square wave voltammetry (SWV) and/or differential
potential voltammetry (DPV) scans. Indeed, carbon SPEs or their close analogs have been
used in portable electrochemical sensing systems for controlled substances.

A Belgian research group utilized commercially available portable potentiostats and
carbon SPEs to construct electrochemical devices and developed some methods for the
quick and accurate detection of illegal controlled substances [46,47]. These devices and
methods seem to be quite cost-effective, and the authors developed them for possible
uses at important entry points, such as border crossings and customs, and venues prone
to illicit drug use, such as music festivals. The SPEs were disposable. Each SPE used
was a three-electrode system made of ordinary materials without further decoration. The
working electrode material was graphite (of course, carbon in nature) with a diameter of
3 mm, and the counter electrode material was carbon. There was also a (pseudo) silver
reference electrode in each SPE. Some SPEs were pre-anodized for certain measurements
and targets. To facilitate on-site or in-field investigations, kits containing a potentiostat
(MultiPalmSens4 or EmStat Pico with PSTrace /MultiTrace software from PalmSens, Houten,
The Netherlands) with Bluetooth connectivity, SPEs, small vials of buffers, disposable
plastic spatulas, and pipettes could be prepared for ready use. The SPE was inserted into
the potentiostat’s SPE connector, as shown in Figure 1. The potentiostat was then connected
with a user-friendly interface via Bluetooth. Subsequently, a small amount of powdery
evidence was transferred into a vial of a buffer using a disposable spatula. After vigorous
shaking, a drop of the solution was deposited directly on the round working electrode of
the SPE using a disposable pipette, as shown in Figure 1.
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Figure 1. A portable electrochemical device for on-site detection of illicit drugs. The deposition of
the solution on its connected SPE is shown [46]. Adapted from MDPI under a Creative Common CC
BY license.

Launching a predeveloped SWV method from the interface, the operation started,
and data were collected and analyzed to produce results. The whole process sounds
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straightforward enough, and law enforcement officers should be able to use them on-site
or in-field without the need for extensive training.

For potential application at borders and customs [46], the electrochemical profiles (EPs)
of pure cocaine, heroin, MDMA, and amphetamine (Figure 2), as well as some common
cutting agents under four different conditions (pH 12, pre-anodized SPE in pH 12, pH 5,
and pH 10 with 1, 2-naphthoquinone-4-sulfonate (NQS)) were acquired using square wave
voltammetry (SWV) to build an EP library and a tailor-made script for drug identification.
Clearly, the electrochemical profiles of different compounds were different and dependent
on measuring conditions, especially the pH. Amphetamine must be derivatized, in this
case with NQS, through simple mixing and measured in the pH 10 buffer to obtain a
peak in the potential window of the cost-effective disposable carbon SPEs [48]. Although
the EP library was constructed using four different conditions on every drug and cutting
agent investigated in the study, it does not mean that every unknown sample needs to be
investigated using all four different conditions. In the cases where there might be some
overlap, the proper identification of an unknown sample could still be achieved by probing
it in two different buffers. The device was then put to real tests by examining 40 seized
samples that were previously analyzed by the gold standard GC-MS at a governmental
forensic institute. Each sample contained only one of the four targeted controlled substances,
with or without cutting agents. The electrochemical results agreed 100% with the GC-MS
results for the controlled substances in them, much better than the 50% correctness obtained
using a portable Raman spectrometer, although some cutting agents were not picked up by
the electrochemical method in some samples.

A) SPE pH 12 B) Praanodized SPE pH 12 C)SPEpH S D) SPE pH 10 + NQS
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Figure 2. Electrochemical profiles of four illicit drugs acquired by SWV using unmodified carbon SPEs
at different pHs and conditions [46]. Reused from MDPI under a Creative Common CC BY license.

Later on, the same PI’s research group further developed this electrochemical approach
and came up with two methods for potential use at music festivals for on-site, simultaneous,
rapid, and reliable detection of four popular drugs currently used illegally at such festivals
in Europe: cocaine, MDMA, amphetamine, and ketamine [47]. Although they sound similar
to the method developed for use at borders, they offered faster results because they utilized
only two buffers instead of four, and they followed clear strategies. The two buffers used
were a pH 12 PBS (0.020 M K,HPO4 and 0.1 M KCl), dubbed pH 12, and a pH 7 PBS (0.1 M
KH,POy, 0.1 M KC, and 11.1% v/v formaldehyde), dubbed pH7F. The formaldehyde
in pH 7F derivatized amphetamine so that it gave SWV peaks in the 0-1.5 V potential
window and helped produce additional characteristic peaks for other drugs (Figure 3),
which is consistent with the finding by the same PI’s group that paraformaldehyde-coated
electrochemical sensors could improve amphetamine detection [33]. Since there were
severe overlaps among some drugs, and amphetamine had no peaks measured in the pH
12 buffer, it was impossible to target multiple drugs with just one SPE (Figure 4A). To
overcome such problems, multiple SPEs were used to develop two different methods for
the fast identification of the drugs in question: a flow chart method in which two SPEs
were employed sequentially to probe the evidence in two different conditions and buffers
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(Figure 4B) and a dual-sensor method in which two SPEs were used simultaneously in one
portable electrochemical device (a MultiPalmSens4 potentiostat with PSTrace/MultiTrace
software from PalmSens, Houten, The Netherlands) to measure the same evidence in
two different buffers, pH 12 and pH 7F (Figure 4C). A training set of samples containing
the pure drugs, commonly encountered pure cutting agents for such drugs, and binary
mixtures (each containing one drug and one cutting agent), respectively, were selected,
measured, and analyzed to optimize the parameters, databases, scripts, and overall data
processing for both methods.
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Figure 3. Pre-processed SWV electrochemical profiles of the four selected illicit drugs in pH 7F (a pH
7 PBS buffer containing some formaldehyde, left) and pH12 (right), with relevant peaks labeled [47].
Reused from the Royal Society of Chemistry under a Creative Commons Attribution-NonCommercial

3.0 Unported Licence.
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Figure 4. Schematic overview of three electrochemical methods for drug sensing [47].
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In the flowchart method, the results from the first measurement were utilized by the
software to propose the conditions for a second measurement, if necessary (Figure 4B). The
results of the two measurements were then linked to offer higher accuracy than the single-
sensor method. Apparently, in rare cases when no second measurement is necessary, the
flowchart method becomes the single-sensor method. In the dual-sensor method, the two
simultaneously acquired EPs were combined into a “superprofile” (Figure 4C), generating
more than double the information yielded by either individual EP
("1 + 1 > 2”) and giving much more accurate results. The two methods were applied
to analyze 40 seized samples. The flowchart method yielded 80% correctness, and the
dual-sensor method gave 87.5% correctness in identifying the controlled substances in
them, while a portable Raman spectrometer offered only 60% correctness.

Although the two different conditions and buffers were enough for both of these two
methods when there was only one of the four drugs in each sample, and regardless of the
presence or absence of cutting agents, additional conditions might be needed for other
drugs or more complicated samples containing multiple drugs. In the flow chart method,
the information gathered from the first measurement would determine the conditions to
be used in the subsequent measurement using a second SPE. Even more measurements
under additional conditions using additional SPEs proposed by the software might be-
come necessary. As for the dual-sensor method, other drugs might require other sets of
conditions, which need to be optimized in advance. It might have to involve some edu-
cated guesses in choosing the combination of two conditions and buffers when analyzing
“more unknown” or more complicated samples. Sometimes, three or even more SPEs and
measuring conditions might have to be used in parallel.

The same P.I.’s group found out earlier that with the help of a solution mediated by the
surfactant sodium dodecyl sulfate (SDS), the enhanced detection of five illicit drugs, cocaine,
heroin, 3,4-methylenedioxymethamphetamine, 4-chloro-a-pyrrolidinovalerophenone, and
ketamine in oral fluid, was achieved using square wave adsorption stripping voltamme-
try on carbon SPEs [49]. This electrochemical sensing method was very sensitive, with
submicromolar LODs and wide linear ranges (~1-30 mM). It was very cost-effective since
no modification or functionalization of the carbon SPEs was needed, and the surfactant,
SDS, is very cheap and readily available. There was a more recent effort from the PI.’s
group to investigate the electrochemical detection of methamphetamine using square wave
voltammetry on disposable graphite SPEs, resulting in very sensitive detection [50].

The portable devices (with one or more potentiostats within) were sourced from
PalmSens (Houten, The Netherlands). Their sizes are conveniently small enough that other
researchers have also used them or adapted them for constructing portable electrochemical
devices for the sensing and analysis of illicit drugs [51,52]. They can be interfaced with
computers and mobile phones or tablets easily, enabling facile data processing and analysis.

3. Sensing Using Lab-Fabricated or Modified SPE/SPE-like Electrodes and
Portable Potentiostats

Some drugs, such as fentanyl, are very toxic and dangerous, even to law enforcement
personnel who unknowingly come into contact with them because of work. With the
intention to equip such personnel with on-site sampling and detection tools for fentanyl,
a research group developed an electrochemical sensor using carbon SPEs printed on
disposable gloves and a portable potentiostat sourced from, as mentioned earlier, PalmSens,
which wirelessly interfaced with a smartphone or a tablet for data acquisition, processing,
and analysis (Figure 5) [51]. First, 3-D printed thumb and index finger molds were inserted
into the corresponding positions in disposable nitrile gloves to facilitate smooth screen
printing. On the molded index finger part of the glove was printed a layer of Ag/AgCl
as the reference electrode (RE) and a layer of carbon as the working electrode (WE) and
counter electrode (CE), respectively, followed by finishing procedures. On the thumb
finger part of the glove, a circular carbon pad (1 cm in diameter) was similarly printed
for collecting samples. A composite made of multiwall carbon nanotubes (MWCNT),
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4-(3-Butyl-1-imidazolio)-1-butanesulfonate (an ionic liquid, IL), and polyethylenimine (PEI)
was drop-casted on the WE and airdried to be ready for analyzing the liquid samples. For
powder analysis, a conductive semi-solid hydrogel was applied to cover the surface of the
SPE. For fentanyl sensing, the investigator put on the glove and attached the SPE via a ring
and wires to a portable EmStat3 Blue device (PalmSens, Houten, The Netherlands) secured
on the back of the hand. The sample was swiped with the printed carbon pad on the
collecting (thumb) finger, which was then joined with the SPE on the sensing (index) finger
before an SWV scan was initiated by a program, and the data was transmitted wirelessly
for processing and analysis to yield a result. Decorating the working electrode with the
ionic liquid was found to be necessary since there was no fentanyl signal without such
modification. The device could reliably detect fentanyl in both liquid and in powder. Please
note that the single and distinct oxidation peak for fentanyl occurred at different voltages:
+0.65 V in liquid and +0.76 V in powder. The device was quite sensitive and selective
since it required only a small amount of fentanyl, in the presence or absence of commonly
encountered cutting agents, for identification. Quantitative analysis of liquid samples was
said to be possible. However, it is not clear if any drugs, especially other opioids, can
interfere with fentanyl sensing or not, which deserves further study since small amounts of
fentanyl are often mixed with heroin in current illegal drug markets. It would be nice if
such wearable sensors could be used to detect other drugs.

Portable
/-

Potentiostat & B N
sample collector \\\\

A

Sensing ﬁngér

Suspicious powder

Figure 5. Overview of the lab-on-a-glove device for on-site electrochemical detection of fentanyl;
(A) glove containing SPE on the sensing index finger and sample collector pad on the thumb. (B) The
glove-based sensor with a portable electroanalyzer—potentiostat. (C) Collecting a powdery sample.
(D) Joining of collecting (thumb) and sensing (index) fingers after swiping a powder sample to start
SWYV scans [51]. Reused with permission from Elsevier.

Some safety concerns still need to be addressed to overcome the hesitance in touching
drug evidence directly using gloved fingers when other sampling tools are available.
With further development, such “swipe, scan, sense, and alert” wearable “lab-on-a-glove”
electrochemical sensors may find acceptance and bring drug analysis directly and literally
“to the user’s fingertips”, making the facile and safe detection of toxic and dangerous
drugs in emergency situations possible and enabling quick, on-site but informed decision
making. Wearable flexible electrochemical sensors may find applications in other important
fields [53], potentially making drug detection through monitoring sweat possible.

There have been other efforts to electrochemically detect fentanyl. Casting a zinc-
based metal-organic framework (Zn(II)-MOF) on the surface of a carbon SPE resulted in an
electrochemical sensor that was able to detect fentanyl in an aqueous solution, urine, and
plasma using DPV with very high sensitivity [54]. Its LOD was 0.3 uM, and its linear range
was wide, from 1 to 100 uM.

A group in Thailand found a simple and very economical way to make a portable
electrochemical sensor for methamphetamine [52]. It has been known that polyimide
films, even commercial ones, can be turned into porous graphene structures, which were
found to be excellent electrical conductors with a very large and specific surface area [55].
As shown in Figure 6, the group attached Kapton tape made from polyimide film to
polyethylene terephthalate (PET) laminating film. After cleaning, a three-electrode pattern
with a WE (d= 3 mm), a CE, and an RE was directly engraved in the Kapton tape with a CO,
laser. The material in this engraved electrode was confirmed to be 3-D porous graphene.
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Afterwards, Ag/AgCl ink was painted onto the RE part to create a reference electrode to
finish the construction of a highly flexible laser-induced porous graphene (LI-PGr) electrode
supported by a plastic film, which looked like an SPE.

Kapton tape
Clean vp Applyieg
| with cthanol AR/ARCY ink
——— —_——
v f¢
e Thermal PET laminating film //

Ty %

Flexible LI-PGr clectrode

Figure 6. Schematic representation of the fabrication of laser-induced porous graphene electrode [52].
Reused from MDPI under a Creative Common CC BY license.

They attached an SPE connector and a USB connector to the two ends of a portable
potentiostat (EmPico with PSTrace v 5.6 software) sourced from PalmSens (Houten, The
Netherlands), respectively, and encased the setup in a 3-D printed housing, resulting in an
electrochemical device that looked like a USB drive (Figure 7). The LI-PGr electrode was
inserted into the SPE connector of the device. Then, the device was connected through the USB
connector to a smartphone which drove the differential pulse voltammetry (DPV) analysis of
methamphetamine through an app after a liquid sample was applied to the electrode.

Comneet :— ’H-‘!

rmm

USB io UART comvertor —BA8E | o= RH A SPE conmector
TUMFTZMEI-RC) Emsiat Fieo Modele (DS 1020-003T 10}

Type C to USH
connecisr

Figure 7. A portable electrochemical device containing a fully functional EmStat Pico potentiostat
connected with a USB to a UART convertor to interface with a type-C USB connection and an SPE
connector [52]. Reused from MDPI under a Creative Common CC BY license.

The maximum anodic peak for methamphetamine was at + 0.4 V. The maximum
anodic peak current could be used for the quantitative analysis of methamphetamine
with two linear ranges: from 1.00 to 30.0 ng/mL and from 30.0 to 100 pg/mL. The sensor
was highly sensitive to methamphetamine with a limit of detection (LOD) of 0.31 ug/mL;
common cutting agents and inorganic ions had little to no interference with it. Such
compounds and drugs as pseudoephedrine, alprazolam, and diazepam posed no interfer-
ence at all. Although clonazepam produced a peak, it was clearly separated from that of
methamphetamine, bringing no significant interference in a binary mixture.

As was noted earlier, the group not only made a new type of LI-PGr electrode but also
constructed their own electrochemical device using an EmStat Pico potentiostat sourced
from PalmSens (Houten, The Netherlands). The constructed device was linked to a cell-
phone through a USB connection and ran by the PSTrace program supplied by PalmSens.
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Since such Emstat Pico potentiostats and devices sourced from PalmSens, wirelessly con-
nected to cellphones and run by PSTrace, were used in a study mentioned earlier [46],
one might want to use such commercially available devices for sensitive and facile on-site
methamphetamine detection while employing LI-PGr electrodes, either made in-house or
externally sourced when they become commercially available, in order to achieve more
consistent results, a wider adoption, and even further reduced costs.

4. Affinity-Based Electrochemical Sensors

To increase the sensitivity and specificity, electrochemical sensors can be decorated
with moieties that are selective for drugs of interest. Quite some work has been conducted,
and interesting results have been obtained in this direction.

Wastewater-based epidemiology (WBE) can help gather important intelligence on
neighborhood-wide illegal consumption of controlled substances and help create ap-
propriate remedial policies and tools in terms of fighting crimes and improving public
health [56-60]. For such purposes, sensitive, cheap, and easy-to-use tools for monitoring
relevant drugs and their metabolites in wastewater are needed. Recently, a miniaturized
aptamer-based graphene field effect transistor (AptG-FET) platform capable of the simul-
taneous on-site detection of several opioid metabolites in wastewater was reproducibly
constructed through a facile and cost-effective process [61]. Included in the 5 cm x 8 cm
platform was a 1.2 cm x 1.2 cm single chip fabricated in the researchers’ lab, which con-
sisted of four different sets of five G-FET (4 x 5) devices. A 1.5 x 1.2 mm PDMS well was
mounted on each of the four sets, segregating them (Figure 8). The PDMS wells also served
the function of holding solutions for functionalizing the graphene-sensing parts of the
devices and for measurements. Aptamers highly specific and selective for three different
opioid metabolites, noroxycodone (NX), 2-ethylidene-1,5-dimethyl-3,3-diphenyl- pyrroli-
dine (EDDP), and norfentanyl (NF), were carefully selected and validated to functionalize
three of the four sets of devices, respectively, on the chip. The fourth set was reserved for
the control and, therefore, was not functionalized. The electrical resistance of the graphene
was highly sensitive to its surface environment, as shown in the resistance vs. liquid gate
voltage plots. After each effective decoration, there was a Dirac voltage shift. The Dirac
voltage of each aptamer-decorated device could be established experimentally first. Then,
the wastewater samples were added to each PDMS well (Figure 9). After the effective
binding of an aptamer with its targeted opioid metabolite, there was a further Dirac voltage
shift. Therefore, the identity of the opioid metabolite could be established depending on
which set of devices produced such a Dirac voltage shift. If and when the Dirac shifts were
produced in multiple sets of devices, the identities of the metabolites could be simulta-
neously found out accordingly. What is more, the magnitude of the Dirac voltage shifts
depended on the concentration of the targeted analyte. Therefore, a quantitative analysis
could be achieved. Since the signals from the five G-FET devices in each PDMS well were
obtained simultaneously and averaged for data analysis, the results were fast and more
reliable. The devices were highly sensitive, showing LODs of 38, 27, and 42 pg/mL for NX,
EDDP, and NF, respectively, very suitable for the analysis of these metabolites in wastewater
whose concentrations are in the range of pg/mL to ng/mL. The whole measurement setup,
composed of the entire platform, a digital multimeter for measuring the resistance (0-5 k(2),
and a 0—2 V voltage supply, could be easily miniaturized and made portable for in-field
analysis. Of course, there are potentially many more drugs—-metabolites to monitor in
wastewater, which was expected to be easily achieved by employing a bigger wafer where
many more chips (for example, 100 chips on a 6-in wafer) could be constructed, and the
whole setup would still be portable. Additionally, for WBE and other applications, devices
that can monitor drugs and their metabolites continuously [62] and reagentlessly are highly
desirable. It is unclear if such aptamer-based devices can do that. If the affinities of the
aptamers to the drugs-metabolites are too high, they might not be able to continuously
follow the concentration fluctuation of the drugs—metabolites in the wastewater flow in
real-time.
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Source

Figure 8. (Left) A G-FET chip (1.2 cm x 1.2 cm) with 4 PDMS wells. (Right) Microscopic image of a
single G-FET with source—drain and side gate electrode and graphene-sensing window with AlOx
passivation [61]. Reused and adapted with permission from the American Chemical Society.
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Figure 9. Schematic illustration of an on-site chip-based rapid detection platform for near real-time
monitoring of opioid metabolites in wastewater using AptG-FET sensor technology [61]. Reused and
adapted with permission from the American Chemical Society.

In an earlier WBE attempt, an aptamer was immobilized onto a gold electrode through
a DNA-directed process for sensing cocaine in sewage [63]. Two different “on-chip” ap-
proaches to immobilizing the aptamer, both using the same materials but in different
procedures, were explored (Figure 10). The detection was achieved through electrochem-
ical measurements using electrochemical impedance spectroscopy (EIS) with the ferri—
ferrocyanide couple, [Fe(CN)6]3_/ 4= as the redox marker, which needed to overcome an
electrostatic barrier in order to exchange an electron with the electrode. In the absence
of cocaine, the DNA aptamer assumed a two-stem loop conformation. In the presence
of cocaine, the aptamer bound it to form a three-way junction, causing an increase in
the electrostatic barrier, which was manifested in the measured charge transfer resistance
(Rct) of the system. The “on-chip approach II”, in which a thiolated single-stranded DNA
(ssDNA) probe was initially hybridized with an aptamer tailed with a complementary
ssDNA in a solution to form an aptamer tailed with a double-stranded DNA (dsDNA),
followed by co-immobilization with 6-mercapto-hexanol onto the gold electrodes, worked
much better. This DNA-directed immobilization aptamer sensor (DDIAS) was optimized,
and it was found to be very specific, sensitive, and quantitative toward cocaine with an
LOD of 10 nM.
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Figure 10. Schematic illustration of the DDIAS for detection of cocaine within the ‘on-chip I’ (a) and
‘on-chip II (b) approaches using EIS [63]. Reused from Springer Nature under the Creative Commons
CC BY license.

An affinity-based electrochemical sensor for THC in saliva using EIS was constructed
on PET substrates by depositing electrode patterns with 125 nm of Au on it, employing the
e-beam deposition technique and decorating the gold electrodes with a capture antibody for
the THC-BSA hapten [64]. After non-faradaic EIS data were collected, a binary classification
system, developed and implemented using appropriate algorithms, was able to predict
the presence of THC in human saliva using the data. Integrating the electrochemical
sensor with low-power electronics and a portable saliva swab could result in a hand-held
platform for the rapid (within 1 min) detection of THC in saliva, especially in suspected
driving under the influence (DUI) cases, with high accuracy. Quantitative analyses could
be possible through regression analysis. The researchers strongly believed that the setup
could potentially be miniaturized and become portable.

Cheap and disposable three-electrode ceramic-based chip sensors for some drugs were
fabricated by grafting their carbon paste working electrode with molecularly imprinted
polymers (MIPs) templated with the drugs of interest [65]. Although they were intended
for therapeutic drug monitoring, one of the drugs studied, phenobarbital, is a controlled
substance, and the concept is applicable to other controlled substances. Drug sensing was
investigated using differential pulse voltammetry (DPV) in which the response currents
were linear with the drug concentrations. Each measurement was completed in less than
2 min. MIPs templated with a drug imparted specificity and selectivity for that specific
drug, minimizing interferences. The MIPs also improved such sensors’ sensitivity.

5. Conclusions

Electrochemical sensors have been shown to be able to quickly and reliably detect and
quantify illicit controlled substances. Miniaturization, high affordability, high reliability;,
fast responses, and high throughput are their future and the keys to their application in
the fields of forensic science and individual and public health. Portable electrochemical
devices employing cost-effective disposable carbon screen-printed electrodes may be very
useful for in-field and onsite high-throughput analysis, enabling law enforcement person-
nel or agencies to make fast and informed decisions out of necessity under a variety of
circumstances. Although devices employing unmodified or minimally modified carbon
SPEs are desirable for a number of reasons and are effective for a single drug or several
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drugs, their abilities to differentiate a wide variety and a large number of drugs and cut-
ting agents still need to be investigated and improved, considering drug abuse is now an
epidemic and a public health crisis, at least in quite a number of jurisdictions. Further
hardware development is needed to make them produce sharper and more distinct signals
to generate higher resolving powers so that they can be used to detect and differentiate
many more controlled substances with minimal false negatives and false positives. Further
software improvement, including the employment of artificial intelligence, is likely needed
to help achieve such goals. Affinity-based electrochemical sensors, employing aptamers,
antibodies, and molecularly imprinted polymers, can be more specific and sensitive, al-
though they are more complicated and quite possibly more expensive than simple carbon
SPE-based sensors, especially when arrays of such sensors are needed for the detection,
differentiation, and quantification of more and more controlled substances. It is expected
that there will be further studies and development of such sensors to make them more
suitable for the continuous monitoring of drugs and their metabolites in wastewater, of-
fering neighborhood- and community-wide illicit drug use information and intelligence
in real-time. Such wastewater-based epidemiology (WBE) investigations help create ap-
propriate remedial policies and tools in terms of fighting crimes and improving public
health. Although there are still some issues to be addressed, it is not a stretch to say that
electrochemical sensors for illicit drugs will find wide application and acceptance in the
forensic science field and other related fields in the near future, considering the exciting
pace of innovation and development in this direction.
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