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Abstract: The need for contactless vascular biometric systems has significantly increased. In recent
years, deep learning has proven to be efficient for vein segmentation and matching. Palm and finger
vein biometrics are well researched; however, research on wrist vein biometrics is limited. Wrist
vein biometrics is promising due to it not having finger or palm patterns on the skin surface making
the image acquisition process easier. This paper presents a deep learning-based novel low-cost
end-to-end contactless wrist vein biometric recognition system. FYO wrist vein dataset was used
to train a novel U-Net CNN structure to extract and segment wrist vein patterns effectively. The
extracted images were evaluated to have a Dice Coefficient of 0.723. A CNN and Siamese Neural
Network were implemented to match wrist vein images obtaining the highest F1-score of 84.7%. The
average matching time is less than 3 s on a Raspberry Pi. All the subsystems were integrated with
the help of a designed GUI to form a functional end-to-end deep learning-based wrist biometric
recognition system.

Keywords: biometrics; wrist vein; deep learning; machine learning; Siamese Neural Network;
convolutional neural network

1. Introduction

In a data-driven world, data security, privacy security and protection of personal iden-
tification information are essential. Personal Identification Numbers (PINs) and passwords
are extensively used for human identification and verification. With the advancement of
technology, it has become more challenging to safeguard confidential information. PINs
and passwords are susceptible to spoofing, and are likely to be stolen and transferred
between people [1]. Another reason is these methods can be forged as they rely on one’s
memory. Other systems that use access cards and identity cards are vulnerable and can
easily fail as their identity components can be misplaced or misused.

Biometric recognition systems utilise physiological or behavioural features for recog-
nition [2]. Behavioural features include voice, signature, gait and keystroke dynamics.
Physiological features include face, fingerprint, palmprint, iris and vascular patterns. There
is a recent trend in more use of physiological and behavioural features for identification
and verification purposes in a recognition system. The physiological methods are preferred
because of their uniqueness, permanence and accuracy. Common biometric recognition
systems available today utilise extrinsic features such as the face, iris and fingerprint [3].
Fingerprint is easy to spoof due to its extrinsic nature and also requires physical contact
with the sensor [4]. This is a disadvantage as it is a contact-based method that can contribute
to the transmission of different germs and viruses through the use of this technology. This
is of more relevance after the advent of the COVID-19 pandemic. Another extrinsic feature
used is face. Face recognition is quite successful as it is accurate, contactless and easy to
use. However, with the advancement in the technology of face acquisition devices, it is
possible to capture this feature without the consent and knowledge of the user by placing
high-resolution cameras at faraway distances. Iris recognition is another example that is
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precise but needs a constrained environment and the acquisition device, i.e., iris scanner,
is expensive.

The other type of physiological feature that can be used for biometric recognition is an
intrinsic feature. Features used for biometrics are also referred to as biometric modalities.
Intrinsic modalities, specifically vein modalities, are much harder to spoof [1], are mostly
invisible to the human eye, do not change over time and are unique to each person [5]. Vein
biometrics are classified based on the region of vein structure that is used for recognition,
with the most common being palm and finger vein recognition. Technologies developed
using vein as the modality are referred to as vascular biometric technologies. In many
cases, they are contactless making them preferred in clinical applications. Vein information
lies beneath the skin surface and is robust as it depends on the blood flow in the vein,
which prevents latency and makes it difficult to forge. Moreover, veins are time-invariant in
structure. The changes in the vascular system start with the development of a vascular tree
in the embryonic phase. After the formation of the veins, only their spatial size increases as
human beings grow [4]. Vascular biometric systems use the vein pattern, which is stable
over time and hence considered robust.

The wrist vein is known to have sufficient unique features to be used in a vascular
biometric system [6]. Wrist vein recognition has seen less research when compared to its
palm and finger vein counterparts. However, it is of interest due to the thickness of the
skin around the wrist being thin. This makes the wrist vein more accessible in the image
acquisition stage of the biometric system [7].

In biometric systems, identification and authentication are often interchangeably used.
It is to be noted that these terms have different meanings and significance and are dependent
on the operating mode of the biometric system. The authentication step is a one-to-one
matching process for a specific user where the system compares the input preprocessed
image obtained from the user, also called probe image, to the database image previously
stored in the system, also called the reference image. Here, the user has already claimed a
specific identity and hence the reason the operating mode has only one-to-one comparison
operation. This comparison is to verify the claimed identity and grant access depending on
the matching output. Identification is the step where the input image is taken from the user
(probe image) and is compared to all the images which are already stored in the database
using the registration process. This is a one-to-N matching operational mode.

Systems for both the above-mentioned operating modes can be designed using tra-
ditional signal processing methods and deep learning methods. Deep learning has seen
success in palm and finger vein recognition recently. Deep learning has the advantage of
being able to encompass all the signal processing steps required for vein recognition to
provide an end-to-end recognition system. Although most palm and finger vein research
now focuses on deep learning [8], it has seen limited application in wrist vein recognition.
A low-cost wrist vein image acquisition device was developed to capture high-quality
vein pattern images. Concurrently, algorithms for image segmentation and matching were
developed using the FYO database [9]. This database helped develop the segmentation
and matching algorithms, after which they were integrated with the developed hardware
to form an end-to-end wrist vein vascular biometric system presented in this paper.

The contributions of this paper are listed below:

• Extension of the literature survey carried out in our previous study [6].
• Segmentation of wrist vein images using a modified UNet architecture.
• Development of a matching engine that can compare probe image with reference

image using Convolutional Neural Network (CNN) followed by Siamese Neural
Network [10] for vascular biometrics.

• Development of a Graphical User Interface (GUI) and integration of the subsystems to
form a complete end-to-end deep learning-based wrist vein biometric system.

To the best of our knowledge, this is the first study where an entire end-to-end wrist
vein recognition system using a deep learning algorithm has been developed. Section 2
provides a comprehensive literature review of state-of-the-art wrist vein recognition sys-
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tems and deep learning approaches applied to other vein biometrics. Section 3 presents
the proposed subsystems. Section 4 reports and discusses the obtained results with its
performance evaluation. Section 5 is dedicated to the conclusion and future work.

2. Literature Review

This section provides a review of the state-of-the-art wrist vein recognition systems
covering the literature on image acquisition, databases, segmentation algorithms and match-
ing engines. Deep learning approaches applied to vein recognition have also been reviewed
for the sake of completeness.

Acquiring an image of the vein patterns is the first step in the vein recognition process.
Most commercial cameras have IR filters embedded to prevent IR light from entering
the sensor to avoid having unnatural-looking images. For biometric recognition, this
filter needs to be removed as IR light is necessary to capture the veins. To capture an
optimum image, the distance between the wrist and the camera lens, as well as the camera
quality/image size needs to be accounted for. Crisan et al. suggest utilising a tight
optical spectrum window of 740 nm to 760 nm to provide maximum penetration in vein
biometrics [11]. In [12], Raghavendra et al. developed a low-cost vein recognition sensor
system, utilised it to develop a wrist vein database comprising of 1000 images and evaluated
the system with nine different feature extraction algorithms. In their design, an NIR
monochrome CMOS camera was utilised with 40,870 nm NIR LEDs illuminating the wrist.
When tested with the LG-SRC feature extraction technique, an equal error rate (EER) [13]
of 1.63% was achieved. Pegs were used, hence making the system contact-based. Moreover,
the database collected does not appear to be publicly available. A similar system was
proposed in [14] by Pascual et al. A commercial dome light with 112,880 nm NIR LEDs was
used to homogenise the light and eliminate shadows. There is no evidence of testing the
captured images using any algorithms. In [15], Garcia-Martin et al. propose a small and
simple system consisting of a Logitech webcam with filter manually removed, a custom
ring PCB for NIR LEDs of 850 nm and a Raspberry Pi Model 3B. However, the webcam
does not capture the contrast between skin and vein well and there is no mention of using
any feature extraction algorithms either.

Although NIR images provide much clearer vein structures, using regular light has
also been considered in some studies. In [16], Kurban et al. proposed using a 5 MP
mobile phone camera to capture wrist vein patterns. This approach has the advantage
of not requiring any specialist equipment. A database of 34 individual wrists consisting
of three images per wrist was collected. When classified with the radial basis function
(RBF) classifier, the dataset achieves a promising RMS error rate of 5.37%. However, whilst
the database is not publicly available, the data were also collected over multiple sessions
without mentioning if the environmental, lighting and participant factors were consistent.
Some modern smartphones already include NIR cameras and LEDs, primarily for facial
recognition. In [17], smartphone cameras were used to capture and classify wrist vein
patterns. However, it was found that the NIR LEDs have a wavelength of around 960 nm.
This is outside the ideal range for vein recognition of 760 nm to 800 nm as the camera
system was designed for facial recognition and not vein recognition. When analysed
using the scale-invariant feature transform (SIFT) feature extraction tech [18], the system
achieved an 18.72% EER. SIFT is also a rather resource expensive technique which meant
the system could process 1–2 FPS overall, which is rather low for real-time processing.
Most of these studies have not made the datasets publicly available, making it difficult to
replicate and extend the research stated in these studies. This is another indicator of wrist
vein recognition research being novel. Table 1 summarises the known databases.
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Table 1. Wrist Vein Pattern Databases.

Name Participants Wrist Samples Sessions Total Camera NIR

PUT [19] 50 2 4 3 1200 Unknown Unknown
Singapore [20] 150 2 3 Unknown 900 Hitachi KP-F2A 850 nm

FYO [9] 160 2 2 1 1 640 1/3 inch infrared CMOS Unknown
UC3M [21] 121 1 5 Unknown 605 DM 21BU054 880 nm

UC3M-CV1 [15] 50 2 6 2 1200 Logitech HD Webcam C525 850 nm

UC3M-CV2 [17] 50 2 6 2 1200 per
device Xiaomi Pocophone F1, Xiaomi Mi 8 960 nm

Kurban et al. [16] 17 2 3 Unknown 102 5MP mobile phone No NIR
Pascual et al. [14] 30 2 6 Unknown 360 DM 21BU054 880 nm

Fernández et al. [22] 30 Right 4 1 120 CCD Camera 880 nm

1 The FYO database was collected over two sessions separated by only 10 min.

From the surveyed databases mentioned in Table 1, it was observed that the captured
vein pattern images are generally not directly suitable for feature extraction. The position
of the wrist is inconsistent between images and contains more information than required.
Raghavendra et al. use hand pegs in [12] to position the wrist which simplifies the region
of interest (ROI) identification process. However, this negates the benefit of a contactless
system. Fernández et al. use a fixed ROI size in [22], where the user must place their
wrist within the ROI. Achban et al. use a cropping technique described in [23] by selecting
sub-pixels from the image to take into a new image. A fast rotation, translation and scale
compensation algorithm is proposed by Nikisins et al. in [24]. A k-means++ algorithm is
used to select an ROI based off the average of two centroids produced by the clustering
algorithm, which accounts for translation of the image. Scale is compensated for by making
the ROI k times smaller when compared to the original image. Rotation is accounted for
during the decision making stage.

Enhancing the image is executed through a combination of traditional image enhance-
ment approaches, such as filters and equalisation. Gaussian filters are used in [17,22,24]
to smooth the input images, median filters in [17,22,25] and averaging filters in [17], both
used to remove noise. Adaptive histogram equalisation (AHE) is a common technique to
improve the contrast between veins and skin used in [26], while local thresholding is used
for the same purpose in [20,22]. A modified version of AHE, contrast limited adaptive
histogram equalisation (CLAHE), is used in [15,17,25]. Regular AHE often over-amplifies
the contrast of uniform regions. CLAHE offsets this by clipping the histogram at level P and
evenly redistributes the clipped pixels throughout the whole histogram [27]. An example
of an input image, enhanced image and preprocessed image is shown in Figure 1.

(a) (b) (c)
Figure 1. Wrist Vein Example Images. (a) input, (b) Enhanced Vein Image, (c) Vein Features.

Once the preprocessed image is obtained, the next stage in the system is feature
extraction and finally decision making or matching. Feature extraction is the process
of capturing important features from the input image. The majority of the literature
surrounding feature extraction in wrist vein recognition utilise texture feature extraction
methods, which include statistical, structural, transform-based, model-based, graph-based,
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learning-based and entropy-based approaches [28]. Image recognition is the process of
classifying a set of features to determine if they match the known stored features, giving a
genuine match or imposter. In more recent years, neural network-based approaches have
seen a larger interest in palm vein biometrics; however, research is still limited in terms of
wrist vein.

When compared to traditional feature extraction methods that are reviewed in [6],
deep learning compensates for differences in the position, translation and rotation of the
wrist in the image. They are also able to encompass all signal-processing stages. Kocer et al.
utilised deep learning for feature extraction in [29]. A combination of the YOLO (You Only
Look Once) and ResNet50 Convolutional Neural Network (CNN) architectures was used.
The system was found to segment the ROIs correctly in all testing images and classify the
ROIs with a success rate of 95.26%. However, the network was only tested with a small
dataset of 66 individuals.

Kurban et al. use three different types of classifiers in [16], radial basis function (RBF)
neural network, multi-layer perceptron (MLP) network and a support vector machine
(SVM), the former two being neural networks and the latter a traditional classifier. The SVM
classifier produced the highest success rate of 96.07% when tested on a private dataset,
with the RBF and MLP neural networks both producing a success rate of 94.11%.

Chen et al. utilised CNN for palm vein recognition in [30]. Although the paper focuses
specifically on palm vein recognition, the same concepts apply to wrist vein recognition,
especially as the CNN is utilised after the ROI segmentation. The initial system was found
to achieve an EER of 0.830% and 0.793% for the tested wavelengths and the EER was 0.167%
and 0.119% for each wavelength, respectively, in the new CNN + Gabor system.

U-Net is a CNN designed for biomedical image segmentation as proposed by Ron-
neberger et al. in [31]. The network consists of two symmetric paths: a contracting path
designed to capture context and an expansive path to enable localisation. Both paths consist
of 3 × 3 convolutional blocks, ReLU activation functions and 2 × 2 max pooling blocks.
In one of our previous works, we applied U-Net to palm vein image for segmentation
in [32]. The U-Net architecture was modified to decrease the filters in the first and final
2 × 2 convolutional blocks and a Gabor filter was introduced to the first convolutional
block to help with extracting the palm vein features. Similar to wrist vein, palm vein suffers
from a lack of public data, especially annotated data, which are crucial for the training of
neural networks. The training was completed using the HK PolyU palm vein dataset with
manually annotated ground truth images. The network achieved a Dice Coefficient of 0.69,
which measures the overlap between two binary images, where 1 is fully overlapped and
0 is no overlap.

We developed a Siamese Neural Network for matching palm vein patterns in [10].
A Siamese Neural Network is a network that contains two or more identical sub-networks
which process two different pieces of data but share the same weights internally. The out-
puts of the sub-networks can then be compared using a distance metric to form a probability
that two images match. In this paper, a CNN is used as the sub-network and is used to
extract a 1D feature set of length 128 from palm vein images. The distance between the
two calculated feature sets is then computed using binary cross-entropy. The network was
trained using the HK PolyU palm vein dataset which was fed directly into the network.
The Adam optimiser was used with a learning rate of 0.0001. Contrastive loss is used as
the loss function. Contrastive loss is used in binary classification networks, such as siamese
networks and aims to maximise the distance between non-matching feature sets while
minimising the distance between matching feature sets. The network achieved an accuracy
of 90.5% when sampling each image in the training set five times.

Conducting this review helped gain insights to reach the design decisions for the
various sub-systems designed and the integration of the end-to-end wrist vein system.
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3. Proposed System

This section describes the approach taken to design a low cost complete contactless
end-to-end wrist vein biometric recognition system. This system is made up of multiple
subsystems as shown in Figure 2. The first stage is to develop the image acquisition device.
This device will then be used to acquire the wrist vein image. The second subsection
discusses the preprocessing techniques used to transform a wrist vein image and make
it suitable for image segmentation, which was done using CLAHE. The third step is to
segment the preprocessed images using the U-Net CNN architecture and extract the vein
patterns to represent them numerically. In the fourth step, CNN and Siamese Neural
Networks were used for image matching. This is one of the most important steps of our
recognition system. Finally, a GUI was designed and the subsystems were integrated to
achieve a fully working system.

Image Acquisition Pre-Processing

Registration

Feature Extraction Decision Making

Imposter

Genuine

VerificationRegistration
Database

Figure 2. Wrist Vein Recognition System Flowchart.

3.1. Image Acquisition Subsystem

The image acquisition subsystem comprises NIR LEDs, a NoIR camera with distance
mapping calibration. NIR LEDs used in this system are summarised in Table 2 along with
their key specifications. The Raspberry Pi Camera Module v2 NoIR comprised of a Sony
IMX219 8-megapixel CMOS sensor was chosen to capture the vein patterns. The camera
module is small at 25 mm × 23 mm × 9 mm and costs less than USD 100. It was chosen
due to these factors and its widespread availability and integration with the Raspberry Pi,
a common hobbyist single-board computer. The camera can be controlled via Python by
utilising the open-source picamera package. This package allows the user to configure the
camera settings, preview the output and capture images from the camera. This influenced
the camera choice decision as the previous work carried out by us for deep learning
algorithm development was in Python Version 3.8.

Table 2. Specification of Near-Infrared Light Used In The Image Acquisition Device.

Wavelength Reasoning Model Forward
Voltage

Forward
Current

Radiant
Intensity

740 nm Successfully used in wrist vein literature OIS 330 740 X T 1.7 V 30 mA 6 mW/sr
770 nm Absorbed best by deoxygenated hemoglobin OIS 330 770 1.65 V 50 mA 6 mW/sr
860 nm Successfully used in wrist vein literature SFH 4715AS 2.9 V 1 A 1120 mW/sr
880 nm Successfully used in wrist vein literature APT1608SF4C-PRV 1.3 V 20 mA 0.8 mW/sr

3.2. Preprocessing Subsystem

Preprocessing is the process of applying transformations to raw input images to
make them suitable for image segmentation. As the image acquisition device was being
developed in parallel to the deep learning algorithms, it was not possible to test the
algorithms with collected data during prototype building. In the interim, the FYO dataset,
collected by Toygar et al. in [9], was used for testing these algorithms. The dataset consists
of 640 wrist vein images with a resolution of 800 × 600. The dataset is comprised of images
collected from volunteers between the ages of 17 and 63, with a gender ratio of 69.27%
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and 30.73% representing 111 males to 49 females, respectively. The volunteers are mainly
from North Cyprus, Turkey, Nigeria, Iran and other parts of the Middle East and Africa to
ensure consistent experimentation [9]. The only transformation applied to the FYO dataset
images was resizing to a resolution of 256 × 256. In terms of a tradeoff, resizing was found
to have been more relevant with respect to performing as opposed to tuning segmentation
quality and time. Higher resolutions maintain more detail but take longer to process.

Wrist vein images captured during experimentation lacked contrast between the vein
and skin. To improve this, CLAHE was applied as a preprocessing step. This process
involves performing traditional histogram equalisation on small tiles throughout the image
and then clipping the contrast at a given limit. In this case, CLAHE is applied on tiles with
a size of 8 × 8 and clips the contrast with a threshold of 6.

3.3. Image Segmentation and Feature Extraction Subsystem

Image segmentation is the process of extracting the vein patterns from the captured
images and representing them numerically. The U-Net CNN was used for image segmen-
tation in this paper. The U-Net architecture was chosen due to its success in segmenting
palm vein images in our previous work [32].

Significant amounts of labelled training data are also required to perform supervised
learning. As the FYO dataset is unlabelled, this would have required days of manual seg-
mentation of the images. Unsupervised learning, which does not require labelled training
data, was also considered but dismissed as this method of learning is usually reserved
for problems such as clustering and association of input data, not image segmentation.
To solve this, signal processing methods proposed in [32] were used to generate masks of
the FYO database images. These mask images are then used to train the U-Net. U-net was
chosen because the mask image generated by U-net has less noise/artifacts that affect the
performance of the matching engine. Using U-Net-generated mask images was preferred
because the images were light and computationally efficient to provide as input to the
sub-networks of the Siamese Neural Network discussed in Section 3.4.2.

3.3.1. U-Net Architecture for Vein Segmentation

The U-Net CNN architecture consists of two symmetric paths: a contracting path
designed to capture context and an expansive path to enable localisation. The architecture
is shown in Figure 3.

The contracting path consists of four contracting blocks, each of which contains two
2D convolutions with a 3 × 3 kernel. The number of features doubles in every contracting
block. The ReLU activation function is used with the 2D convolutions. These convolutions
are followed by max pooling with a 2 × 2 pool size to downsample the feature map, which
doubles the number of filters and halves both dimensions of the image. In this U-Net
implementation, the input image contains one filter layer which is increased to 16 in the
first contracting block. The number of filters then doubles every contracting block up to
128 filters in the final block.

The contracting and expansive paths are joined by two 2D convolutions, again both
using a 3 × 3 kernel with a ReLU activation. Similar to the contracting path, the expansive
path is built up of blocks. Each block consists of a 2D deconvolution (also known as an
up convolution) with a 3 × 3 kernel and 2 × 2 strides. The output is then concatenated
with the output of the corresponding block in the contracting path. This is followed by
a dropout layer, which at random sets values to zero to prevent overfitting, at a rate
of 10%. A 2D convolution with a 3 × 3 kernel size is then performed and is followed
with a ReLU activation function, similar to the contracting path. In the original U-Net
architecture, the dropout layer is not present and a second convolution layer is present
in its place. The dropout layer is inserted to combat the effects of overfitting. The output
of the final expansive block is followed by a 1 × 1 convolution to reduce the 16 features
down to 1 feature to create a mask image. The sigmoid activation function is used for
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binary classification, such as in this case, where 1 represents vein and 0 represents not vein.
In total, the model consists of 23 tunable layers and 1,179,121 trainable parameters.
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Figure 3. U-Net Architecture.

The input and output from the network have the same dimensions—(W, H, 1), where
W is the width of the image and H is the height of the image. In this case, the input images
have a resolution of 256 × 256. As the U-Net does not contain any fully connected layers,
the number of trainable parameters does not increase as the input and output size changes.
The U-Net input and output sizes can also change without retraining the network as the
weight parameters do not change.

This architecture was proposed in our previous work in [32] and is modified from the
original U-Net proposed in [31]. The primary differences include: initial features in the
first contracting block decreased from 64 to 16, replacement of one 2D convolution layer
with a dropout layer in each expansive block to reduce overfitting, only one output feature
in the final output layer and the introduction of a custom Gabor filter kernel in the first
contracting block. The input resolution of the U-Net was originally 572 × 527 and was
changed to 128 × 128 due to the palm vein input resolution. A resolution of 256 × 256 was
used due to the size of the images in the FYO dataset for wrist. Increasing the resolution of
the input images allows more information to be passed into the U-Net.

3.3.2. Mask Image Generation Algorithm

To generate labelled data for training the U-Net, a mask image generation algorithm
was used as proposed in our previous work in [32]. The image is first denoised by applying
a non-local means denoising algorithm and performing opening, which is the process of
eroding away the edges of pixel groups and then dilating the remaining pixels with the
aim of removing noise. Histogram equalisation is then performed to improve the contrast
between vein and skin. An iterative process of erosion and dilation is then performed until
no more pixels are removed. A vein pattern image from the FYO database, its generated
mask image and the output of the U-Net segmentation algorithm for wrist are shown
in Figure 4.
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(a) (b) (c)
Figure 4. Generated mask images for the original image from FYO. (a) Original Image, (b) Mask Gen-
erated, (c) Mask Generated with U-Net.

3.3.3. Dice Coefficient

The Dice Coefficient measures how well two binary mask images overlap. The value
returned from the Dice Coefficient is between 0, which represents no overlap, and 1, which
represents complete overlap. The Dice Coefficient can be calculated as

DC =
2|P ∩Y|
|P|+ |Y| (1)

where P is the predicted binary mask and Y is the known true binary mask.

3.3.4. U-Net Training

The U-Net was implemented using TensorFlow and Keras 2.1. It was trained on the
FYO Wrist Vein database, utilising the region-of-interest images which consists of 640 wrist
vein images [9]. The images were divided 80:20 between training and testing. The mask
generation algorithm was used to generate known labels for the database. The Adam
optimiser was used starting with a learning rate of LR = 0.0015 and the Dice Coefficient
was used as the loss function. The learning rate of the optimiser was multiplied by 10 after
10 epochs, if no improvement in the loss of the network was seen. This helps the network to
continue training after a plateau in loss. The network was trained for 100 epochs, utilising
a batch size of 16 images. The result of segmentation via U-Net can be seen in Figure 4.

3.4. Image Matching and Decision Making Subsystem

Image matching is the process of comparing two mask images, which are obtained as
the result of the image segmentation stage and deciding whether the two images match.
Two neural networks were considered for matching: a CNN and a Siamese Neural Network.

3.4.1. Convolutional Neural Network

This paper uses a CNN architecture to compare the mask images and output a proba-
bility that the mask images match. The network architecture is shown in Figure 5.
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Figure 5. CNN Matching Network Architecture.



Sensors 2023, 23, 3132 10 of 19

The network consists of convolutional blocks. Each block starts with a 2D convolution
layer with a 3 × 3 kernel followed by a ReLU activation function. This is followed by a
max pooling layer with a 2 × 2 pool size which halves the input dimensions and doubles
the output features. A dropout layer follows this, which at random sets values to 0 to
prevent overfitting at a rate of 25%. The output features of the block double every block,
starting with 32 features in the blocks immediately after the input images. The network has
two input images which follow two identical pathways consisting of two convolutional
blocks as described. These blocks are chained in series. Each of these pathways consists of
two tunable layers for a total of 18,816 trainable parameters.

After these blocks, the two image feature sets are concatenated and proceed through
another two convolutional blocks identical in all aspects except output features. The feature
set is then flattened into a 1D tensor with a length of 32,768. A fully connected layer reduces
these features down to 512, which is followed by another 25% dropout layer and finally the
last fully connected layer, which outputs one value between 0 and 1. All fully connected
layers use the ReLU activation function except for the last layer, which uses the sigmoid
activation function due to its binary output. In total, the model consists of eight tunable
layers for a total of 18,291,201 trainable parameters.

3.4.2. Siamese Neural Network

Siamese Neural Networks are networks that consist of two or more sub-networks
and have seen success for vein biometrics in [10]. Siamese networks have the ability to
train using 1 or few samples and perform image matching with reasonable accuracy when
compared with CNN. A Siamese Neural Network that utilises two identical sub-networks,
each of which is provided with one wrist vein binary mask image as created by the U-
Net and processes the same, is proposed in this article based on observations from [10].
The high-level network architecture is shown in Figure 6. Two binary mask images are
presented to the network—one representing the input image and one representing an
enrolled image. Both binary images are processed via two identical neural networks that
share the same weights, which produce feature vectors. The Euclidean distance between
the two pairs is then calculated and is fed into a sigmoid activation function. If the output
of the sigmoid activation function is greater than a preset threshold, the two input images
are considered a match.
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Figure 6. Siamese Neural Network Architecture with sub-network.

Figure 6 uses a sub-network. The architecture of this sub-network that processes each
input image is shown in Figure 7. The network takes a (W, H, 1) binary mask image as an
input and produces a vector of length 128, which represents the vein features in the binary
mask image. The network consists of three convolutional blocks and a fully connected block.
Each convolutional block consists of a 2D convolution layer with a 3 × 3 kernel producing
64 filter layers and is used to extract the features from the image. This is followed by a batch
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normalisation layer which smoothes the training of the network to increase the speed and
stability of training [33]. A batch normalisation layer is also inserted at the very beginning
of the network. A ReLU activation function is placed after the batch normalisation layer,
followed by an average pooling layer with a 2 × 2 pool size to downsample the feature
maps and finally a dropout layer to prevent overfitting of the network.

C
on

v 
3x

3,
 6

4 
fe

at
ur

es

Ba
tc

h 
N

or
m

al
is

at
io

n

R
eL

U

Av
er

ag
e 

Po
ol

in
g,

 2
x2

 p
oo

l

D
ro

po
ut

, 2
5%

Ba
tc

h 
N

or
m

al
is

at
io

n

3x

Fl
at

te
n

Ba
tc

h 
N

or
m

al
is

at
io

n

D
en

se
 (1

28
), 

R
eL

U

Output
Features

Input
Mask

Figure 7. Sub-network Siamese Feature Network Architecture.

The output of the convolution blocks is then flattened and run through another batch
normalisation layer. The output is then mapped onto a fully connected layer consist-
ing of 128 neurons, which represent the output feature set. The ReLU activation func-
tion is used in the dense layer. In total, the model consists of 11 tunable layers with
7,678,602 trainable parameters.

Contrastive loss [34] is commonly used as the loss function for siamese networks.
The goal of contrastive loss is to maximise the distance between non-matching feature
sets and minimise the distance between matching feature sets. Contrastive loss can be
calculated using

L = mean((1−Y)(P2) + Y(max(M− P, 0)2)) (2)

where L is the calculated loss, Y is the known truth values, P is the predicted truth values
and M is the baseline distance for pairs to be considered dissimilar. The margin is commonly
set to 1, which is the value used throughout this paper.

3.4.3. Network Training

Both networks were implemented using TensorFlow and Keras 2.1 and were trained
using the FYO wrist vein dataset. The dataset was split 80:20 between training and testing
for a total of 256 wrists for training and 64 wrists for testing and validation. It is important
to note that each wrist was captured twice between two imaging sessions. The U-Net
discussed in Section 3.3.1 was used to generate mask images for all images.

As matching is the process of comparing two images, a dataset of image pairs was
constructed. Each wrist in the FYO dataset had two images across two sessions. These
two images were paired and were assigned a “true” label. The image from the first session
is then paired with a random image from the second session that does not match and is
assigned a “false” label. This produces a wrist pair dataset of 512 pairs for training and
128 pairs for testing and validation.

To attempt to teach the network to compensate for translation, rotation and scale of
the vein patterns, a set of augmentations were applied to the images before training or
testing. These include rotating the image ±15◦, zooming the image between 40% and
60% and translating the image ±10% in both vertical and horizontal directions. These
augmentations, when applied, were re-done for every epoch so that the network was
unlikely to see the same vein pattern in the same position.

Both networks were trained using the Adam optimiser with a learning rate of LR = 0.0003.
The CNN utilised the binary cross entropy loss function and a batch size of 32, while the Siamese
Neural Network utilised contrastive loss with a batch size of 16.
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3.5. Graphical User Interface

A graphical user interface (GUI) was developed to allow users to capture wrist vein
images, segment them using U-Net and compare them using various matching networks.
As the camera in use is the Raspberry Pi NoIR camera, the application needed to run on
the Raspberry Pi itself. Python was chosen as the language of choice due to the machine
learning algorithms also being developed in Python. PyQt5, a Python interface to the Qt
GUI library, was used to design the application.

Due to the Raspberry Pi having significantly less computation resources as compared
to a desktop computer, it is not possible to install and run TensorFlow 2 without significant
work-arounds. TensorFlow Lite (TFLite) is a lightweight version of TensorFlow that has
the ability to run inference on small embedded platforms such as Raspberry Pi. Regular
TensorFlow models can be compiled into a TensorFlow Lite model. The GUI application
uses a TFLite U-Net model to segment the wrist vein images. To support the future
development of matching networks, the application can also load different TFLite models
from a folder to use in the matching process. The CNN and siamese neural network models
are pre-loaded into the initial setup. The segmentation and matching processes of the GUI
are shown in Figures 8 and 9, respectively.

Figure 8. Wrist Vein GUI Segmentation Process.
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Figure 9. Wrist Vein GUI Matching Process.

4. Results and Discussion
4.1. Image Acquisition

The image acquisition device was produced and evaluated. Of the four NIR wave-
lengths proposed, the 860 nm LEDs provided the clearest wrist vein images. This is likely
due to the 860 nm LEDs having a high radiant intensity. The other wavelengths would
require increasing the shutter speed and/or ISO of the camera, which in turn would intro-
duce more noise into the wrist vein image. The final image acquisition device is shown in
Figure 10 with the 860 nm LEDs. The acquisition system implementation is intended to be
filed as a patent.

Figure 10. A Developed Filed to Patent Image Acquisition Device.

4.2. Image Segmentation

The U-Net used for image segmentation was trained and tested using the FYO wrist
vein dataset. The dataset of 640 images was split 80:20 between training and testing.
The network was trained for 107 epochs as training was stopped early due to the plateau of
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the accuracy metric. In this case, the accuracy is binary accuracy and is calculated based on
how many pixels the model correctly predicts. The Dice Coefficient is another metric which
measures the overlap of the predicted and true mask images as described in Section 3.3.3.
The model achieved a binary accuracy of 90.5% and a Dice Coefficient of 0.723. Figure 11
shows the Dice Coefficient and binary accuracy for one training session.
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Figure 11. U-Net Training Evaluation.

Overall, the U-Net is successful at segmenting wrist vein images. Compared to the
results of palm vein segmentation using U-Net from [32], which observed a best Dice
Coefficient of 0.697, the U-Net performs on par or better when processing wrist vein images.
This is likely attributed to the increase in input resolution from 128 × 128 to 256 × 256,
which maintains more detail in the vein patterns. Another factor to consider is the lack
of palm patterns on the wrist which provides a clearer region of interest to capture the
vein patterns.

4.3. Image Matching

Both image matching neural networks were evaluated using the FYO wrist vein dataset.
The networks were provided wrist vein mask images segmented using the discussed U-Net
architecture. Binary accuracy and F1-score are used to evaluate the matching models.
Binary accuracy is the percentage of pairs the model predicted correctly, while the F1-score
is the harmonic mean of the precision and recall metrics. Here, 100% indicates a perfect
model and 0% represents the opposite. These are the metrics used to evaluate the model.
The F1-score can be calculated with

F =
2 · TP

2 · TP + FP + FN
(3)

where TP represents the number of true positives, FP represents the number of false
positives and FN represents the number of false negatives.
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4.3.1. Convolutional Neural Network

The CNN was trained for 200 epochs. The binary cross entropy loss function was
used for training and validation. Binary accuracy and F1-score were used as the accuracy
metrics. The network achieved a binary accuracy of 65.6% and an F1-score of 73.3% after
training for 200 epochs. Figures 12 and 13 show the evaluation metrics of the network for
the training and validation datasets for one training session.
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Figure 12. Convolutional Network Training Evaluation: Loss and Accuracy.
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Figure 13. Convolutional Network Training Evaluation: F1-Score.

Likely due to the size of the network, with almost 70,000,000 trainable parameters,
the network learns at a slow rate as evidenced by the number of epochs required to increase
the validation accuracy reported as compared to the siamese and U-Net neural networks.
Even after 200 epochs the loss is still trending downwards, indicating the network still has
room to learn. However, as can be seen in the plots in Figures 12 and 13, the validation
accuracy and F1-score plateaus early at approximately 50 epochs while the training metrics
continue to increase, which may indicate that the network is failing to learn and is instead
overfitting to the training data. This may be attributed to the relatively small dataset, as in
general, larger networks require more data to train. Augmentation of the input images was



Sensors 2023, 23, 3132 16 of 19

performed to help this by effectively increasing the size of the dataset but does not help the
fact there are only 256 unique pairs for testing the network. This small number of pairs is
also likely why the validation F1-score is consistently higher than the training F1-score, as
there is a chance the training dataset was allocated higher quality images that are easier
to match.

4.3.2. Siamese Neural Network

The Siamese Neural Network was trained for 100 epochs. Contrastive loss was used
for training and validation. Similar to the CNN, binary accuracy and F1-score were used as
the accuracy metrics. The network achieved a binary accuracy of 85.1% and an F1-score
of 84.7% after training for 100 epochs. Figures 14 and 15 show the contrastive loss, binary
accuracy and F1-score of the network for the training and validation datasets for one
training session.
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Figure 14. Siamese Network Training Evaluation: Loss and Accuracy.
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Figure 15. Siamese Network Training Evaluation: F1-Score.

Compared to the CNN, the Siamese Neural Network provides a much better accuracy
and F1-score even after only training for half the number of epochs. The loss of the network
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has begun to plateau at 100 epochs, indicating the network has reached a minima. If the
network has reached a local minima, the accuracy and F1-score may be able to further be
increased by adjusting the learning rate, which was performed during U-Net training.

5. Conclusions and Future Work

In this paper, a small and relatively low-cost wrist vein image acquisition device
was designed to capture high-quality images of wrist vein patterns. It was found that
NIR light with a wavelength of 860 nm provides the highest quality vein pattern images;
however, further evaluation is required to determine whether the radiant intensity of the
LEDs influenced this result. The U-Net neural network architecture has been applied to
the problem of image segmentation to extract the vein pattern features from the input
images, achieving a Dice Coefficient of 0.723 when tested on the FYO wrist vein dataset.
Convolutional and Siamese Neural Networks have been applied to the problem of image
matching, with the Siamese Neural Network showing promising results, achieving an
F1-score of 84.7% when tested on the FYO wrist vein dataset. To combine all aspects of
the research together, a GUI was developed to allow users to capture wrist vein images,
segment them with U-Net and compare them with locally saved images using their own
matching neural networks or one of the provided networks.

Due to supply constraints, it was not possible to obtain LEDs with similar radiant
intensities for each wavelength. Due to this, the LED chosen for 860 nm had a radiant
intensity over 200×more than the next largest LED, as can be seen in Table 2. This has likely
skewed the image acquisition results towards 860 nm as more light allows us to reduce the
shutter speed and ISO of the camera to allow less light and less noise to enter the camera.
Current limiting resistors were added to the design to ensure safety measures were in place
with the LED usage. It would be ideal to source LEDs with similar radiant intensities as an
extension of this research to provide more validation that 860 nm is absorbed optimally.

Although the Siamese Neural Network has provided promising results for image
matching, it can be optimised further by tuning the hyperparameters. The GUI has been
designed to allow users to easily test their image-matching algorithms in real-time settings
with an image acquisition system. Users can simply compile their TensorFlow models to
TensorFlow Lite models, upload the model to the Raspberry Pi and select the model in the
GUI. The only requirement is that the model take two mask images as inputs and output
the probability that the two provided images match. The next step could be to further
investigate the image matching algorithms and evaluate them using the end-to-end system
presented in this paper.
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