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Abstract: One of the most commonly used surveying techniques for landslide monitoring is a
photogrammetric survey using an Unmanned Aerial System (UAS), where landslide displacements
can be determined by comparing dense point clouds, digital terrain models, and digital orthomosaic
maps resulting from different measurement epochs. A new data processing method for calculating
landslide displacements based on UAS photogrammetric survey data is presented in this paper,
whose main advantage is the fact that it does not require the production of the above-mentioned
products, enabling faster and simpler displacement determination. The proposed method is based
on matching features between the images from two different UAS photogrammetric surveys and
calculating the displacements based only on the comparison of two reconstructed sparse point clouds.
The accuracy of the method was analyzed on a test field with simulated displacements and on an
active landslide in Croatia. Moreover, the results were compared with the results obtained with
a commonly used method based on comparing manually tracked features on orthomosaics from
different epochs. Analysis of the test field results using the presented method show the ability to
determine displacements with a centimeter level accuracy in ideal conditions even with a flight height
of 120 m, and on the Kostanjek landslide with a sub-decimeter level accuracy.

Keywords: landslide; monitoring; unmanned aerial systems; structure from motion; photogrammetry

1. Introduction

Landslides are one of the world’s major geohazards that can cause great material,
economic, social, and human losses [1]. Due to climate changes, natural extremes such
as rapid temperature changes, flooding, and high amounts of precipitation in a short
period can affect the slope stability in general [2–4]. Many landslides were activated in
Croatia caused by those processes and resulted in significant material damage [5]. Landslide
monitoring can provide vital information for preventing or reducing potential great dangers
that landslides cause [6]. As a good example of a landslide monitoring system, a continuous
real-time monitoring system installed on landslide Kostanjek, located in the city of Zagreb
in Croatia, can be highlighted. The monitoring system acquires information of landslide
kinematics to react in time and prevent a potential catastrophe [7,8]. The information
collected by the monitoring system is necessary for understanding the landslides behavior
and for identifying possible triggering effects [9].

The most common techniques used in landslide monitoring projects are ground-
based techniques, including geotechnical, geophysical, and geodetic instruments, and
remote sensing techniques [10]. Classical geodetic techniques include measurements
using the level, total station, and GNSS instruments [11–13]. The main advantage of these
techniques is the millimeter level accuracy, and in many studies, those measurements
were considered as reference values used to access the validation of other monitoring
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techniques [11,14,15]. However, monitoring with these techniques does not provide
complete information on landslide displacements due to the sparse spatial distribution of
surveyed points [16]. Furthermore, remote sensing techniques for landslide monitoring
utilize terrestrial, airborne, and spaceborne optical and microwave images, as well as
airborne (ALS) and TLS datasets [10]. Remote sensing techniques are practical tools to
rapidly obtain spatially distributed information on landslide kinematics [17]. The main
advantage of remote sensing techniques is the capability to acquire spatially continuous
data with centimeter precision, which can complement conventional ground-based
techniques [18]. Those techniques allow the measurements of ground displacements,
variations of geotechnical or geophysical parameters, and water level measurements [19],
which means that they can improve the knowledge about the development of landslides
and their triggering factors [20].

Due to technological developments in the last few decades, the use of Unmanned
Aerial Systems (UAS) in the field of Photogrammetry and Remote sensing is constantly
growing [21]. The monitoring technique based on UAS photogrammetric surveying has
become a valuable technique in the landslide monitoring projects [22–25]. Using this tech-
nique, the monitoring is based on quantifying the topographic changes between products
such as dense point cloud, digital elevation model (DEM), digital surface model (DSM),
digital terrain model (DTM), and digital orthomosaic [22,23] obtained from different UAS
survey epochs and delivered from the Structure from Motion (SfM) and Multi-View Stereo
(MVS) image processing algorithm. Among the listed techniques based on UAS pho-
togrammetric surveying, one of the most used techniques is based on image correlation,
which detects corresponding features in two images by correlating their intensity values to
detect topographic changes. Using this technique on georeferenced orthomosaic images
produced from different UAS survey epochs, the horizontal displacement of the landslide
can be determined [26–28]. Moreover, the widely used technique is DEM of difference
(DoD), by which a comparison of digital elevation models obtained from two different UAS
survey epochs is performed to obtain landslide displacements in periods between survey
epochs [29–31]. Many authors use Multiscale Model-to-Model Cloud Comparison (M3C2)
for directly comparing two point clouds and conducting change detection with minimal
manual processing [31–33].

All the mentioned techniques compare high-resolution products generated by pro-
cessing images with SfM and MVS algorithms from acquired images in two different UAS
photogrammetric survey epochs [22,23]. In the entire SfM-MVS algorithm, processing
using the MVS algorithm is a significantly more time-consuming and demanding part of
the processing algorithm [34–36].

In [37], we proposed a new data processing method for the calculation of the landslide
displacements from UAS photogrammetric survey data based exclusively on the SfM
algorithm steps and resulting sparse point clouds. Using the proposed method, landslide
displacements can be determined without using the MVS algorithm and generating dense
point clouds, digital elevation model, and digital orthomosaic images. Based on the
aforementioned information and compared to previously used methods for detecting
landslide displacement, the proposed data processing method is faster, computationally
simpler, and does not compromise the quality of the obtained results.

The applicability of the proposed method is presented in [37], where simulated
displacements are determined from the UAS survey performed on a test field at a
flight altitude of 20 m. In this paper, the continuation of this research is presented
using data from UAS surveys performed on the same established test field at greater
flight altitudes (50 and 120 m) since they are more realistic altitudes for UAS survey
of a landslide. Moreover, UAS surveys were performed by applying two different
flight heights to analyze the impact of flight altitude on the accuracy of the determined
displacement. On the established test field, displacements were determined using the
proposed method and compared with the true value of displacements to show the
accuracy of the proposed method. Furthermore, the determined displacements are
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compared with the displacements determined based on the comparison of orthomosaic
images from the two epochs, which is the most commonly used method of determining
displacements from the UAS photogrammetric survey.

Since the UAS surveys on an established test field were performed in ideal conditions
on a relatively small and predominantly horizontal area with clearly defined details, the
applicability of the proposed data processing method was also analyzed on the larger area
of an actual landslide with complex topography. For this purpose, data from two UAS
photogrammetric surveys of Kostanjek landslide were processed using the proposed data
processing method. For the accuracy analysis of landslide displacement determination
achieved using the proposed data processing method, in the case of the test field and
an actual landslide, displacements were measured via classical geodetic surveying tech-
niques using the total station and GNSS instruments of the Kostanjek landslide real-time
monitoring system.

2. Materials and Methods

The workflow of the proposed data processing method with a novel approach for the
calculation of landslide displacements from UAS photogrammetric survey data is described
in Section 2.1. The test field established for the testing of the proposed method with mission
planning parameters and data acquisition procedures necessary for the successful execution
of the survey on the test field are described in Section 2.2. Section 2.3 describes landslide
Kostanjek, as well as UAS photogrammetric surveys conducted to verify the performance
of the proposed data processing method.

2.1. Workflow of the Proposed Data Processing Method

The theory behind the proposed data processing method is presented in detail in [37,38].
The workflow of the proposed method with three main steps is shown in Figure 1. In this
section, those main steps of the proposed method will be briefly explained for the purpose of
understanding and analyzing the results presented in this paper.

Within Step 1 of the proposed method, an algorithm for feature detection is applied
to all images acquired during two distinct UAS survey epochs. After the features have
been identified on all images from both UAS survey epochs, they are linked using feature
matching algorithms. The Fast Library for Approximate Nearest Neighbors (FLANN)
method of matching is used in this paper. Using the proposed method, it is necessary
to perform a matching algorithm process between features on all images from both
surveying epochs simultaneously. This will make it possible to connect the reconstructed
points from two different surveying epochs that were processed separately and deter-
mine the displacements between them. After the features are matched, reconstruction
of the scene using the SfM algorithm is performed separately for the first and second
surveying epochs. This process led to the creation of two sparse point clouds where
each point cloud consists of reconstructed point features that relate exclusively to the
first and second epochs of the UAS survey, respectively. These sparse point clouds
are rebuilt in local coordinate systems that must be connected with the same global
coordinate system by means of an indirect or direct georeferencing technique. In this
paper, we used an indirect georeferencing approach by using Ground Control Points
(GCPs) established on the field. By obtaining two georeferenced sparse point clouds
relating to an identical reference coordinate system, Step 1 of the workflow ends, and
the calculation of displacement vectors follows.
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Within Step 2, displacements are calculated from two sparse point clouds. The results
of Step 1 are two georeferenced sparse point clouds that refer to two different epochs in an
identical reference coordinate system. Numerous reconstructed feature points correspond
to the same physical points in both epochs. It is straightforward to identify these points
since features are matched simultaneously on images of both surveying epochs. Then, the
displacement vectors can be calculated as the difference between coordinates in the two
surveying epochs:

∆Ei = Ei(e2)− Ei(e1), ∆Ni = Ni(e2)− Ni(e1), ∆Hi = Hi(e2)− Hi(e1) (1)

where:

∆Ei, ∆Ni, ∆Hi—is the displacement in the east, north, and height directions,
i—is the identification name of the common feature point,
e1, e2—denote the first and second epochs.

Within Step 3, filtering of the data and detecting and removing outliers from the data
are performed. Filtering of the data was conducted based on the criteria of the number of
images on each feature point from which the displacements were calculated. The reliability
of the feature reconstruction increases with the number of images on which they have been
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detected. In this paper, only the displacement vectors calculated based on common feature
points found on five and more images in both epochs were kept in the datasets. In the
next step, outlier displacement vectors are detected and removed by performing the Leave
One Out Cross Validation (LOOCV) process based on the kriging interpolation [39,40]. The
detailed process of detecting and removing outlier displacements is described in [37].

As a result of this process, the number of displacement vectors in the dataset decreased
by keeping the most reliable displacement vectors within the area of the landslide.

2.2. Test Field—Establishment and Simulation of the Landslide

To examine the applicability and accuracy of a proposed data processing method in
determining the displacements of a landslide, a test field on which the UAS photogrammet-
ric surveys were carried out was established. A test field was established in the Republic of
Croatia near village Ljubešćica (Figure 2).
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Figure 2. Location of the test field with a simulated landslide.

A flat concrete surface of a football pitch measuring 40 m× 25 m was used as a surface
for simulating landslide movements. The landslide was simulated by moving two large
tarpaulins (dimensions 20 m × 15 m = 300 m2) placed on the football pitch. The tarpaulins
were marked with random patterns and lines drawn on each of them (Figure 2).

The tarpaulins were moved in different directions and by different magnitudes relative
to the initial positions. The first epoch (epoch 1) in this research represents the initial
position of the tarpaulins, which means the state of the landslide before the simulated
displacement, and the second epoch (epoch 2) denotes the state of tarpaulins after the
simulated displacements. The average magnitude of the simulated displacements for the
tarpaulin in the west was 19 cm, and for the tarpaulin in the east was 48 cm, as shown in
Figure 3.
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To validate the accuracy of the proposed data processing method, 70 control points
(CPs) have been marked on tarpaulins (35 CPs on each tarpaulin) in a raster grid with a
cell size of 3 m. The CPs were marked as a black cross 30 cm wide (Figure 3). Moreover,
seven ground control points (GCPs) have been established on the test field for indirect
georeferencing of UAS-derived products. The GCPs were marked as a flat square plate
with 50 cm long sides on which the chessboard pattern was painted in black and white
(Figure 3).

To determine the coordinates of CPs in each survey epoch as well as the coordinates
of GCPs, the reference network was established. The reference network consisted of
four points (points P1–P4 shown in Figure 3) stabilized in each corner of the football
pitch. The measurements were performed at the Leica TPS1201 total station, with an angle
measurement accuracy of 1′′ and distance measurement accuracy of 2 mm + 2 ppm [41].
The final coordinates of reference network points were determined with sub-centimeter
level accuracy.

After the test field was established, UAS missions containing all the flight parame-
ters necessary for the successful execution of the survey on the test field were planned.
Each planned mission was surveyed twice, first before simulating landslide displacements
(epoch 1) and second after simulating displacements (epoch 2). The main difference be-
tween the two missions was the flight altitude of the UAS vehicle for the purpose of
analyzing the impact of flight altitude on the accuracy of displacement determined using
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the proposed method. It is important to mention that the accuracy of the UAS survey
mainly depends on the flight altitude [42].

Therefore, the first mission was prepared for a flight altitude of 50 m, and the second
mission for a flight altitude of 120 m above ground level. The flight altitude of 120 m above
ground level was chosen as the upper flight altitude limit because this altitude is the upper
flying limit allowed in the open category prescribed by the official regulation on UAS in
the European Union.

The missions were prepared for quadcopter vehicle DJI Phantom 4 Pro v2.0, with a
built-in 1-inch, 20 Megapixels CMOS camera sensor. The detailed parameters of each UAS
mission can be observed in Table 1.

Table 1. The parameters of planned UAS missions.

Mission Parameters First Mission Second Mission

Number of waypoints 38 50

Approximate flight area [m2] 11,000 44,000

Distance between consecutive images [m] 10.94 25.97

Tilt of camera 70◦

Forward overlap 80%

Side overlap 85%

Flying altitude (above ground level) [m] 50 120

Flying speed [m/s] 2.5 5

Ground sample distance (GSD) [cm/px] 1.50 3.56

Both missions, a total of four UAS photogrammetric surveys, were performed on
2 June 2021. The camera parameters (shutter speed and aperture) were manually adjusted
before the flights, according to the light intensity, to obtain the best possible image quality
of tarpaulins. The settings of the ISO parameter were set on automatic adjusting. The
fly duration and camera parameters used during the performing mission can be seen in
Table 2.

Table 2. Summary of UAS missions and camera parameters.

First Mission Second Mission

Epoch 1 Epoch 2 Epoch 1 Epoch 2

Start time [hh:mm] 11:46 16:24 10:42 15:37

End time [hh:mm] 12:02 16:41 10:58 15:52

Flight duration [hh:mm] 0:16 0:17 0:16 0:15

Number of acquired images 217 216 161 161

Shutter speed 1/400

Aperture 8

ISO (auto) 100

2.3. Case Study—Application of the Proposed Data Processing Method on the Kostanjek Landslide

The performance of the proposed data processing method was tested on the largest
landslide in Croatia, the Kostanjek landslide, located in the western residential area of
the City of Zagreb in the Republic of Croatia (Figure 4), at the base of the Medvednica
Mountain [43]. The Kostanjek landslide is a deep-seated translational landslide that extends
over an area of 1 km2 with an estimated volume of 32 million m3, with a sliding surface
depth of up to 90 m, mainly composed of soft marls [8,44]. The location of the landslide
is approximately between 45◦48′57′′ and 45◦49′40′′ latitudes and between 15◦50′54′′ and
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15◦51′40′′ longitudes considering the WGS 84. According to the velocity landslide classes
defined by [45], it is a slow-moving landslide with a maximum movement velocity of
44 cm/year, detected in the period from 1974 to 1976 [46]. From 1963 to 1994, the total
displacements ranged from 3.4 to 6.5 m [44].
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Figure 4. Location of the Kostanjek landslide.

This landslide is an excellent choice for testing the applicability of the proposed
data processing method in the determination of displacements on an actual landslide
since it has an integrated automated real-time monitoring system (Observatory for the
Kostanjek landslide monitoring). With the real-time monitoring system, it is possible to
gain insight into the actual displacements of the Kostanjek landslide in a certain period that
are used as reference displacement values during the process of validating the proposed
data processing method. The actual landslide displacements are determined by using the
monitoring system in real-time based on the 15 GNSS sensors permanently established on
the landslide (Figure 5).

The reference values of displacement vectors at the position of the GNSS monitoring
system sensors were determined by calculating the difference between their positions
in two epochs. These GNSS sensors were used as CPs in the validation process. The
position of the GNSS sensors in both epochs is determined based on the measurements of
the real-time monitoring system “Observatory for the Kostanjek landslide monitoring.”

The images captured in UAS photogrammetric surveys on 24 April 2017, and 2 May 2019,
were processed using the proposed data processing method. UAS missions were planned
using the senseFly eMotion 3 software, senseFly Ltd, Cheseaux-sur-Lausanne, Switzerland.
The parameters of each planned mission can be seen in Table 3.
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Figure 5. Locations of the permanently established GNSS sensors on the landslide for kinematics
monitoring in real-time.

UAS photogrammetric survey was conducted using a fixed wing vehicle senseFly
eBee X. The difference between the two planned missions was in the used cameras and
flight altitudes. In the first mission, the camera model was senseFly S.O.D.A, with a
1-inch 20-megapixel RGB sensor, and in the second mission, the camera model was
senseFly Aeria X, with a 24-megapixel RGB APS-C sensor. Moreover, due to changes in
legal regulations in the Republic of Croatia in the period between the two UAS surveys,
UAS flight altitudes in the second mission was 40 m lower. All this led to smaller GSD
values in the second mission (GSD in the first mission was 3.9 cm/px, and in the second
mission, it was 2.3 cm/px).
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Table 3. The parameters of planned UAS missions in senseFly eMotion 3 software.

Mission Parameters First Mission Second Mission

Number of waypoints 56 82

Approximate surveyed area 1.619 km2 1.624 km2

Distance between consecutive images 43 m 22 m

Tilt of camera 90◦ 90◦

Forward overlap 70% 80%

Side overlap 75% 70%

Flying altitude (above ground level) 160 m 120 m

Flying speed 10 m/s 11 m/s

Ground sample distance 3.9 cm/px 2.3 cm/px

A total of 562 images were obtained in the first mission, and a total of 1530 images
were obtained in the second mission. The camera parameters used during the missions are
shown in Table 4.

Table 4. Summary of accomplished missions with camera parameters.

UAS Missions

First Mission (24 April 2017) Second Mission (2 May 2019)

Start time [hh:mm] 9:51 9:20

End time [hh:mm] 10:36 10:25

Flight duration [hh:mm] 0:45 1:05

Number of acquired images 562 1530

Shutter speed (auto) 1/1000 1/2000

Aperture (auto) F/2.8–F/7.1 F/3.6–F/5.6

ISO (auto) 125–320 160–640

In both survey epochs on the Kostanjek landslide, 20 GCPs were established for
indirect georeferencing, marked with a 20 cm diameter white circle and a survey bolt
in the middle used for precise determination of GCP coordinates. The coordinates of
GCPs were determined by means of the GNSS RTK method using the CROPOS differential
correction services [47]. Measurements were conducted in two independent repetitions
(each repetition consists of 3 consecutive measurements, each lasting 30 s) with a time
interval between the repetitions of 2 h allowing for change in GNSS satellite geometry.

3. Results

In this section, the results of processing of the collected UAS photogrammetric survey
data and accuracy analysis of displacements determination by the proposed data processing
method are presented. Results of application of the proposed data processing method
on the test field are presented in Section 3.1, with the accuracy analysis presented in
Section 3.2. Results of the comparison of displacements determined by using the proposed
data processing method and by the comparison of orthomosaic images from the two epochs
are presented in Section 3.3. In Section 3.4, results of application of the proposed data
processing method on an actual landslide are presented.
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3.1. Test Field—Results of the Proposed Data Processing Method

Following the proposed data processing method workflow (Figure 1), the first
step in image processing was to detect features on the images acquired in both survey
epochs of the two UAS missions. The images were processed using the open-source
OpenSfM v0.4.0 software [48]. The images of both epochs related to the same mission
are processed together.

During the first mission, a total of about 47.89 million features were found across
all 433 images, which resulted in a mean of 110.61 thousand features for each image.
In addition, during the second mission, a total of about 34.04 million features were
found across all 322 photos, which resulted in a mean of 105.72 thousand features for
each image.

The next step of the proposed data processing method workflow is to match features
between images acquired during UAS photogrammetric survey epochs. In this step, all
possible matches between feature points on all images participating in the processing are
found. This includes searching the matches between feature points on images from the
first epoch, the matches between feature points on images from the second epoch, and
most importantly for the proposed data processing method, searching the matches between
feature points on the images of both epochs. In other words, the matches between features
on two images are crucial, where one image is being from the first and the other image is
being from the second epoch, since they will be used in the calculation of the displacements
between two epochs using the proposed data processing method. Those matches are called
common feature matches.

In the first mission, there were approximately 38.09 million matches detected between
the features on images, out of which approximately 3.86 million (10.1%) are common.
Furthermore, in the second mission, there were approximately 48.39 million matches
detected between the features on images, out of which approximately 5.50 million (11.37%)
are common matches.

After the matches between images had been found, the matching feature points
were defined as a unique point that represents a set of feature points from different
images that have been recognized to correspond to the same physical point. As a result,
the total amount of all matching feature points in the first mission equals 2,151,475,
while 60,935 relates to common feature points between epoch 1 and epoch 2. The ratio
between common feature points to all matching feature points was 2.83%, meaning that
it is possible to determine the displacements on approximately every 35th matching
feature point. Furthermore, the total amount of all matching feature points in the second
mission equals 2,038,643, whereas 72,531 relate to the common feature points between
epochs. The ratio between common feature points to all matching feature points is 3.56%,
meaning that it is possible to determine the displacements on approximately every 28th
matching feature point.

The next step of the proposed data processing method workflow is SfM reconstruc-
tions, which were executed independently for each epoch in each mission, resulting in a
total of four reconstruction processes. Therefore, for each mission, one reconstruction
was based solely on the matches between the images from the first epoch (before sim-
ulating displacements), and the other was exclusively based on the matches between
the images from the second epoch (after simulating displacements). The reconstructed
sparse point clouds were georeferenced indirectly based on the 7 GCPs, as described in
Section 2.1.

After the SfM reconstructions, the number of common matching feature points in the
first mission decreased from 60,935 to 16,339 (26.8%) (Figure 6a), and in the second mission
decreased from 72,531 to 19,125 (26.4%) (Figure 7a).
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The displacement determination is based on comparing the reconstructed sparse point
clouds of the same mission from the two surveying epochs by calculating the differences
between the coordinates of common matching feature points according to Equation (1).
The horizontal displacement vectors determined between all common matching feature
points in both missions are shown in Figures 6b and 7b.

Before running the outlier removal process, the dataset is filtered keeping only the
vectors between feature points found on at least five images in both epochs within each
mission and located within the area of simulated landslide, resulting with reduction of the
number of displacements vector from 16,339 to 722 (Figure 8a) in the first mission and from
19,125 to 304 (Figure 9a) in the second mission.
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Before removing outlier displacement, additional filtering was performed to discard
all displacement vectors whose 3D displacement magnitude is greater than a predefined
threshold. In the case of the test field, this threshold was subjectively defined as 1 m, which
was approximately twice the maximum magnitude of the simulated displacement between
epochs. After performing this filtering, the total number of displacement vectors decreased
from 722 to 526 in the first mission, and from 304 to 284 in the second mission.

When the dataset was filtered, removing the remaining outlier displacement vectors
from datasets was conducted by performing the iterative LOOCV outlier-removing process
based on the kriging interpolation method, as explained in Section 2.2.

After removing outliers, the total number of displacement vectors remaining was 482
in the first mission (Figure 8b) and 277 in the second mission (Figure 9b). The density
of the remaining displacement vectors per square meter of simulated landslide area was
0.8 vector per m2 in the first mission and 0.46 vector per m2 in the second mission.

As it can be noticed from above-presented results, the number of displacement vectors
in the dataset significantly decreased after performing the filtering of data, and detecting
and removing outlier from data, but at the same time, the most reliable displacement
vectors within the area of the simulated landslide were kept.
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3.2. Test Field—The Accuracy of Displacement Determination Using the Proposed Data
Processing Method

The remaining displacement vectors were used to generate a displacement map of
simulated landslides for each mission, which was made by performing a kriging interpo-
lation based on the datasets that consists of a displacement determined by the proposed
data processing method. The interpolation was made on regular raster grid points with a
cell size of 1 m, covering the area of the simulated landslide. The displacement maps of
the simulated landslide are shown in Figures 10a and 11a, where it can be seen that the
displacements determined by using the proposed data processing method follow the refer-
ence displacements (obtained from the measurements with the total station) in magnitude
and direction. Accuracy analysis of landslide displacement determination by using the
proposed data processing method is performed by comparison of the displacement for all
70 CPs calculated from the total station measurements (which present referent displacement
values) and determined displacement vectors of the proposed data processing method
based on kriging interpolation with the origins in the same positions.
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The range values of displacements in each mission in the east and north directions
differ from zero (Table 5), indicating that the tarpaulins did not move uniformly along the
entire surface. However, this is normal because it is impossible to move the entire tarpaulin
manually on a flat surface and expect that the displacements over its entire surface at each
point will be equal to each other. The reference displacement values in Table 5 indicate that
the average horizontal displacement of the east tarpaulin was 48.2 cm in the north-east
direction (59.0◦). For the west tarpaulin, it was 18.9 cm in the south-west direction (242.4◦).
The average vertical displacement value for both tarpaulins indicates that they did not
move in height (equal to zero). The determined displacement values are similar to the
reference values in both missions. Thus, it can be seen that the mean determined vector
values in both missions did not differ by more than 1.2 cm in magnitude and by more than
0.8◦ in the horizontal angle direction, and also did not differ by more than 0.2 cm in the
vertical direction, compared to the reference values.
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Table 5. The statistics of the determined (proposed data processing method) and the referent (total
station) displacements vector values for each tarpaulin in both missions.

Statistics
Values

Tarpaulin in the East (n = 35) Tarpaulin in the West (n = 35)

∆E [cm] ∆N [cm] ∆H [cm] ∆E [cm] ∆N [cm] ∆H [cm]

Referent (total station) displacements

Min 39.6 21.7 −0.4 −19.0 −11.6 −0.2

Max 43.7 28.0 0.3 −13.3 −4.9 0.4

Range 4.1 6.3 0.7 5.7 6.7 0.6

Mean 41.3 24.9 0.0 −16.8 −8.8 0.1

Mean 2D 48.2 cm, 59.0◦ NE direction 18.9 cm, 242.4◦ SW direction

Determined displacements—First mission

Min 38.6 21.9 −1.1 −20.6 −11.8 −1.0

Max 44.8 29.0 0.8 −14.0 −4.9 2.0

Range 6.3 7.1 1.9 6.6 6.8 3.1

Mean 41.4 25.2 −0.4 −17.3 −8.9 0.1

Mean 2D 48.4 cm, 58.7◦ NE direction 19.7 cm, 242.8◦ SW direction

Determined displacements—Second mission

Min 37.9 21.0 −1.2 −21.2 −12.5 −1.7

Max 44.1 28.0 0.8 −11.8 −4.6 2.8

Range 6.1 7.0 2.0 9.4 7.9 4.5

Mean 41.1 24.6 −0.5 −17.7 −9.5 0.3

Mean 2D 47.9 cm, 59.1◦ NE direction 20.1 cm, 241.6◦ SW direction

Displacement residuals are the difference between the reference value and the value
of displacements determined using the proposed method (Table 6). The residuals range
from −4.3 cm to 3.7 cm in the horizontal direction and from −2.8 cm to 1.8 cm in the
vertical direction. Table 6 shows that the first mission, in which the UAS operated at a
lower flight altitude and achieved more precise results, with mean values of residuals of
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0.2 cm in the East direction, −0.1 cm in the North direction, and 0.2 cm in the vertical
direction, compared to the results from the second mission, which had mean values of
0.6 cm in the East direction, 0.5 cm in the North direction, and 0.1 cm in the vertical
direction. Figures 10b and 11b provide the mission-specific graphical representations of
the displacement residuals. The graphical representation of the displacement residuals
for each mission can be seen in Figures 10b and 11b, respectively.

Table 6. Statistics of residuals between determined and referent displacement vectors values and
RMSE of determining displacements with the proposed data processing method.

Residuals in the First Mission [cm] Residuals in the Second Mission [cm]

∆E ∆N ∆H ∆E ∆N ∆H

Min −1.9 −2.0 −1.8 −4.3 −2.7 −2.8

Max 3.7 1.2 1.2 3.4 3.0 1.8

Range 5.6 3.2 3.0 7.7 5.7 4.6

Mean 0.2 −0.1 0.2 0.6 0.5 0.1

RMSE 1D 0.9 0.5 0.6 1.4 1.1 0.8

RMSE 2D 1.0 - 1.8 -

RMSE 3D 1.2 1.9

The Root Mean Square Error (RMSE) is used as an indicator of the accuracy of dis-
placement determination using the proposed data processing method. It represents the
square root of the sum of the squares of the differences (residuals) between the determined
(proposed data processing method) and reference (total station) coordinates of the identical
CPs, and it is calculated for each coordinate direction by means of the following equations:

RMSE(∆E) =

√
∑N

i=1[∆Ei−∆̂Ei]
2

N

RMSE(∆N) =

√
∑N

i=1[∆Ni−∆̂Ni]
2

N

RMSE(∆H) =

√
∑N

i=1[∆Hi−∆̂Hi]
2

N

(2)

where:

∆Ei, ∆Ni, ∆Hi—reference value,
∆̂Ei, ∆̂Ni, ∆̂Hi—determined value,
i—index of the CP (i = 1, . . . , 70).

The summary of the achieved RMSE values of displacement determination by us-
ing the proposed data processing method for each coordinate direction, horizontal (2D)
direction, and spatial (3D) direction for both UAS missions can be seen in Table 6.

The results in Table 6 indicate great accuracy of displacement determination with
the proposed data processing method because in both missions, the RMSE value for all
coordinate directions (1D) was maximally 1.4 cm. The accuracy of the determination of
2D displacements equals 1.0 cm in the first mission and 1.8 cm in the second mission.
Furthermore, the accuracy of determination of 3D displacements equals 1.2 cm in the first
mission, and 1.9 cm in the second mission, which indicates a good accuracy.

3.3. Test Field—Displacements Determined from Orthomosaics Images

After the displacements were determined using the proposed data processing method,
the same displacements simulated on the test field were determined by using a commonly
used method based on comparing manually tracked features of SfM-MVS derived ortho-
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mosaics from different epochs. This was performed to analyze the possibility to determine
displacement vectors with the same accuracy using the proposed data processing method.

Orthomosaic images are produced using OpenDronMap (ODM) v2.9.0 software [49]
based on the sparse point clouds that are generated during the determination of the
displacements using the proposed method. Since the surveys in two UAS missions were
made twice in different time epochs (before and after simulating displacements), it resulted
in the production of four orthomosaics (Figure 12).

Sensors 2023, 23, x FOR PEER REVIEW 18 of 27 
 

 

displacements using the proposed method. Since the surveys in two UAS missions were 
made twice in different time epochs (before and after simulating displacements), it re-
sulted in the production of four orthomosaics (Figure 12). 

  
(a) (b) 

  
(c) (d) 

Figure 12. Orthomosaics of the test field in the first (a) and second (b) epoch of the first mission, and 
in the first (c) and second (d) epoch of the second mission. 

The achieved GSD values of generated orthomosaics was 1.4 cm/px in the first mis-
sion and 3.3 cm/px in the second mission. The determination of simulated landslide dis-
placements was performed based on comparing the manually tracked features on SfM-
MVS-derived georeferenced orthomosaics resulting from different UAS survey epochs. 
When tracking the features manually, it is necessary that the chosen features on orthopho-
tos be distinctly recognizable between the epochs. For this purpose, we used clearly rec-
ognizable cross marks on the tarpaulins where the center of the cross also marks the posi-
tion of the CP (Figure 3). Each tracked feature on the orthomosaics denotes the center of 
the cross, and horizontal displacement vectors were calculated based on determining the 
coordinates and their differences between the epochs. 

The accuracy of the method based on the comparison of orthomosaic images was 
performed by calculating displacement residuals as a difference between referent and dis-
placement values determined from orthomosaic images (Table 7). Since both values de-
note the displacements between the center of the same cross marks (CPs) on the tarpaulins 
from different epochs, a comparison was conducted directly i.e., it was not necessary to 
perform kriging interpolation, as it was performed for calculating displacement residuals 
for displacements determined by using the proposed data processing method. 

  

Figure 12. Orthomosaics of the test field in the first (a) and second (b) epoch of the first mission, and
in the first (c) and second (d) epoch of the second mission.

The achieved GSD values of generated orthomosaics was 1.4 cm/px in the first mis-
sion and 3.3 cm/px in the second mission. The determination of simulated landslide
displacements was performed based on comparing the manually tracked features on SfM-
MVS-derived georeferenced orthomosaics resulting from different UAS survey epochs.
When tracking the features manually, it is necessary that the chosen features on orthophotos
be distinctly recognizable between the epochs. For this purpose, we used clearly recogniz-
able cross marks on the tarpaulins where the center of the cross also marks the position of
the CP (Figure 3). Each tracked feature on the orthomosaics denotes the center of the cross,
and horizontal displacement vectors were calculated based on determining the coordinates
and their differences between the epochs.

The accuracy of the method based on the comparison of orthomosaic images was
performed by calculating displacement residuals as a difference between referent and
displacement values determined from orthomosaic images (Table 7). Since both values
denote the displacements between the center of the same cross marks (CPs) on the tarpaulins
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from different epochs, a comparison was conducted directly i.e., it was not necessary to
perform kriging interpolation, as it was performed for calculating displacement residuals
for displacements determined by using the proposed data processing method.

Table 7. Statistics of residuals between the referent displacement vectors and vectors determined
from orthomosaic images and RMSE of determining displacements from orthomosaic images.

Residuals in the First Mission [cm] Residuals in the Second Mission [cm]

∆E ∆N ∆E ∆N

Min −4.4 −4.0 −5.4 −5.4

Max 3.2 2.8 7.5 3.9

Range 7.6 6.8 12.8 9.3

Mean −0.3 −0.4 0.0 −0.4

RMSE 1D 1.7 1.4 2.3 1.7

RMSE 2D 2.2 2.9

The residuals in the horizontal direction range between −5.4 cm to 7.5 cm, and from
the results shown in Table 7, it can be seen that more precise results were achieved in the
first mission with lower (50 m) flight altitude.

The results of the accuracy in determining the displacements from orthomosaic images
indicate good accuracy, because in both missions, the RMSE value for each coordinate
direction was lower than 2.3 cm. The RMSE of determining the horizontal displacements
equals 2.2 cm in the first mission and 2.9 cm in the second mission. When compared
to the achieved accuracy of the proposed data processing method (Table 6), it can be
noticed that the simulated landslide displacements were determined more accurately by
using the proposed data processing method. Moreover, it should be noted that the vertical
displacement vectors can be determined using the proposed data processing method, which
is not possible from orthomosaic images.

3.4. Case Study—The Accuracy of Displacement Determination Using the Proposed Data
Processing Method on the Kostanjek Landslide

Processing of the captured images during two UAS photogrammetric surveys of the
Kostanjek landslide using the proposed data processing method was carried out according
to the steps described in Section 2.1. The first step in data processing was to detect features
on images collected in both UAS survey epochs. The total number of 196,428,504 features
were found on all 2092 images from both surveys, which gives an average of 93.85 thousand
features detected per image. From the total number of found features, 23.81% of found
features are related to the first epoch, and the other 76.19% are related to the second epoch.
The ratio is 1 to 3.2, which is expected because almost three times more images were
captured in the second epoch.

The next step of the proposed data processing method is feature matching. A total of
29.02 million matches are found among all images where over 2.19 million are common
matches between epochs. The next step was the matching of the feature points. The total
number of matching feature points equals to 7,529,936, while 675,485 of them are detected
on images from both epochs.

After the feature matching process, SFM reconstructions were executed independently
for each epoch. One reconstruction was based solely on the features and matches between
images from the first epoch, and the other was exclusively based on features and matches
between images from the second epoch. After the SfM reconstructions, the number of
common matching feature points decreased from 675,485 to 33,545 (5.0%) (Figure 13a). The
next step was calculating the displacements based on the comparison of reconstructed
sparse point clouds from two survey epochs by calculating the differences between the
coordinates of common matching feature points (Figure 13b) using Equation (1).
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Figure 13. All reconstructed common feature points in both epochs (a), and determined horizontal
displacements vectors (b).

As explained in Section 2.1, the dataset is filtered before running the outlier removal
process, keeping only the vectors between feature points found on at least five images
in both epochs, resulting in the reduction of the number of displacements vector from
33,545 to 5657 (Figure 14a). After removing outlier displacement vectors (Figure 14b) from
datasets by performing LOOCV processes based on the kriging interpolation method, the
total number of displacement vectors that remained was 1822.

The displacement map of the Kostanjek landslide was prepared by performing kriging
interpolation, where the interpolation was based on the displacement dataset that consists
of a displacement determined by using the proposed data processing method. The points
on which the displacement vectors were determined are the points of a regular raster grid
covering the landslide area. The landslide map can be seen in Figure 15a, indicating that
the determined displacements successfully follow the actual displacements in magnitude
and direction (red vectors show actual displacements determined with the measurements
of 15 GNSS monitoring system sensors).
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vectors with highlighted outliers (b).

The proposed data processing method is validated by comparing its determined
displacement vectors with the displacement vectors determined in the measurements
with the GNSS monitoring system sensors and their values are considered as reference
values. In order to consider the comparison as valid, the vectors being compared must
have their origin at an identical position. Since the origins of the reference displacement
vectors refer to the positions of the GNSS sensor in the first epoch, it is necessary to
determine the displacement vectors of the proposed data processing method based on
kriging interpolation in the same positions. The kriging interpolation was used to predict
displacement vectors at the position of the GNSS sensors based on the displacement dataset
determined by means of the proposed data processing method. Thus, out of 15 GNSS
sensors of the monitoring system of the Kostanjek landslide, 14 were used as CPs in the
validation process. One GNSS point (GNSS 01) was placed outside the landslide area, and
therefore, it was not used in the validation process. Displacement residuals are calculated as
a difference between referent and displacement values determined by using the proposed
method (Table 8).
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Figure 15. Displacement map of the Kostanjek landslide (24 April 2017–2 May 2019) (a) and residuals
in 14 GNSS monitoring system points (b).

Table 8. Statistics of residuals between the determined and referent displacement vectors values and
RMSE of determining displacements with the proposed data processing method.

Statistics
Values

Residuals (n = 14)

∆E [cm] ∆N [cm] ∆H [cm]

Min −5.0 −4.7 −4.7

Max 6.5 5.5 8.7

Range 11.5 10.3 13.4

Mean −0.2 0.1 1.2

RMSE 1D 2.7 3.0 3.5

RMSE 2D 4.0

RMSE 3D 5.4

The statistics results in Table 8 show that the residuals in the east direction ranged
between −5.0 cm and 6.5 cm, with a mean value of −0.2 cm; and in the north direction,
they ranged between −4.7 cm and 5.5 cm, with a mean value of 0.1 cm; and in height,
they ranged between −4.7 cm and 8.7 cm, with a mean value of 1.2 cm. The graphical
presentation of the displacement residuals is shown in Figure 15b.

According to the results shown in Table 8, it can be concluded that the displacement
vectors are determined with reasonable accuracy since the RMSE values of the determined
horizontal (2D) displacements equal 4.0 cm, and the RMSE value of the determined spatial
(3D) displacements equals 5.4 cm. These accuracies represent an acceptable result since
the flight altitude was higher by 40 m in the first epoch than in the second epoch, and the
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camera used for the acquisition of images in the first epoch had a shorter focal length than
the camera in the second epoch, leading to a significant difference in image GSD values
between the epochs (GSD(epoch 1) = 4.1 cm/px, and GSD(epoch 2) = 2.6 cm/px).

4. Discussion

The presented research deals with the applicability and accuracy of the method with a
novel approach for calculating landslide displacements from UAS photogrammetric survey
data, based exclusively on SfM algorithm steps without using the MVS algorithm. The
workflow of the proposed method with its three main steps is elaborated, and the results of
processing UAS photogrammetric survey images from an established simulated landslide
and from the Kostanjek landslide are described by using a proposed method.

To assess the applicability of the proposed data processing method, two UAS missions
at different flight altitudes (50 m and 120 m) were performed on the test field with simulated
displacements. The displacements determined using the proposed data processing method
were compared to the referent values determined by using total station measurements in
70 CPs on an established test field. The simulated displacements were within the range of
19 to 48 cm and were very precisely determined for accuracy analysis. The result presented
in Section 3.2. proved that the proposed data processing method can successfully determine
the spatial (3D) displacements of landslides with centimeter level accuracy even at a flight
height of 120 m, although it is important to point out that the test field was established in a
relatively small area, and therefore, better results were obtained than could be expected
from a real landslide that extends over a larger area.

The proposed data processing method was also validated by comparing its results with
the results obtained by a commonly used method based on comparing manually tracked
features on orthomosaics from different epochs. The result presented in Section 3.3. showed
that the simulated landslide displacements were determined more accurately by using the
proposed data processing method than by using the method based on the comparison of
orthomosaic images, by which it is additionally confirmed the applicability of the proposed
data processing method and no need for additional processing of the images by using the
MVS algorithm. Moreover, it should be noted that the vertical displacement vectors cannot
be determined based on the comparison of orthomosaic images.

Since these results were obtained in ideal conditions on a relatively small test field
established on a predominantly horizontal surface, the applicability of the proposed data
processing method was further analyzed on the larger area of an actual landslide with
significant height differences and complex topography. The determined displacements
were compared with the reference values determined from the measurements of the GNSS
real-time monitoring system.

On the Kostanjek landslide that extends over an area of 1 km2, the accuracy of de-
termining the horizontal (2D) displacements was 4.0 cm, and that for the spatial (3D)
displacements was 5.4 cm. The inferior results in accuracy were achieved compared to
measurements on the test field. This is partly the result of different flight altitudes between
the two UAS surveys (due to changes in legal regulations in the Republic of Croatia in
the period between two UAS surveys) and the use of different cameras within survey
epochs. Furthermore, the accuracy of determining the displacement is also affected by the
distribution and positioning accuracy of established GCPs in the field, which was better
in the case of the test field where the coordinates of the GCPs were determined more
precisely by the total station measurements compared to the GNSS RTK method used on
the Kostanjek landslide. Moreover, in the case of the test field, GCPs were better signalized
i.e., they were better visible and recognizable in the acquired images, which resulted with
more accurate georeferenced and refined sparse point clouds. Furthermore, in the case of
the Kostanjek landslide, the terrain is covered with high vegetation, which resulted with
areas without any matching feature points.

At the end, from elaborated accuracy analysis of determining displacements at the test
field and the Kostanjek landslide, we can conclude that by using the proposed method, it is
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possible to detect displacements with a sub-decimeter level of magnitude. An advantage of
the proposed method is the fact that it is not necessary to generate products such as dense
point clouds, digital elevation models, and orthomosaics with the MVS algorithm that is
more time-consuming than the SfM algorithm to detect displacements. This was confirmed
by the achieved accuracy of determining the displacements from created sparse point
clouds using only the SfM algorithm. Furthermore, since the SfM-MVS-derived products
use a sparse point cloud as the basis for their creation, the errors in the sparse point cloud
will propagate to all derived products. Then, all derived products (e.g., orthomosaics) will
be influenced by those errors as well as errors introduced during the process of meshing
or gridding. As a main disadvantage of the proposed method compared to the existing
one, it can be pointed out that, in areas where there are no clearly defined feature points
(e.g., forest, meadow, etc.), it would not be possible to determine displacements using our
method, since it would not be possible to perform quality feature matching.

The most important steps of the proposed method are feature detecting and feature
matching, both of which directly affect the accuracy, reliability, and number of determined
displacements. Therefore, in our future work, improvements in these steps will be analyzed
by using different types and methods or combining multiple methods of feature detection
and feature matching in processing images to obtain better results.

5. Conclusions

This research presents the examination of a new approach for processing UAS pho-
togrammetric survey data for the task of landslide monitoring. The proposed method is
based on matching features between images from the UAS photogrammetric survey that
were taken at two different times. This allows the calculation of displacements based only
on the comparison of two reconstructed sparse point clouds, thus avoiding the need to
produce dense point clouds, digital terrain models, or orthomosaic maps, all of which are
produced via image processing with the MVS algorithm.

The results from the test field presented in this research proved that the proposed
data processing method can successfully determine the spatial (3D) displacements of
landslides with centimeter accuracy, which makes it suitable for the monitoring of landslide
displacement. It can be concluded that the proposed data processing method offers a
faster and computationally simpler way of calculating landslide displacement compared
to previous methods, since it uses only the SfM algorithm to create sparse point clouds
in different epochs. Thus, it can be avoided to generate products such as dense point
clouds, digital elevation models, and orthomosaics with the MVS algorithm that is more
time-consuming than the SfM algorithm.

Based on the results obtained on the test field and the Kostanjek landslide, future
work on testing and improving the proposed data processing method is defined in the
Discussion, aiming to improve the accuracy and reliability of determining displacements
by using the proposed method.
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43. Krkač, M.; Špoljarić, D.; Bernat, S.; Arbanas, S.M. Method for prediction of landslide movements based on random forests.

Landslides 2016, 14, 947–960. [CrossRef]
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