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Abstract: Memristors mimic synaptic functions in advanced electronics and image sensors, thereby
enabling brain-inspired neuromorphic computing to overcome the limitations of the von Neumann
architecture. As computing operations based on von Neumann hardware rely on continuous memory
transport between processing units and memory, fundamental limitations arise in terms of power
consumption and integration density. In biological synapses, chemical stimulation induces informa-
tion transfer from the pre- to the post-neuron. The memristor operates as resistive random-access
memory (RRAM) and is incorporated into the hardware for neuromorphic computing. Hardware
composed of synaptic memristor arrays is expected to lead to further breakthroughs owing to
their biomimetic in-memory processing capabilities, low power consumption, and amenability to
integration; these aspects satisfy the upcoming demands of artificial intelligence for higher com-
putational loads. Among the tremendous efforts toward achieving human-brain-like electronics,
layered 2D materials have demonstrated significant potential owing to their outstanding electronic
and physical properties, facile integration with other materials, and low-power computing. This
review discusses the memristive characteristics of various 2D materials (heterostructures, defect-
engineered materials, and alloy materials) used in neuromorphic computing for image segregation or
pattern recognition. Neuromorphic computing, the most powerful artificial networks for complicated
image processing and recognition, represent a breakthrough in artificial intelligence owing to their
enhanced performance and lower power consumption compared with von Neumann architectures.
A hardware-implemented CNN with weight control based on synaptic memristor arrays is expected
to be a promising candidate for future electronics in society, offering a solution based on non-von
Neumann hardware. This emerging paradigm changes the computing algorithm using entirely
hardware-connected edge computing and deep neural networks.

Keywords: memristor; artificial intelligence; neuromorphic computing; synapse; convolutional
neural network; resistive random-access memory; bioinspired device

1. Introduction

According to Moore’s law, the performance of semiconductors will double every
24 months, and this has been maintained through the development of state-of-the-art
foundry and chipmaker technologies [1–5]. However, the development of few-atom-scale
semiconductor processes to achieve low-power operation with fast information processing
has several limitations, including those imposed by Moore’s law [6–11]. Limitations of
conventional computing technology include memory bottlenecks and high-cost energy
processing (data processing between memory and processor). Moreover, the emerging
artificial intelligence (AI) techniques require parallel information processing, big data
analysis, and integrated systems entailing in-memory and on-chip computing [12–16].
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However, conventional von Neumann architecture suffers memory bottlenecks as a result
of continual data processing between the memory and processor, resulting in low-efficiency
energy and low-speed memory processing [17–19]. Neuromorphic computing has been
developed to overcome the memory bottleneck associated with von Neumann architec-
ture [20–24]. Biological synapse-mimetic devices exhibit human-brain-like operations and
perform information processing using electrical or optical spikes [25–27]. Various opera-
tional mechanisms, such as transistors, tunneling devices, and memristors, can be used for
neuromorphic computing [28–30]. High-density integration with two-terminal memris-
tors is emerging as a suitable approach for the fabrication of future devices characterized
by low-power/low-thermal budgets and in-memory and on-chip computing [31–33]. A
memristor combines the concepts of memory and resistors and exhibits resistive switching
(RS) under an electrical bias resulting from the movement of anions and cations in mate-
rials. RS is generated by the formation of a conductive filament in the memristor [34–42].
When RS occurs from the high-resistance-state (HRS) to the low-resistance-state (LRS)
owing to channel formation, the operation is called “SET”, whereas in reversed cases, it
is termed “RESET” [43–46]. The RS operation mechanism can be classified depending on
the materials, including transition metal dichalcogenides, transition metal oxides, boron
nitride, silicon, or a layered combination of more than two materials [47–56]. A synapse
array comprising memristors can provide synaptic characteristics and combine with a deep
neural network for advanced data processing in neuromorphic computing.

This review focuses on recent research regarding hardware-implemented neuromor-
phic computing using memristor arrays, covering aspects ranging from operational mech-
anisms to intelligent applications. A neurobiological synapse-mimetic memristor array
providing RS under electrical or optical spikes is reviewed, including the material candi-
dates, synapse operation and characterization, and neuromorphic computing processes
for practical applications, such as image sensors, pattern recognition, and image or pattern
processing. Critically, AI-embedded chips comprising memristor arrays overcome the
memory bottleneck in conventional von Neumann architectures. A resistive random-access
memory (RRAM) operation can provide low-power intelligent data processing by mim-
icking neurobiological synapses and will play a crucial role in future AI and memory
computing applications. Scheme 1 compares the biological neuron system in the human
brain with a memristor-based synapse array for human-brain-mimicking neuromorphic
computing. In biological neurons, active potentials are created from the pre-synaptic to the
post-synaptic neurons via Ca2+ channels in the synaptic cleft. The post-synaptic neuron
absorbs the ion into the ion channel receptor and generates a neural signal to transfer it
to the next neuron. This process occurs in the nervous system of the human brain, which
is capable of cognitive thinking and object detection using optical nerves. Compared to
biological neurons, memristors operate by forming conductive filaments under electrical
spikes and can mimic synapses by acting as a large-scale crossbar array. By integrating
memristor arrays with artificial neural networks (ANNs), hardware-embedded human-
brain-mimicking neuromorphic computing can serve as an efficient platform for emerging
technologies, such as those implemented in image processing, pattern recognition, the
Internet of Things (IoT), and other AI tasks. Below, the technologies for memristor-based AI
are categorized according to devices and basic operations, synaptic behaviors and synapse
arrays, and convolutional neural networks (CNNs) or optic-integrated image sensors.
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2. Single Memristor Device

A memristor is a two-terminal electrical component in which an active material is
sandwiched between a top electrode (TE) and a bottom electrode (BE) [57–60]. Memristive
behavior entails the functionalized hysteresis of electrical resistance and can be quantified
by a current value corresponding to a voltage sweep [61–64]. As shown in Figure 1, a
typical I–V curve of a memristor exhibits an identical “butterfly curve” shape by changing
its resistance. When a positive voltage sweep is applied to the TE, the SET process occurs at
voltages above a specific magnitude, leading to a significant current increase (Figure 1 (1)).
After the setting process, the memristor sustains its HRS while the voltage decreases to
zero (Figure 1 (2)). Notably, the current value is distinctly higher than that of the previous
state at the same voltage [65]. A sequential negative voltage sweep occurs during the reset
process, thereby changing the resistive state from the HRS to the LRS again over a specific
negative voltage (Figure 1 (3)). Decreasing the negative voltage to zero completes one set
and reset cycle, returning to the initial LRS (Figure 1 (4)). Although this I–V curve behavior
differs depending on the mechanism, designed structure, current compliance, and voltage
sweep range, the basic parameters of the memristive function are as follows.

(1) SET and RESET voltages

These indicate the voltages at which the set and reset processes occur, respectively.
Smaller SET and RESET voltage ranges are considered favorable, as they lead to lower
energy consumption. In some cases, the operating voltage range is deliberately adjusted to
be lower than the SET and RESET voltage ranges to stabilize the overall operation [66,67].

(2) On/off ratio (HRS/LRS)

The on/off ratio is the HRS/LRS resistance ratio and a major performance-determining
parameter of the memristor. The on/off ratio indicates the distinguishability between the
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set and idle states. An integrated RAM system using memristors with an insufficient on/off
ratio suffers from scalability issues because the minimum read margin cannot be satisfied
in a large array. In neuromorphic applications, a wide range of resistance states leads to
large synaptic weight values, thereby facilitating the learning process [68,69].

(3) Stability

In a single-memristor device, continual set and reset processes must be demonstrated
at a specific voltage. For example, residual cations trapped inside the active layer structure
of memristors involving cation filament formation can hinder stable set and reset processes,
as discussed in detail below. In RAM, the retention time of the resistance state is considered
critical [70,71]. The cyclic stability of memristors is a persistent issue in practical computing
applications. In addition to the aforementioned parameters, the imitability of synaptic
and neuronal signal processing is another critical performance parameter in neuromorphic
computing and is discussed below.
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Figure 1. Typical I–V curve of a nonvolatile memristor under bipolar voltage sweep. The SET process
occurs above a certain voltage threshold, and the resistance state changes from high-resistance state
(HRS) to low-resistance state (LRS), thereby causing an abrupt increase in current (1). In (2), the
device maintains the LRS; thus, the current value is considerably higher. During the negative voltage
sweep, the device still retains the LRS (3); however, certain negative voltages lead to the RESET
process, returning the LRS to the HRS (4).

An effective strategy for memristor operation entails the induction of dramatic changes
in the resistance through the formation and rupture of ion filaments [72,73]. Under an
applied electric field, ions migrate inside the host materials to form a filament, and when
this filament grows and creates an ohmic contact between the TE and BE, the electrical
resistance rapidly decreases (set process) [74,75]. Two types of mobile ionic species are
primarily used in memristors: metal cations, such as those of Ag, Cu, and Ti, and anions,
such as oxygen (or its vacancy) [76–79]. In the case of a metal cation film memory, metal ions
are typically introduced into the host material from the electrode through an electroforming
process, or the active layer itself is mixed in a stoichiometric ratio [80,81]. Various reported
ion-mediated memristors and their rudimentary mechanisms are discussed below.

Figure 2a shows a memristor structure comprising silver metal cations as the filament
material, as demonstrated by Yoon et al. [82]. When the formed filament is of sufficient
thickness, it can persist for extended periods of time, even if the voltage applied after the
set process returns to zero. Therefore, in the sequential negative voltage sweep, the LRS
is maintained and the current is high (arrow 3 in Figure 1). Memristors that exhibit such
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memorizing behavior are referred to as “nonvolatile” types. In contrast, a cation filament
of insufficient thickness maintains the set state only in the presence of applied voltage;
when the voltage is lower than a specific value, the filament spontaneously disconnects and
reset occurs. This phenomenon was investigated in detail by Wang et al. The dissolution
behavior of the silver filament was explained by the Joule–Thompson effect, and the
regaining behavior of the metal residue ion from the ruptured filament back into the
bulk metal electrode occurred as a result of the Ostwald ripening phenomenon. Such
memristors cannot “memorize” the resistance state and are therefore referred to as “volatile”
memristors. Generally, volatile memristors are used as signal processors, which mimic
neurons that determine thresholds and generate outputs only when the input exceeds the
threshold. As the amount of silver is stoichiometrically controlled instead of using a bulk
Ag electrode, this memristor exhibits volatile behavior, whereby a reset process occurs
during a unipolar sweep. (Figure 2b) Another strategy for controlling the volatility of a
metal ion filament memristor is by means of current compliance. Due to the limited current,
the diameter of the formed filament is insufficient to maintain the resistance state, thereby
exhibiting nonvolatile I–V properties. In this context, Yang et al., suggested tellurium
as a unique cation mobile species, as tellurium shows a reverse property to the applied
current compliance [83]. Owing to the low melting point of tellurium, filament formation
thereof shows nonvolatile retention under a low current, whereas the filament ruptures
readily under a high current. Based on this property, Yang et al., succeeded in fabricating a
power-efficient cation filament memristor (in nonvolatile memorization, a lower voltage is
preferred to acquire a higher readout margin). Another major mobile species is the vacancy
of an anion such as oxygen. As shown in Figure 2c, an oxygen vacancy can also be utilized to
form and rupture a filament, thereby changing the resistance. Generally, vacancy migration
memristors can adopt oxide as an active layer, as its intrinsic structural vacancy can act as a
mobile species while changing the valence locally [84]. Therefore, unlike cation filament
memristors, anion filament memristors typically do not require the direct participation of
an electrode; chemically inert electrode materials, such as Pt or Au, are primarily adopted.
In addition to the manner in which the filaments are formed, memristive operation can
be simply realized using the bulk migration of negative ions. Park et al. suggested a
TiOx-based memristor that exhibits a gradual set process. They took advantage of the wide
range of resistance states, thereby facilitating the emulation of neuromorphic applications.
As shown in Figure 2d, when a positive voltage is applied on the TE, oxygen anions
migrate to the TE, thereby rendering the BE region relatively more metallic and decreasing
the thickness of the insulating TiOx layer (Set, LRS) [85]. In contrast, a negative voltage
causes reversed oxygen anion migration to the BE, which causes a transition to the HRS
(Reset). Instead of the abrupt ohmic connection and disconnection occurring in the filament
method, this bulk migration mechanism enables a more gradual set process (Figure 2e). For
structures such as perovskites, both the cation filament and vacancy filament mechanisms
can coexist in one device and successfully demonstrate memristive behavior. Recently,
organic–inorganic halide perovskites have attracted considerable attention owing to their
unique properties, such as tunable absorption, profuse ion migration, and mixed ionic–
electronic conduction behavior; these are highly beneficial properties for memristor devices.
Han et al. fabricated an RRAM device based on CsPbBr3 perovskite quantum dots (QDs)
to study light-sensitive artificial synapses [86]. A QD layer was sandwiched between the
two poly(methyl methacrylate) layers and deposited on an indium tin oxide (ITO)-coated
polyethylene terephthalate (flexible) substrate, as depicted in Figure 2f. The RS behavior
of this device was attributed to the formation and rupture of Br- vacancies and metallic
filaments (Ag), driven by an external bias voltage and photoirradiation, as shown in
Figure 2g,h. The collective effects of electrochemical metallization (Ag filament formation)
and valence change (Br-vacancy filament formation) in perovskite QD-based memory
may contribute to elucidating the real logic circuit applications of perovskite materials.
Moreover, as explained above, rather than using a single active layer, the construction of
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multiple active layers to achieve organized functionality and applying innovative designs
can lead to improved memristor performance.
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Figure 2. Representative mechanisms of ion-mediated memristors. (a) Schematic of Ag cation filament
formation through a silicon oxide host layer. Following formation, the device reversibly changes
its resistance state, as mediated by filament formation/rupture. (b) I–V curve of an Ag filament
memristor showing unipolar property; set and reset occur in the same voltage sweep direction;
adapted with permission from ref. [82], copyright 2018 Springer Nature. (c) Schematic of memristor
based on oxygen vacancy filament formation; adapted with permission from ref. [84], copyright 2022
Wiley-VCH Verlag GmbH & Co. (d) Schematic of valence change resulting from the migration of
oxygen ions and consequent changes in total resistance. The thickness of the insulating TiOx layer
increases/decreases via oxygen ion migration. (e) Voltage sweep cycles of a TiOx memristor with
stable gradual set (blue arrow); adapted with permission from ref. [85], copyright 2022 Springer
Nature. (f) Schematic of a CsPbBr3 quantum-dot-based resistive random-access memory (RRAM)
device. (g–i) Illustration of resistance switching from (g) the initial state; set process occurring under
(h) applied voltage only, and (i) under ultraviolet (UV) illumination; adapted with permission from
ref. [86], copyright 2018 Wiley-VCH Verlag GmbH & Co.

It is possible to enhance the capabilities of a memristor beyond a single switching layer
by incorporating various other materials to form a heterostructure. Two examples of het-
erostructured architectures consisting of innovative materials that enable the implementation
of their unique mechanisms are described below. Despite its fine integrity, the crossbar ar-
ray suffers a fundamental limitation owing to the unwanted reverse current flow through
the non-selected cells. This “sneak current” critically hinders the scalability of the memory
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array as it reduces the ratio of the actual signal from the selected cell (Figure 3a, red circle
highlighted). As a novel solution, Sun et al., demonstrated a self-selective van der Waals
heterostructured memristor composed of graphene and hexagonal boron nitride (h-BN) [87].
Unlike conventional solutions for sneak currents, this single device operates as a selector
device; therefore, no additional complexity exists in terms of the circuit design. As depicted in
Figure 3b, the sandwich-like structure comprising a graphene layer between two h-BN layers
acts as a barrier to Ag ion diffusion while offering low electrical resistance. The diffusion
barrier structure allows for two independent device operating mechanisms: boron vacancy
(Vb) filament formation and Ag filament formation (Figure 3c). Note that, despite the state
of the nonvolatile Vb filament, the entire device experiences a sufficiently low current when
the Ag filament is in the “off” state, regardless of whether the Vb filament is in the “on” state
or not (Figure 3d, 1–2). Based on the high tunneling resistance of h-BN, the connection state
of the Ag filament affects the device resistance dramatically (1010 ratio between LRS and
unselected state, Figure 3e) such that negligibly small currents exist during read operations
in the crossbar array. As the read, write, and reset voltages are higher than the set voltage
of the bottom Ag filament, the sneak current from the unselected cells during a 1

2 V read is
efficiently inhibited. The high selectivity allowed for crossbar array device scalability of up to
1 Tbit while satisfying the readout voltage margin criteria of 10% (in the worst-case scenario
entailing 10 Ω wire resistance between cells, as shown in Figure 3f).
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Figure 3. Memristor with a self-selective resistance state. (a) Schematic of “selected” cell in the
crossbar array, with a total summation of one read voltage. (Red circle) (b) Schematic of van der Waals
layered structure comprising a hexagonal boron nitride (h-BN/graphene/h-BN layer. (c) Operation
mechanism of two filamentary memristors separated by a graphene mid-layer, showing four possible
device operation states: 1 and 3 show the HRS and LRS in “unselected” mode, exhibiting high
resistance, 2 and 4 represent the HRS and LRS in “selected” mode. (d) Corresponding three-resistance
mode. (e) Cumulative probability of each resistance state. (f) Calculated readout margin indicting
scalability of up to 1 Tbit in the three case scenarios of wire resistance; adapted with permission from
ref. [87], copyright 2019 Springer Nature.

Sung et al. demonstrated a heterostructured memristor that simultaneously mimicked
both neurons and synapses [64]. Figure 4a shows a structure in which a silver-filament-
based memristor is combined with a phase-change memory (PCM) material using the
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formed silver filament as the BE, corresponding to the signal-processing roles of biological
neurons and synapses, respectively. The fundamental switching principle dictating phase-
change memristive synapses is the transition between amorphous and crystalline phases.
This synapse comprises a Ge2Sb2Te5 PCM device, which is sandwiched between two
electrodes and can be programmed based on the degree of phase change altered by electric-
current-driven heat. Crystallization of the amorphous area occurs when the heat produced
by the electrical current exceeds the crystallization temperature of the PCM. In contrast,
when the temperature increases above the melting point, the crystalline region melts and
transitions into an amorphous phase. Despite being commonly regarded as an energy-
intensive device in comparison to other synaptic-switching devices, Sung and coworkers
demonstrated that their distinct nano-filament heating structure generates a localized
and intense electric field, resulting in energy-efficient phase changes in the top PCM
layer [88]. Biological synapses regulate the strength of the signal connection between
pre- and post-synapses based on the sensitivity and density of neurotransmitters. These
connection strengths are called “synaptic weights”. While these synaptic weights remain
nonvolatile, neuroplasticity is created, and memorization and learning take place. Similar
to the plasticity of biological neurons, in which the synaptic weight increases as the time
difference between input spike signals decreases, as shown in Figure 4b, the fabricated PCM
layer exhibits synaptic-like nonvolatile connection strength storage behavior (Figure 4c).
While biological synapses store connection strength information in a nonvolatile manner,
biological neurons only play the role of firing action potentials, or output signals, to the next
synapse when the incoming signal exceeds a threshold. In this “integrate-and-fire” process,
the information from the former stimulation is considered volatile (Figure 4d). In the case
of filament-forming memristors, this volatility can be realized as an unsustainable filament,
that is, a volatile memristor (Figure 4e). Recent neurological studies have shown that
neurons excited by a given stimulus have “intrinsic plasticity”, which plays an important
role in the learning process. In particular, the length of the axon initial segment (AIS)
increases, and its response of sending out action potential outputs becomes more frequent,
as depicted in Figure 4f. As shown in Figure 4g, the relaxed state of the neuronal device
shows tonic bursting spikes with relatively low frequency. However, under the same
current input, sequential input causes the bottom threshold layer to “excite”, thus leading
to more frequent tonic bursting. Although there is a dearth of explicit indications and
material analyses regarding the presence of silver residues, this behavior is thought to arise
from silver residues in the host material layer, emulating the AIS length change of biological
neurons in signal processing. By combining a novel neuronal layer with a PCM synaptic
device, researchers have created a single device capable of impelling the intrinsic plasticity
of these neurons under low power at the device level, enabling a significantly enhanced
learning performance. Thus, memristors are not limited to simple resistance changes and
memory applications; they are expected to be critical and basic units of artificial synapses
and neuro-mimetic devices. Depending on the variance in the electrical and optical spikes,
artificial synaptic devices can be modulated using gradual conductance for multi-state
device functionality. The salient concept of synaptic characteristics and the key role of
memristors in modulating artificial synapses are discussed below.
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Figure 4. Structure-designed memristor with simultaneous neuronal and synaptic function in a
single device. (a) Schematic of an integrated phase-change memory (PCM) and Ag filamentary
memristor. (b) Biological synaptic plasticity and (c) corresponding synaptic plasticity of the PCM
layer. (d) Biological neuron and its excitability based on intrinsic plasticity. (e) Corresponding volatile
Ag filamentary threshold switching (TS) memristor showing similar excitability (right). (f) Intrinsic
plasticity of biological neuron based on axon initial segment (AIS) length. (g) Excited signal output of
TS layer indicating emulated intrinsic plasticity; adapted with permission from ref. [64], copyright
2022 Springer Nature.

3. Synaptic Characteristic Investigation in Artificial Synapse

(1) Biological synapses

The human brain is composed of neurons, that is, nerve cells that communicate with
one another via synapses. Synapses are located between the axon end of the pre-synaptic
neuron and the dendrite of the post-synaptic neuron, as shown in Figure 5a [89]. When
a neuron receives an electrical signal, it conveys it to the post-neuron via synapses by
generating an electrical spike, known as an action potential (spike). When an action
potential is generated at the axon end of the pre-synaptic neuron, neurotransmitters are
released through the synaptic cleft, as shown in Figure 5b. Synapses are small spaces
(20–40 nm) between the axon end of the preceding neuron and the dendrites of the next
neuron. Next, the chemical signal (neurotransmitter) is transmitted to the dendrite of the
post-synaptic neuron. The capacity of synapses for the strengthening or weakening of
chemical signals depending on the mobility and concentration of transmitters is referred
to as “synaptic plasticity” [90]. Essentially, synaptic plasticity is a type of brain activity
occurring in the synapses that serves to modify the connection strength. Synaptic plasticity
is important in learning and memory because it is associated with the creation of short-
and long-term memories. It is based on the number of synapses and neurotransmitters and
the effectiveness of cellular actions [91].

(2) Artificial synapses

Synaptic plasticity in biological synapses depends predominantly on the connection
strength between neurons; it can become stronger (potentiation) or weaker (depression)
depending on the synaptic weight. Artificial synapses are composed of a TE that mimics a
pre-neuron, a BE as the post-neuron, and an active layer sandwiched between them that
functions as a biological synapse, as shown in Figure 5c. The conductance and resistance
of the devices govern the strength of the connection between the pre- and post-neuron,
representing the synaptic weight. Artificial synaptic memory is categorized into two types
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depending on the retention time of the derived memory: short-term plasticity (STP) and
long-term plasticity (LTP) [92,93]. In addition, plasticity can be further categorized into
spike-time-dependent plasticity (STDP) and spike-rate-dependent plasticity (SRDP) [94].

(3) Short-term plasticity (STP) and long-term plasticity (LTP)

Potentiation and depression are synaptic weight characteristics in biology; a posi-
tive value represents potentiation, and a negative value indicates depression. STP is the
synaptic plasticity associated with short-term memory. STP is governed by the temporary
potentiation and depression of the synaptic weight, as shown in Figure 5d (blue line).
STP is beneficial for the performance of critical computational functions in spatiotemporal
information processing. In contrast, LTP is the synaptic plasticity associated with long-term
memories (red line), requiring long-term potentiation for learning and memory functions
in synaptic devices [95]. LTP can be further classified into long-term potentiation and
depression, resulting from the strengthening and weakening of the synaptic weight, re-
spectively. In addition, in biological synapses, plasticity can be transformed from STP to
LTP through repeated pulse application, which increases the synaptic strength significantly.
In 2011, Onho et al. systematically investigated the influence of the input pulse quantity
on the generation of an Ag filament in an Ag2S device and its transition from STP to
LTP [96]. In general, STP can be classified into paired pulse facilitations (PPFs) and paired
pulse depressions (PPDs), as depicted in Figure 5e. When the series of transmitted spike
signals is sufficient, PPFs increase in STP, whereas PPDs decrease. Currently, neuromorphic
systems are implemented by combining a number of volatile STP and nonvolatile LTP
components [53,97].

(4) Spike time-dependent plasticity (STPD) and spike rate-dependent plasticity (SRPD)

In ANNs, the parameters affecting synaptic plasticity must be studied as they govern
changes in the connection strength. In 1949, Hebb et al. suggested a basic mechanism for
learning and memory modeling by noting that the synaptic strength increases when the
activity in the pre-synaptic neuron repeatedly induces action potentials in the post-synaptic
neuron, as shown in Figure 5f [95,98]. The above-described Hebbian learning concept can
be further explained using two factors: STDP and SRDP. STDP defines synaptic strength
as a function of the timing between the pre-synaptic and post-synaptic action potentials.
In STDP, the change in the synaptic weight (∆W) depends on the relative timing between
the pre- and post-synaptic pulses, as demonstrated in Figure 5g. If we consider tpre and
tpost as the arrival times of the pre- and post-synaptic pulses, respectively, the synaptic
weight increases or decreases according to the time difference (∆t = tpre – tpost) between
pre- and post-synaptic neuron activity [99]. The synaptic change is represented by ∆t; if ∆t
is small, ∆W is large, and vice versa. Another essential concept of synapses is the SRDP,
where ∆W is dependent on the firing frequency, as shown in Figure 5h [100]. Here, synaptic
STP and LTP occur under stimulation by low- and high-frequency spikes, respectively. In
general, pre-synaptic spikes with a high frequency ¿10 Hz lead to potentiation, whereas pre-
synaptic spikes with a low frequency <10 Hz lead to depression [101]. The following section
summarizes novel and creative approaches that effectively mimic the signal-processing
characteristics of the above-mentioned synaptic properties in terms of their structure
and architecture.

Li et al., suggested a temporally and spatially complete neural network system de-
rived from dendrites with nonlinear integration and filtering [102]. The designed ANN
comprehensively mimics the biological neuron system comprised of synapses, dendrites,
and soma using memristor devices that can perform a digit-recognition task by stimulating
the multi-layer network. The biological neuron system and the ANN are compared in
Figure 6a. The synapses, dendrites, and somas in the biological neural network correspond
to plasticity/weight, integration/filter, and integration/fire in ANN systems for computing
functions, respectively. Figure 6b illustrates the architecture of an ANN, composed of
input, hidden, and output layers behaving as dendrites, and a soma, showing nonlinear
integration and filtering functions. To better understand the operational mechanisms, a
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biological neural system (Figure 6c) and an ANN (Figure 6d) are compared. The membrane
of biological dendrites controls the movement of ions (Na+, Ca2+, and Mg2+) via N-methyl-
d-aspartate channels (Figure 6c). Similarly, conventional metal-oxide-based memristors
operate under an electrical potential created by ion migration within the material, thereby
mimicking dendrites (Figure 6d). The electrical response of an artificial dendrite exhibits
nonlinearity under a gradually applied voltage (Figure 6e) and nonlinear filtering and
integration properties (Figure 6f). A hardware-embedded ANN with artificial dendrites
and a soma has been demonstrated, as shown in Figure 6g–i. A schematic of an artificial
synapse array comprising 1024 nonvolatile memristors with one-transistor–one-resistor
configurations is shown in Figure 6g. An artificial neuron consisting of artificial dendrite
and soma devices is shown in Figure 6h. The equivalent circuit diagram is depicted in
Figure 6i, showing the bridging of the synapse array and soma by the dendrites. Figure 6j
shows the firing spikes measured during the inference process of an ANN containing
artificial dendrites (left) and without dendrites (right). In the case without dendrites, the
contrast in the number of spikes between the matched and unmatched cases is smaller
than that with dendrites. The number of measured spikes in the matched cases is greater
than that in the unmatched cases when operating with dendrites. The functionality of
filtering and integration with dendrites and soma provides a fully mimetic ANN with the
advantages of energy efficiency and accuracy for complex AI tasks.
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Figure 5. Comparison between biological and artificial synapses. (a) Biological synapse, pre-
neuron, and post-neuron; adapted with permission from ref. [89], copyright 2016 Wiley-VCH Ver-
lag GmbH & Co. (b) Schematic of an artificial synapse; adapted with permission from ref. [77],
copyright 2021 Springer Nature. (c) General model of a two-terminal memristor-based artificial
synapse. (d) Long-term potentiation (LTP) and short-term potentiation (STP) of artificial synapses
are shown in red and blue, respectively. (e) Paired pulse facilitation (PPF) and paired pulse de-
pression (PPD) in artificial synapses. (f) Schematic of the Hebbian learning model. (g) Spike time-
dependent plasticity (STDP) according to the relative timing of the pre- and post-synaptic pulses.
(h) Spike rate-dependent plasticity (STRP) for long-term potentiation (LTP) and long-term depres-
sion (LTD) occurring under distinct conditions; adapted with permission from ref. [101], copyright
2021 Wiley-VCH Verlag GmbH & Co.
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Figure 6. (a–d) Comparison of biological and artificial neural networks. (a) Components of a
biological neural network and their corresponding functionalities. (b) Artificial neural networks
comprising an input layer, hidden layer, and output layer. (c) Operation mechanism in a biological
dendrite. (d) Conventional metal-oxide-based memristor mimicking a biological synapse. Measured
electrical response showing (e) nonlinearity and (f) nonlinear filtering and integration properties.
Schematic of (g) synapse array and (h) artificial dendrite and soma. (i) Equivalent circuit diagram
comprising (g,h). (j) Output currents from artificial neural network with dendrites (left) and without
dendrites (right) under varying input patterns; adapted with permission from ref. [102], copyright
2020 Springer Nature.

4. Fully Imitated Multi-Sensory Perception

Wang et al., demonstrated an artificial lobula giant movement detector (LGMD) us-
ing a light-mediated few-layer black phosphorous nanosheet-CsPbBr3 perovskite QD
(FLBP-CsPbBr3) threshold switching (TS) memristor for movement and light-sensitive
detection [103]. Figure 7a shows a schematic of the biological apposition compound eye
of a locust, comprising the corneal facet, screening pigment, and rhabdom under an optic
signal. Owing to its unique appositional compound eye, the locust has a large field of
view (FoV) and angular-sensitive omnidirectional sensing. To mimic the large-FoV detec-
tion capability, a hemispherical artificial biomimetic compound eye was fabricated using
20 × 20 FLBP-CsPbBr3 TS memristor flexible arrays on a retinal PDMS shape, as shown in
Figure 7b. The incident-angle-dependent photocurrent was measured along the x direction,
exhibiting the highest photocurrent at 90◦ (Figure 7c) for the optical pulse (365 nm wave-
length, 0.72 mW power, and 10 ms pulse width). Figure 7d shows a schematic of the
artificial synaptic behavior under light stimulus and the electronic pulses of the designed
FLBP-CsPbBr3 TS memristor. The collision avoidance response in the artificial biomimetic
compound eye is characterized by a voltage stimulus (+0.2 V pulse, 50 µs interval, and
50 µs duration). The corresponding conductance modulation of the FLBP-CsPbBr3 TS
memristor was measured (Figure 7e), showing excitatory and inhibitory responses, which
emulate biological LGMDs. This synaptic response can mimic collision predictions from
looming objects before impact. Practical collision avoidance functions have already been
attained using energy-efficient biomimetic designs by combining artificial TS memristors
with dynamic robot applications.
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Figure 7. (a) Biological organization of the vision system comprising a lobula giant movement
detector (LGMD) under an optical signal showing a large field of view (FoV) to detect a looming
subject (visual stimulus) and predict collision with the subject. (b) Biomimetic compound eye for FoV
detection. (c) Angle-sensitive response under an optic pulse (wavelength, 365 nm; power, 0.72 mW;
pulse width, 10 ms) along x-axis direction by a biomimetic compound eye. (d) Schematic of the light-
mediated TS memristor. (e) Excitatory and inhibitory responses of the few-layer black phosphorous
nanosheet (FLBP)-CsPbBr3 TS memristor device to a looming light stimulus with electronic pulses
(voltage, 0.2 V; duration, 50 µs; interval, 50); adapted with permission from ref. [103], copyright 2021
Springer Nature. (f) Schematics of biological (upper) and artificial (lower) somatosensory systems.
(g) I–V curve of an NbOx TS memristor showing uniform operation during 50 cycles. (h) Schematic
of the core-shell of NbOx memristor with corresponding equivalent circuit model; adapted with
permission from ref. [104], copyright 2022 Wiley-VCH Verlag GmbH & Co.

Zhu et al., developed a multi-mode-fused spiking neuron (MFSN) for mimicking a
somatosensory system to enable fully imitated multi-sensory perception [104]. The MFSN
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comprised a pressure sensor and NbOx-based memristor for temperature sensing. By
decoupling the output signals according to the frequencies and amplitudes, simultaneous
sensing of pressures and temperatures from fused spikes was demonstrated using the
MFSN. Figure 7f compares the operational mechanisms of a biological somatosensory sys-
tem with those of the artificial somatosensory system. The human neural system via which
multiple stimuli (temperature, weight, and shape) are sensed can be classified based on the
biological somatosensory system and the presence of thermal receptors and mechanore-
ceptors. Signals are delivered to the cerebral cortex by various spikes, such as pressure,
multi-mode-fused, and thermal spikes. Similarly, the artificial somatosensory system based
on MFSN arrays comprising a pressure sensor and NbOx-based memristor device can
simultaneously detect pressure and temperature stimuli. As an output, various frequencies
and amplitudes are generated for the pressure, multi-mode-fused, and temperature spikes.
For practical applications using the MFSN array, a spiking neural network classifier is
utilized for processing the multi-modal sensory inputs. The MFSN includes a piezoresistive
pressure sensor and NbOx-based, temperature-dependent TS memristor. Depending on
the applied pressure and temperature changes, it generates output spikes with distinct
frequencies and amplitudes. The working principle of the NbOx-based TS memristor
in the MFSN is shown in Figure 7g. The crossbar of the Ti/Pt/NbOx/Ti/Pt structure is
utilized for the memristor device and exhibits a stable I–V sweep over 50 cycles. At the
threshold voltage (“VTH”) of ≈1.34 V, a sudden conductance change is observed (SET)
for the LRS. During the reverse sweep, the current is reduced at the hold voltage (“VH”)
of ≈1.04 V; the MSFN switches to the HRS (showing volatile switching behavior). The
core-shell model of the NbOx-based memristor for temperature-dependent TS behavior is
designed using a corresponding simulation program with an integrated circuit emphasis
model (Figure 7h). The NbOx-based operation can be explained based on the substoichio-
metric Nb2O5-x region (shell) as a conductivity–temperature-dependent semiconductor and
filamentary core region of the NbO2 channel. The fabricated 3 × 3 MFSN array is utilized
as a spiking neural network for pattern recognition and classifying objects with various
shapes, temperatures, and weights for practical applications. Based on the aforementioned
biomimetic array structures, higher-level cognitive functions for practical applications,
such as image processing and pattern recognition, are discussed below. We summarizes
the various memristive device and their characteristic as shown in Table 1.

Table 1. Various Memristive Devices and their Characteristics.

Device Type Structure Mechanism Set
Voltage [V]

Operation
Current [A]

Endurance
[Cycle]

Retention
[s]

Synaptic
Functions Reference

Vertical Cu/MoS2/Au ECM (Filament Formation) 0.2 10−3 20 1.8 × 104 LTM, STDP [105]
Vertical Au/Ag/MoS2/Si Filament Formation −1.5 10−3 10 2 × 104 LTD, LTP [106]

Vertical Metal/h-BN/Metal Filament Formation 0.6 10−9 5 × 102 N/A STM, LTM,
PPF, STDP [107]

Vertical Pd/WS2/Pt Vacancy Migration 0.6 10−6 75 1.8 × 104 STDP, PPF [108]

Lateral MoS2/h-
BN/Graphene Charge Trapping −0.5 106 104 3.5 × 104 LTP [109]

Lateral Au/MoS2/Au Phase Transition 3.0 10−5 103 7 × 103 LTM, Synaptic
Cooperation [110]

Vertical MoTe2 Phase Transition 2.3 10−4 N/A 105~106 Memristive
Switching [111]

Lateral Au/MoS2/Au Defect Migration 80 10−4 4.75 × 102 9 × 104 LTM, STDP [112]

Heterojunction Ag/ZrO2/WS2/Pt Filament Formation 0.16 10−4 109 4 × 104 LTM, PPF,
STDP [113]

Heterojunction Ag/MoOx/MoS2/Ag Vacancy Migration 0.2 10−3 104 103 STM, LTM [114]
Lateral Au/CuInP2S6/Ti Ferroelectric 1.5 10−8 >100 2 × 103 STP, STDP [115]

Lateral SnSe Ferroelectric 2 10−2 >230 >104 LTP, STDP,
STP, PPF [116]

Vertical FTO/CsPbBr3/Au Formation of VBr Filament 1.5 10−3 102 103 Memristive
Switching [117]

Vertical Au/MAPbI3/Au Formation of VI Filament 2.7 108 103 104 Memristive
Switching [118]

Vertical Ag/PMMA/Cs3CuI5 Filament Formation 0.6 10−2 102 104 LTP, LTD [119]

Vertical Ag/PMMA/MA3Sb2Br9
Formation of Sn/VBr

Filament 0.5 10−2 300 104
LTP, LTD,

STDP, EPSC,
IPSC

[120]
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5. Multi-Layer Perceptron for Pattern Recognition

Synapses can be trained by neural networks for emerging future technologies, such
as in edge computing, image and pattern recognition, and neuromorphic computing; for
example, AI hardware [48,121–124]. Using the dataset in the Modified National Institute of
Standards and Technology (MNIST) database, handwritten using a multi-layer perceptron
(MLP), simple recognition of patterned numbers by synaptic devices has been demon-
strated [121,125–127]. Choi et al., designed dislocated SiGe layers with cracks propagated
through the films arising from the lattice mismatch between Si and Ge (Figure 8a) [128].
This structure functioned as an Ag ion pathway for reliable neuromorphic computing.
Filament formation through the pre-designed dislocated pathway enabled reproducible
RS with minimal variation. As another example, an epitaxially grown SiGe-based random-
access memory (epiRAM) exhibited an enhanced RS after the threading dislocation was
widened using the Schimmel etch method (Figure 8b–d). EpiRAM exhibits a temporal
variation of 1% after 700 I–V sweep cycles. Depending on the etching time for dislocation
widening, the set voltage is reduced owing to enhanced filament formation while the set
voltage variation increases. The Ge content and epiRAM size did not result in significant
differences; thus, only filament formation at the pre-desired dislocated area participates in
RS. The RS and reproducible characteristics of epiRAM are utilized for supervised learning
using the MNIST handwritten recognition data set (Figure 8e–g). The simulation (Figure 8e)
uses a stochastic gradient descent weight update with the MLP algorithm. A three-layer
neural network comprises 28× 28 input neurons (MNIST images), 300 hidden neurons, and
10 output neurons (classes of 0–9 digits). The 300 hidden neurons comprise the summation
from the input neuron, activation, and binarization. Figure 8f illustrates the epiRAM cross-
bar array, functioning as a synapse layer with the peripheral circuit. Pattern recognition
accuracy was simulated as shown in Figure 8g for both ideal software (blue) and epiRAM
(red). In particular, 10,000 patterns were selected as a test set after being pre-trained by
60,000 patterns. epiRAM exhibited 95.1% accuracy for pattern recognition, whereas the
ideal software exhibited 97%. Thus, strategically engineered dislocation demonstrated
unprecedented reproducible neuromorphic computing by providing pre-desired filament
pathway-based RS based on nonvolatile memory.

Seo et al. fabricated an optic-neural synaptic (ONS) device by combining synaptic
(WSe2/weight control layer (WCL)/h-BN) and optical (WSe2/h-BN) sensing functions
capable of both colored and color-mixed pattern recognition [129]. Schematics of the hu-
man eye and the visual-cortex-mimicking artificial ONS device are shown in Figure 8h.
Depending on the incident wavelength, the resistance of the WSe2/h-BN photodetector
(PD) changes. The generated carriers in the reduced-resistance state in the WSe2 induce
an increase in trapped carriers in the WCL. This modulates the synaptic operation of the
ONS depending on the incident light wavelength. To confirm the wavelength-dependent
synaptic dynamics of the ONS, they studied the post-synaptic current and LTP/LTD for
the synaptic plasticity of the ONS under three wavelength conditions: red (R, λ = 655 nm),
green (G, λ = 532 nm), and blue (B, λ = 405 nm). The WCL was formed by O2 plasma treat-
ment on the h-BN films, producing oxidized boron. The synaptic cleft terminal (Figure 8i)
generates a hysteresis characteristic between the pre-synaptic and post-synaptic terminals
depending on the applied voltage in the synaptic cleft terminal. Using the ONS devices,
an artificial optical neural network (ONN) was developed for colored and color-mixed
pattern recognition based on a perceptron network model. As shown in Figure 8j, a CNN
(left) executes color-filtering using a neuron array, whereas the ONN (right) has an optical
recognition function related to the synapse. As an input signal, the voltage is determined
depending on the color (1 V for R, 0.5 V for G, and 0.3 V for B); three neurons and a
28 × 28 array group are used for each cone cell group. Each cone cell group is fully con-
nected to classifying neurons (“1” and “4”) and generates six classifying neurons as an
output. In their study, the MNIST dataset was selected for the pattern recognition task
(image size is 28 × 28) with modification for color-mixed patterns. They prepared six types
of training datasets with 100 images in each dataset and nine types of test datasets with
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20 images for each dataset. The 600 training images were used for the pattern recognition
task, as shown in Figure 8k, and a high recognition rate (>90 %) was attained by the ONN
(red) after the 50th epoch; in contrast, the CNN (black) exhibited a low recognition rate
(<40%). As the training epoch increased, the recognition rate for the mixed-color pattern
was optimized in the case of the ONN. The weight mapping of the 12th (left) and 600th
(right) training epochs confirms the successful gradual weight optimization during training
(Figure 8l). After training, the blue-colored “4” was successfully recognized (activation
of ‘B4′ output neuron) by both the CNN and ONN, as shown in Figure 8m. However,
in the case of a mixed-color number (red and green), the highest activation value was at
“R1” for the ONN and “G4” for the CNN; thus, the ONN demonstrated successful color
recognition (Figure 8n).
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Figure 8. Reliable resistive switching based on dislocation engineering. (a) Operation principle of
epitaxially grown SiGe-based random-access memory (epiRAM): selective etch for widening the
threading dislocation for facile cation migration (filament formation). (b) Cross-sectional scanning
electron microscope (SEM) image of the epiRAM showing dislocated SiGe films. Surface SEM image
of epiRAM (c) before etching and (d) after 5 s of etching. (e) Corresponding resistive switching char-
acteristics after 0 s (blue) and 5 s (red) of etching. Neural network demonstration using a memristor
array. (f) Multi-layer perceptron (MLP) neural network using epiRAM for signal recognition (black
and white input) and circuit diagram using epiRAM array-embedded hardware with peripheral cir-
cuit (right part). (g) Accuracy achieved using the training epoch by ideal software (blue) and epiRAM
array-based hardware (red). Artificial optic-neural synaptic device for color-mixed pattern recognition
task; adapted with permission from ref. [128], copyright 2018 Springer Nature. (h) Schematic of the
human optic nerve system (visual cortex and eye) and h-BN/WSe2 (optical sensing device) integrated
with WSe2/WCL/h-BN (synaptic device). (i) Detailed structure of synaptic devices comprising WSe2
and a weight control layer (WCL) between the pre- and post-synaptic terminals. (j) Optic neural
network for recognition of 28 × 28 RGB-colored images. (k) Recognition rate comparison between a
basic neural network (black) and an optic neural network (red). (l) Weight-mapped images after 12th
(left) and 600th (right) training epoch. Activation values for each output neuron for (m) single-colored
image (blue) and (n) color-mixed image (red and green) after the 600th training epoch; adapted with
permission from ref. [129], copyright 2018 Springer Nature.



Sensors 2023, 23, 3118 17 of 27

6. Convolutional Neural Network

The recognition or processing of actual images using a CNN is an essential component
of neuromorphic computing. Memristor crossbar arrays or synaptic device arrays enable
nonvolatile memory applications specially designed for signal and image processing inte-
grated with neural networks [93,130–133]. The Canadian Institute for Advanced Research
(CIFAR)-10 dataset is typically used to evaluate recognition task performance [134–136].
The addition of image processing kernels to neural networks and arbitrary processing of
input images can also indicate the feasibility of next-generation neuromorphic-based image
processing and edge computing [137–141].

Seo et al., developed an optogenetics-inspired optoelectronic synapse using layered
rhenium disulfide (ReS2) with sulfur vacancies (Sv) [142]. Harnessing the intrinsic persistent
photoconductivity (PPC) effect, optogenetic activity was used to mimic the neural system
of a biological synapse. The conductivity of ReS2 was modulated under the incident
optical stimulation, and photosensitive memory was created using the PPC effect. Using
the optogenetics-inspired ReS2 array, the authors demonstrated a hardware-based neural
network (HW-NN) through a CIFAR-10 dataset recognition task (Figure 9a). The CIFAR-
10 dataset was examined using an eight-layer CNN comprising an ReS2 synapse array
integrated with deep neural network+ NeuroSim. The CIFAR-10 dataset comprises three
color channels (red, green, and blue), ten categories of objects, 50,000 images for the training
set, and 10,000 images for the inference set. In the feed-forward CNN operation, the training
input (CIFAR-10) signals are processed through the six convolutional layers (layers 1–6),
followed by the fully connected layers (layers seven and eight). Layers two, four, and six
function as pooling layers for reducing the feature size. The input pixels corresponding to
the voltage (V) are convoluted in multiple kernel layers using synaptic weights (W). During
the convolution operation (I = W × V), the current signals are calculated and processed by
rectified linear unit activation functions, resulting in voltage signals (V = fRELU(I)) for the
next convolution layer. In layer six, a flattening operation is conducted, and the voltage
signal is transferred to the fully connected layers (layers seven and eight). Figure 9b shows
a schematic of the ReS2 synapse-based HW-NN, illustrating the operation principle and
peripheral circuits. The conductance difference (weight) is calculated for two synapse
devices (potentiation and depression). Details of the weight calculation and update via
light stimulation in the optogenetic-inspired optoelectronic synapse are shown in Figure 9c.
The recognition rate for the CIFAR-10 dataset was confirmed to be 89.4% by the ReS2-based
optoelectronic synapse and 91.1% by the ideal synaptic devices (Figure 9d). Even after the
ReS2 synapse underwent 1000 cycles of bending, 89.2% of the recognition rate was retained.

Yeon et al., demonstrated an Ag–Cu alloying conducting channel in an Si memris-
tor, achieving reliable neuromorphic computing for data retention and image processing
(Figure 9e–k) [143]. The silicidable copper stabilizes Ag ion migration during filament
formation and rupture. In addition to the Ag–Cu alloy, they suggest other possible channel
combinations (Ag–Ti, Ag–Cr, and Ag–Ni) for the TE. Cu, Ni, Cr, and Ti are thermody-
namically stable and interact with Si, consequently resulting in the formation of a stable
interface between the conduction channel and Si; however, these metals do not exhibit RS
characteristics. In contrast, because Ag is thermodynamically unstable in Si, the resultant
electrochemical mobility induces memristive behavior. Accordingly, the utilization of a
binary electrode (Ag with a silicidable metal) delivers a reliable memristor for neuromor-
phic computing. Ti is miscible with Ag but exhibits a lower diffusivity than Ag in Si
media and cannot guarantee scaffold formation before Ag migration. Cr and Ni exhibit
higher diffusivities than Ag in Si but are immiscible with Ag; thus, they exhibit superior
memristive switching uniformity but poor long-term stability. However, the diffusivity of
Cu is higher than that of Ag in Si (favorable backbone formation) and it is partially miscible
with Ag (it stabilizes the Ag ions in Si via bridging). The designed Ag–Cu memristor
array was fabricated for a 32 × 32 transistor-less Si memristor; Figure 9e–g shows a digital
photograph, optical microscopy image, and scanning electron microscopy image of the
array, respectively. To evaluate the stability of the Ag–Cu memristor array, its data retention
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capability was tested, as shown in Figure 9h (initial state (left) and after 60 s (right)). It
successfully maintained a 256-level greyscale image during the 60 s. However, in the
case of Ag–Ni and Ag, the image information could not be stored, and poor retention
was observed. These results correspond to the stability of the memristor, controlled by
the alloying conducting channel. For functional tasks using the Ag–Cu memristor array,
convolutional kernels are integrated for image processing (Figure 9i–k). Four types of
kernels (sharpened, softened, and edges (horizontal and vertical)) were programmed in
the convolutional process for each pixel. The image processing kernels were programmed
into four columns of the Ag–Cu array and processed in parallel. Differential pairs (two
memristors in the same output column) receive either positive or negative input pixels
(Figure 9i). The four types of image processing kernels are shown in Figure 9j. Based on the
kernel operation, the processed image shows four types of well-processed results relative
to the input image (Figure 9k).
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Figure 9. Convolutional neural network (CNN)-based image recognition using a ReS2 memristor
array. (a) Canadian Institute for Advanced Research (CIFAR)-10 dataset recognition task using
CNN entailing convolution with pooling layers, followed by a fully connected layer. (b) ReS2

embedded hardware-based neural network (HW-NN) with multiplexer, analog-to-digital converter,
and peripheral circuits. (c) Circuit diagram of optoelectronic synapse arrays for conductance and
weight update operation mechanisms. (d) Recognition rate evolution depending on epoch for
ideal synapse and ReS2-based HW-NN. Transistor-less Si-based 32 × 32 memristor array for image
processing; adapted with permission from Ref. [142], copyright 2021 Springer Nature. (e–g) Images of
Ag–Cu alloying conducting-channel-based Si memristor chip. (h) Data retention test for Ag–Cu alloy
memristor array: initial (left) and after 60 s (right). (i) and (j) Convolutional image processing using
four types of kernels (sharpen, soften, and selected edge) compared to input. (k) Image processed by
Ag–Cu alloy memristor; adapted with permission from ref. [143], copyright 2020 Springer Nature.
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7. Light-Sensitive Synaptic Device for Image Sensor

The human eye and visual cortex mimetic chips are the most powerful devices for
AI-embedded hardware-based neuromorphic computing [144–147]. Real-time weight
updates from input signals provided by light-based patterned images, as performed by the
human eye, and signal processing in a neural network (human brain) need to be developed
for practical applications [148–151]. Although AI chips composed of light sensors and
neural systems still face challenges emulating biological neurons in the human eye and
brain, several state-of-the-art methods have been developed for the integration of desired
components [152–156].

Choi et al., developed heterointegrated chips comprising optoelectronic devices (light-
emitting diode (LED) and PD arrays) and neuromorphic cores (memristor crossbar ar-
rays) [157]. In their system, stackable and replaceable chips were embedded for classifying
light-based input image information. Data processed in parallel using these reconfig-
urable AI-embedded chips provided enhanced data bandwidth and energy-efficient edge
computing. Heterointegrated processing modules (image sensors, kernel processors, and
noise-reducing signal processors) were assembled for the recognition of light-based input
patterns by the chip layers containing a denoising processor. Figure 10a depicts the schemat-
ics of reconfigurable and stackable heterointegrated chips. Light-based letter images (“M”,
“I”, and “T”) are captured by PDs and LEDs in the eye layer. The stackable heterointegrated
chips and chip-to-chip communications from the sensory input to the output, AI tasks,
such as letter recognition or object detection, are illustrated in Figure 10b. To enhance the
recognition performance, a denoising layer comprising a neural network can be inserted, as
shown in Figure 10c. A 25 × 5 × 25 denoising autoencoder is used to denoise the corrupted
images (5 × 5 patterned images). After denoising the corrupted image (Figure 10c), the
letter recognition performance was enhanced, particularly between the letters “I” and “T”
(Figure 10d). The denoised “T” kernel exhibits a higher current difference than in the case
without denoising. Thus, the heterointegrated AI-embedded chip enables highly versatile
data processing via neuromorphic computing.

Zhou et al., developed Pd/MoOx/ITO optoelectronic resistive random-access memory
(ORRAM) based on ultraviolet (UV)-light-triggered nonvolatile and volatile resistance
switching under tunable light intensity (Figure 10e) [158]. Under UV illumination, the
oxidation state of Mo changes from Mo6+ to Mo5+, thereby resulting in a conductance
variance from the HRS to the LRS when operating as an ORRAM. Photogenerated protons
(H+) form hydrogen molybdenum bronze (HyMoOx) to induce an optoelectrical SET
process, whereas the protons drift toward the Pd electrode under an electrical field for the
RESET process. The memristive characteristics of ORRAM were investigated as shown in
Figure 10f. Before UV illumination, ORRAM exhibited the HRS state (black line), switching
to the LRS under UV illumination (blue line). During the RESET process, the electrical-
field-induced proton drift to the Pd electrode produced an intrinsic resistance change (red
line). Figure 10g compares the visual information transmission of the human optic nerve
(upper part) with that of ORRAM-based neuromorphic computing (lower part). In the
human eye, the information detected in the retina is transferred by the optic nerve to
the visual cortex for recognition. The ORRAM mimics the sensing and pre-processing of
the human eye and retina (neuromorphic pre-processing) and the output information is
transferred to a three-layer ANN for image recognition. The role of pre-processing in the
ORRAM is evaluated based on patterned letter images (“P”, “U”, and “C”) to highlight
the processed noise, which is compared before (left) and after (right) pre-processing in the
pattern (Figure 10h). In addition, the recognition rates with (black) and without (red) the
ORRAM are compared in Figure 10i. In the case of the ORRAM, the recognition rate reaches
0.986 within 1000 training epochs, whereas 2000 training epochs were required for the same
rate without the ORRAM. Under optical stimulation, the tunable synaptic plasticity results
in human-eye-like signal sensing and neuromorphic computing, allowing for an efficient
reduction in the data processing energy for visual information retention and recognition.
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Figure 10. (a) Schematic of reconfigurable heterointegrated AI-embedded neuromorphic chips. A
light source from the bottom through a letter image (“M”, “I”, and “T”) can be sensed by the
eye layer. The fabricated neuromorphic chip connected to a light communication system (sensory
input) is illustrated as a stackable heterointegrated chip. In the eye layer output, through AI tasks,
integrated pre-programmed neuromorphic computing provides edge computing, such as letter
recognition and object detection. (b) Denoising function of the neural network: denoising autoencoder
(25 × 5 × 25 neurons). (c) Denoised function-implemented letter images. (d) Denoised letter image
recognition task performed for letters “M”, “I”, and “T”; adapted with permission from ref. [157],
copyright 2022 Springer Nature. (e) Schematic of a two-terminal optoelectronic resistive random-
access memory (ORRAM) synaptic device consisting of MoOx as a resistive material and ITO and Pd
as the top and bottom electrodes, respectively, under UV illumination. (f) Resistive characteristics of
designed ORRAM data: optical set (blue line), electrical reset (red line), and initial state before UV
illumination (black line). (g–i) Simulation of image processing by ORRAM and its attained recognition
rate. (g) Schematic of visual information transmission in the human optic nerve (upper part) and in
ORRAM-based neuromorphic computing for image recognition (lower part). (h) Letter recognition
before processing (left) and after processing (right) by ORRAM-based neural network. (i) Accuracy
comparison with (black) and without (red) ORRAM-based image recognition and processing; adapted
with permission from ref. [158], copyright 2019 Springer Nature.
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8. Conclusions

Hardware-implemented neuromorphic computing based on memristor arrays was
reviewed herein, including the operation mechanisms of single memristors as well as those
of crossbar arrays for intelligent applications, such as pattern recognition, image processing,
and AI chips. Moore’s law faces the challenge of attaining a decreasing physical scale in
semiconductor processing while enhancing device performance. Emerging human-brain-
inspired neuro-morphic computing aims to address the memory bottleneck associated with
von Neumann architectures, which hinders memory storage and processing in big data and
AI areas. Memristor-based RRAM is emerging as a promising candidate for overcoming the
memory bottleneck, as it allows for high-density integration and energy-efficient memory
processing using neuromorphic computing. Beyond the two-terminal memristor array,
to satisfy multi-bit data storage, heterosynaptic plasticity is desired for tunable synaptic
function, similar to that operating in the human brain. Although the memristor-based
one-resistor (1R) RRAM structure is simple and capable of high-density integration, its
synaptic modulation performance is poor. Therefore, one-transistor–one-resistor (1T1R)
arrays should be introduced for complex AI computing and data processing tasks. Diffusive
metal electrodes, such as Ag, Cu, and Ti, degrade memristive switching owing to residue
filament formation in the channel. Even when external-substance-induced memristive
switching occurs, the degraded endurance of RRAM critically limits practical applications.
Thus, in addition to cation filament formation, vacancy migration or tunneling-based
synaptic devices, which generate memristive switching inside the channel, also display
significant potential for reliable neuromorphic computing. To mimic the human nerve
system with memory applications, it is essential to understand the specific functionalities
and characteristics of the nervous system, such as those of the soma, dendrites, and nodes
of Ranvier. Using these components, advanced neuromorphic computing based on realistic
bio-inspired artificial neural systems can be developed. Furthermore, integration with
optic functionality broadens the potential applicability to include optogenetic and photo-
induced memory. The fabrication of 2D-material-based large-scale RRAM arrays remains
challenging owing to limited synthetic methods and low-yield processing. To demonstrate
high-performance neuromorphic computing, fundamental advanced synthetic approaches
that deliver high-uniformity in wafer-scale should be considered. The abovementioned
strategies, namely, vacancy-induced migration, realistic nervous system imitation, and
optogenetic integration, improve the functionality and endurance of present neuromorphic
computing. Memristor-based neuromorphic computing offers significant potential and
functionality for in-memory processing and edge computing and should therefore be
investigated further for future AI technologies.
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