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Abstract: Artificial intelligence (AI) is a field of computer science that deals with the simulation
of human intelligence using machines so that such machines gain problem-solving and decision-
making capabilities similar to that of the human brain. Neuroscience is the scientific study of the
struczture and cognitive functions of the brain. Neuroscience and AI are mutually interrelated. These
two fields help each other in their advancements. The theory of neuroscience has brought many
distinct improvisations into the AI field. The biological neural network has led to the realization
of complex deep neural network architectures that are used to develop versatile applications, such
as text processing, speech recognition, object detection, etc. Additionally, neuroscience helps to
validate the existing AI-based models. Reinforcement learning in humans and animals has inspired
computer scientists to develop algorithms for reinforcement learning in artificial systems, which
enables those systems to learn complex strategies without explicit instruction. Such learning helps in
building complex applications, like robot-based surgery, autonomous vehicles, gaming applications,
etc. In turn, with its ability to intelligently analyze complex data and extract hidden patterns, AI
fits as a perfect choice for analyzing neuroscience data that are very complex. Large-scale AI-based
simulations help neuroscientists test their hypotheses. Through an interface with the brain, an
AI-based system can extract the brain signals and commands that are generated according to the
signals. These commands are fed into devices, such as a robotic arm, which helps in the movement of
paralyzed muscles or other human parts. AI has several use cases in analyzing neuroimaging data
and reducing the workload of radiologists. The study of neuroscience helps in the early detection and
diagnosis of neurological disorders. In the same way, AI can effectively be applied to the prediction
and detection of neurological disorders. Thus, in this paper, a scoping review has been carried out on
the mutual relationship between AI and neuroscience, emphasizing the convergence between AI and
neuroscience in order to detect and predict various neurological disorders.

Keywords: artificial intelligence; neuroscience; deep neural network; neurological disorders

1. Introduction

Artificial intelligence (AI) is a field of computer science that deals with the simulation
of human intelligence in machines [1] such that the machines have problem-solving [2]
and decision-making capabilities similar to that of a human brain [1]. AI-based systems
are trained with huge amounts of data so that they learn how to perform a task. Later,
the systems use the learned knowledge to analyze the unknown inputs to produce the
desired outcome. The unique potential of this field is that it can analyze massive amounts
of data quickly without human intervention. For example, during the time of the COVID-19
pandemic, an unprecedented number of individuals were infected, and AI-based systems
were programmed to automatically detect the presence of COVID-19 in individuals [3,4].
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Additionally, the performance of AI-assisted CT scan imagery analysis is equivalent to an
expert radiologist [5]. A revolution in hardware technologies saw a shift from traditional
machine learning to deep learning in AI, and made various popular applications, like
expert systems, computer vision, natural language processing (NLP), speech recognition,
and image classification, come into existence [6]. Still, hardware technologies advance
towards neuromorphic hardware so that the power consumed by AI systems would be
lower, keeping in mind the energy efficiency of the human brain [7]. In short, AI enables
machines to solve complex problems and make decisions, both intelligently and intuitively.

Neuroscience is the scientific study of the structure and cognitive functions of the brain
regarding processing data, making decisions, and interacting with the environment [8].
It combines different disciplines, such as physiology, anatomy, molecular biology, cytol-
ogy, psychology, physics, computer science, chemistry, medicine, statistics, mathematical
modeling, etc. [9]. Neuroscientists not only focus on the study of the brain for cognitive
functioning but also investigate the whole nervous system to get a comprehensive under-
standing of different neurological, psychiatric, and neurodevelopmental disorders [10].
Neuroscience reveals which parts of the human nervous systems are likely to get affected
by diseases, disorders, and injuries, and thereby helps with effective treatments. Another
key point to be mentioned here is that the advancement in neuroimaging technologies has
largely contributed to the understanding of the structure and function of the brain [11,12].
Actually, the evolution of neuroscience has been driven by advancements in tools and tech-
nologies, which have enabled the study of the brain both at high resolution by examining
genes, molecules, synapses, and neurons and at low resolution with whole-brain imag-
ing [13]. Due to having many hidden layers, convolutional neural networks have found
applications in radiology regarding analyzing images with high-level reasoning for detec-
tion and prediction tasks [14]. In addition, the retrieval of meaningful insights and their
storage, manipulation, visualization, and management are facilitated by computer-based
neuroimaging tools [15].

The quote, “At some point in the future, cognitive neuroscience will be able to describe
the algorithms that drive structural neural elements into the physiological activity that
results in perception, cognition, and perhaps even consciousness”, from Gazzaniga, one
of the founders of cognitive neuroscience, which is discussed in [16], the author explains
that AI can benefit from the study of neural mechanisms of cognition, as the structure
of the cortex suggests that the implementation of cognitive processes in the brain occurs
with networks and systems of networks based on the uniform local structures of layers,
columns, and basic local circuits as building blocks. Additionally, the author describes
that the collaboration between AI and neuroscience can produce an understanding of the
mechanisms in the brain that generate human cognition because AI and computer power
can produce large-scale simulations of neural processes that generate intelligence. From
the above statement, it is clear that neuroscience lays the foundation for the design of
artificial neural networks (ANNs), which consist of nodes structured in input, hidden, and
output layers. Hence, it is realized that there is a complementary relationship between
neuroscience and AI, irrespective of their different end purposes or goals. The complemen-
tary relationship between AI and neuroscience has gained momentum as they advance by
helping each other and ultimately leading to the development of useful applications for the
detection and diagnosis of various neurological disorders.

In the past few years, some reviews have investigated the mutual relationship between
AI and neuroscience. In [17], the authors performed a review with a major focus on the role
of neuroscience in advancing AI research, along with highlighting the applications of AI for
the advancement of neuroscience. The authors discussed the inspiration from neuroscience
for the development of new types of algorithms and the usefulness of neuroscience for
the validation of AI techniques. In [18], the authors reviewed the relationship between
neuroscience and AI and the recent advancements in four areas, namely, AI models of
working memory, AI visual processing, AI analysis of big neuroscience datasets, and
computational psychiatry. In [19], the authors conducted a review on how neuroscience
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served as the source of guidance in constructing ANNs to deep networks and their further
transformations. In [20], the authors reviewed how reinforcement learning correlates
with neuroscience and psychology. In [21], the authors discussed the sharing relationship
between AI and neuroscience by highlighting the intersections of biological vision and AI
vision networks. The research work [22] also discusses how AI and neuroscience obtain
benefits from each other when dealing with massive knowledge bases.

In short, neuroscience and AI are mutually intertwined. AI has a wide range of
applications in various domains with the common aspect of making machines intelligent
like humans so that various complex tasks, such as speech recognition, game applications,
selfdriven car applications, intelligent traffic management, robotics-based surgery, image
and video analytics, NLP, etc., can be performed effectively. By studying the structure and
functioning of the brain, neuroscience helps in the effective detection and diagnosis of
various neurological disorders.

With the above background in mind, in this work, a scoping review has been per-
formed on the mutual relationship between neuroscience and AI by describing how one
field helps the advancement of the other. With its ability to analyze complex and huge
amounts of data and extract patterns, AI is extensively used for the early detection and
prediction of neurological diseases. Neuroscience uses knowledge to predict and detect
various neurological diseases. So, with the above perspective, in this paper, the conver-
gence of AI and neuroscience is realized in the detection of neurological disorders. Thus, a
special focus has been given to the applications of AI for the detection and diagnosis of
various neurological disorders. In addition, a brief overview of the contributions of AI and
AI-based tools to the effective analysis of neuroimages is presented.

The rest of the paper is organized as follows. Section 2 presents the objective. Section 3
describes the review method. Section 4 describes how neuroscience has helped in the
design of AI. Section 5 presents how AI helps the advancement of neuroscience, along
with a short description of AI in neuroimaging analysis. Section 6 describes, in detail, the
applications of AI in the prediction and diagnosis of various neurological disorders in a
categorical manner. Section 7 describes the various challenges and future directions of
research. Section 8 concludes the work.

2. Objective

With respect to neuroscience, AI helps to simulate the brain so that neuroscientists can
test their hypotheses. Additionally, explainable AI methods help with the interpretation
of large multimodal datasets and enable neurologists to detect neurological disorders
early [23]. For example, deep neural networks and deep reinforcement learning allow
neuroscientists to know how impulses from the brain are communicated to other parts of
the body, which helps in the early detection of movement-related disorders like paralysis.
As mentioned earlier, the convergence of AI and neuroscience occurs in order to detect and
predict different neurological disorders. From this perspective, the objective of this review
has been set to investigate the literature that describes the complementary relationship
between AI and neuroscience and to retrieve how these two fields converge to enable useful
applications in the prediction and detection of different neurological disorders.

The research questions of the current study include:

• How significant is the relationship between AI and neuroscience?
• How do other existing surveys focus on this topic?
• How does neuroscience inspire the design of AI?
• How does AI help in the advancement of neuroscience?
• What are the applications of AI in neuroimaging methods and tools?
• How does AI help in the diagnosis of neurological disorders?
• What are the challenges associated with the implementation of AI-based applications

for neurological diseases?
• What are the directions for future research?
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3. Review Method

The publications relevant to the objective of the paper have been collected from differ-
ent data sources, namely, Frontiers in computer science, Web of Science, PubMed, Scopus,
arXiv, Springer, and IEEE, as well as from Google using keyword querying methods. The
search has been performed in iterations. Different keywords, namely “artificial intelli-
gence and neuroscience”, “relationship between AI and neuroscience”, “applications of
neuroscience for AI”, and “applications of AI for neuroscience”, were used in the initial
iterations, and in each iteration, the titles of the retrieved articles were manually analyzed
to determine further optimized keywords, such as “natural and artificial intelligence”,
“inspirations of neuroscience for AI”, “interplay between AI and neuroscience”, “sharing
relationship between AI and neuroscience”, “neuroimaging in the era of AI”, etc., for
subsequent iterations. The above iterative querying resulted in an initial set of 260 articles
(235 from scientific databases and 25 hyperlink records from Google) identified for the
study. From the initial set of articles, duplicate records (17 scientific records) were removed.
The abstracts of the scientific articles were analyzed, and those abstracts that were not
related to the proposed objective (another 12 records) were removed during screening. The
remaining full articles (206 scientific articles and 25 hyperlink records) were assessed, and
the articles that did not contain useful information for the current study and that were not
directly related to the current scope were eliminated. The preferred reporting items for
systematic reviews and meta-analyses (PRISMA) flow diagram of the review method is
shown in Figure 1. A collection of 185 representative publications (173 records from scien-
tific databases and 12 hyperlink references from Google) were considered for the current
study. It has been categorized according to the research questions. The categorization is
given in Table 1 and Figure 2. The publications were carefully analyzed, and the findings
are presented in the subsequent sections.
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Table 1. Categorization of the representative publications in the current study.

References Specific Focus Number of Publications

[1–16,23] Significance of mutual relationship between AI and
neuroscience and objective of the current study 17

[17–22] Other related review works 6

[24–57] Neuroscience for AI 34

[58–107] AI for the advancement of neuroscience 50

[108–164] AI for neurological disorders 57

[165–182] Challenges and future directions of research 18

Total 182
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4. Neuroscience for AI

Conventional AI systems are based on manually extracted features, and they have
a limited capability of processing the data in their original form [24]. They are based on
hard-coded statements in formal languages that can be reasoned out by a computer using
logical inference rules, and these systems have a limited capability of solving complex
tasks, such as object recognition, text analytics, and image classification [25,26]. In contrast
to the conventional AI systems, the design of ANN was inspired by the biological network
of neurons in the human brain, leading to a learning system that is far more capable than
the conventional learning models [27].

Deep learning allows machines to be fed with raw data and enables the machines to
undergo automatic discovery regarding the features required for various tasks, such as
object detection and speech recognition. When one looks into the symbiotic relationship
between AI and neuroscience, it is clear that the theory of neuroscience helps AI in two ways;
first, in the design and development of different variants of ANN and its learning methods,
and secondly, in the validation of existing AI-based models [28]. If a known algorithm is
discovered to be implemented in the brain, it would be a strong support for its viability as
a component in large general intelligence systems [29]. The inspiration from neuroscience
for advancements in the design of AI is described in the subsequent subsections.
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4.1. ANN

ANN is inspired by neurons in the human brain. An ANN is composed of several
interconnected units, or artificial neurons, which work in parallel [30]. Each artificial neuron
is linked to several others and can transmit signals along these connections. The strength
of these connections will be modified during learning, and the learned knowledge will be
stored in weights. The weights of connections are updated similarly to the mechanism of
Hebbian learning, as described in [31]. Further, the invention of the microscope helped in
understanding the structure of the brain and the connections among neurons. The structure
of the brain and concept of Hebbian learning enabled AI scientists to design a simple ANN
called perceptron. Frank Rosenblatt, who designed the perceptron in the 1950s [32,33],
developed a simple rule for classifying the output, as shown in Figure 3.
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The perceptron takes one or more binary inputs and produces a desired binary output.
The mapping of inputs to the corresponding outputs is basically decided by the application
in hand. Let x1, x2, x3, . . . xi denote the binary inputs and w1, w2, w3, . . . wi denote their
weights, respectively. In the hidden layer, the rules for transforming the inputs into a single
binary output are defined. At first, each input is multiplied by its weight, and then all
multiplied terms are added. Then a bias (constant) is added. The rules for determining
the output are defined through the activation function, such as the binary step function,
defined in Equations (1) and (2):

f (x) = 0, i f ∑
i

wi × xi + bias ≤ 0 (1)

f (x) = 1, i f ∑
i

wi × xi + bias > 0 (2)

The binary output is denoted by y, which is given by f (x). This mapping of input to
output can be compared with the human nervous system, in which, at any instant, if a neu-
ron has some substantial threshold of any neurotransmitter, it sends the neurotransmitter
to the receptors of the subsequent neuron via synapses. According to the neurotransmitter
sent, the second neuron performs its activity. Here, similarly to the human brain, which
learns by varying the connection strengths between neurons, which involves removing
or summing connections between neurons [34], in ANN, the weights of connections are
modified during learning. The weights and biases are adjusted to produce the desired
output for the given inputs. When the inputs and outputs are binary, at times, there will be
a sudden flip in the output states from 0 to 1, even for small changes in the weights and
bias. In order to avoid this situation, sigmoid neurons are defined where the inputs are not
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binary. An input is assigned with a continuous value from 0 to 1. The Sigmoid function is
computed using the formula given in Equation (3).

y = σ(∑
i

wi × xi + bias) (3)

In Equation (3), σ, the sigmoid function, helps to smooth the sudden step change
that may occur in the output of the binary perceptron. The inputs and weights are real
values. If the predicted output of perceptron is found to be the same as the expected output,
the functioning of the perceptron is considered satisfactory; otherwise, it must be trained,
and the weights have to be adjusted to produce the desired output. Once the training is
complete, the perceptron is able to produce an output of 0 for input values from 0 to 0.5
and 1 for input values from 0.5 to 1.

4.2. Multilayer Perceptron (MLP)

The single-layer perceptron model has limitations in solving problems that involve
the XOR function. Therefore, perceptron networks have been modified with more than one
hidden layer with many neurons stacked together, called MLP. In MLP, the outputs of one
layer feed the next layer. This continues through the hidden layer and goes up to the last
layer, in which the arrived-at values are altered by the appropriate activation function to
produce the expected results. MLP is trained using the backpropagation learning method,
which consists of two passes through the MLP. In the forward pass, the output of the
network is computed for the given inputs and initial weights. In the backward pass, the
difference between the actual output and the expected output is computed as the error,
and the error is propagated from the output to the inputs with the intention of updating
the weights using gradient descent [35]. Here, the machine learning experts intentionally
introduced the “backpropagation of error” to modify the weights so that the error would
be reduced. As the backpropagation method does not need any set parameters other than
the inputs, the method is simple. The method uses a gradient descent approach with
a chain rule to update the weights in an iterative manner. One key point to be noticed
here is that the backpropagation of error in AI has its equivalence in biological neural
networks, as discussed in [36] where the authors discussed the fact that cortical networks
(with simple local Hebbian synaptic plasticity) implement efficient learning. The same idea
was supported in [37]. Further, in MLP, the design of the input and output layers is simple
and straightforward. But the design of the hidden layer is based on domain expertise and
application requirements.

4.3. Recurrent Neural Network (RNN)

As discussed in [18], neuroscience provides inspiring methods for constructing ANNs
with working memories, which is mediated by the persistent activity of neurons in the pre-
frontal cortex [38] and other areas of the neocortex and hippocampus [39], called recurrent
neural networks (RNNs).

The feature of working memory in the human brain inspired the design of RNNs,
which store the recent past output in an internal memory structure. The architectures
prior to RNNs (like feed-forward networks) can produce outputs that correspond only to
the current inputs. In RNNs, the past output is fed back to the input, which helps in the
prediction of the next output, as shown in Figure 4.

Working memory is a key cognitive capacity of biological agents [40], and this capacity
is required for processing sequential data [41]. Additionally, conventional RNNs can
retain only the recent past output, whereas a special kind of RNN called a long, short-
term memory (LSTM) network can handle long-term dependencies and is useful in video
classification, speech recognition, and text summarization. The architecture of an LSTM
network consists of memory cells having connections and gates. The gates are of three
kinds: input, output, and forget gates. The flow of input is controlled by the input gates;
the cell activation of the remaining network is controlled by output gates, and the forget
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gates decide how much previous data needs to be forgotten and how much has to be
remembered. The design of an RNN and its variants was inspired by the circuit architecture
of the midbrain attention network [42].

Sensors 2023, 23, x FOR PEER REVIEW 8 of 31 
 

 

4.2. Multilayer Perceptron (MLP) 

The single-layer perceptron model has limitations in solving problems that involve 

the XOR function. Therefore, perceptron networks have been modified with more than 

one hidden layer with many neurons stacked together, called MLP. In MLP, the outputs 

of one layer feed the next layer. This continues through the hidden layer and goes up to 

the last layer, in which the arrived-at values are altered by the appropriate activation func-

tion to produce the expected results. MLP is trained using the backpropagation learning 

method, which consists of two passes through the MLP. In the forward pass, the output 

of the network is computed for the given inputs and initial weights. In the backward pass, 

the difference between the actual output and the expected output is computed as the error, 

and the error is propagated from the output to the inputs with the intention of updating 

the weights using gradient descent [35]. Here, the machine learning experts intentionally 

introduced the “backpropagation of error” to modify the weights so that the error would 

be reduced. As the backpropagation method does not need any set parameters other than 

the inputs, the method is simple. The method uses a gradient descent approach with a 

chain rule to update the weights in an iterative manner. One key point to be noticed here 

is that the backpropagation of error in AI has its equivalence in biological neural networks, 

as discussed in [36] where the authors discussed the fact that cortical networks (with sim-

ple local Hebbian synaptic plasticity) implement efficient learning. The same idea was 

supported in [37]. Further, in MLP, the design of the input and output layers is simple and 

straightforward. But the design of the hidden layer is based on domain expertise and ap-

plication requirements.  

4.3. Recurrent Neural Network (RNN) 

As discussed in [18], neuroscience provides inspiring methods for constructing 

ANNs with working memories, which is mediated by the persistent activity of neurons in 

the prefrontal cortex [38] and other areas of the neocortex and hippocampus [39], called 

recurrent neural networks (RNNs).  

The feature of working memory in the human brain inspired the design of RNNs, 

which store the recent past output in an internal memory structure. The architectures prior 

to RNNs (like feed-forward networks) can produce outputs that correspond only to the 

current inputs. In RNNs, the past output is fed back to the input, which helps in the pre-

diction of the next output, as shown in Figure 4. 

 

Figure 4. Recurrent neural network with memory of past output for the next prediction. 

Working memory is a key cognitive capacity of biological agents [40], and this capac-

ity is required for processing sequential data [41]. Additionally, conventional RNNs can 

Figure 4. Recurrent neural network with memory of past output for the next prediction.

4.4. Convolutional Neural Network

The availability of high-performance computing devices, graphics processing units
(GPU), and software technologies ushered in the second generation of deep neural networks,
called convolutional neural networks (CNNs). The connectivity pattern between neurons in
CNNs was inspired by the architecture of the brain’s ventral visual stream [43]. The ventral
visual stream has two features: retinotopic and hierarchical. Here, retinotopic refers to the
organization of visual pathways according to the way the eye takes visual information in,
and hierarchical refers to how specific areas of the cortex perform increasingly complex
tasks in a hierarchical manner. For example, as far as an object is concerned, the cortex
identifies only the outlines, edges, and lines of the object (which is of less complexity)
and then identifies the big parts of the objects. The visual information that enters one’s
eyes travels through the neurons of the brain and is perceived as the concerned objects
after passing through different stages of increasing complexity, such as from edges, lines,
curves, etc., to, say, for example, faces or full bodies. The construction CNNs was completely
inspired by the above logic of transforming the visual input from simple features into
increasingly complex features and then to object recognition [44].

The typical architecture of a CNN usually includes three layers of increasing com-
plexity: a convolutional layer, a pooling layer, and a fully connected layer. Each layer has
different parameters that must be optimized for performing a specific task. The convolu-
tional layers are the layers in which filters are applied to the original image. Typical filters,
which are composed of small kernels of size 3 × 3 or 5 × 5, move across the image from
top left to bottom right and perform the assigned mathematical operation. For example,
a neuron in the first layer performs an elementwise multiplication between the weights
and pixel values and then returns the total sum of the result. In a convolutional layer,
the number of kernels and the kernel size are given as the input parameters. This layer
extracts features. The pooling layer performs aggregation functions, such as picking up the
maximum value or average value from the result of the previous layer and, thus, reduces
the dimension involved in the network. It aggregates the information contained in the
features. The final, fully connected layer is used to smooth the obtained information and
ultimately performs the task of classification or detection.

4.5. Reinforcement Learning (RL)

An important topic of research in AI is reinforcement learning, which refers to learning
through rewards and punishments. In reinforcement learning, an agent interacts with
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the environment and learns to act within it. Here, the agent itself learns to repeat certain
tasks based on rewards and avoids certain tasks based on penalties. It learns automatically
from the feedback without any guidance in a trial-and-error basis model. It develops
mathematical models to increase rewards. This basic concept of reinforcement learning
is being applied to applications such as aircraft control, robot motion control, computer
gaming, and robotics for industrial automation.

The reinforcement learning concept is inspired by the basic mechanism of the brain.
For example, dogs were trained to have food after hearing a bell. The dogs expected
food every time the bell rang and started to salivate at the sound of the bell. This led the
dogs to salivate at the mere sound of the bell, even without food [referred to as Pavlovian
conditioning]. This happened due to the virtue of the relationship between the bell and
the food. The key point is that the organisms start learning by the error (called prediction
error) between the expected outcome (i.e., getting food at the ring of bell) and the actual
outcome (i.e., whether the dog really received food at the ring of the bell). As far as learning
is concerned, organisms learn by experience on a trial-and-error basis to minimize error.
The animal learns by understanding the error between its predicted outcome and the actual
outcome. Here, the action of the dog is based on its knowledge learned from experience,
and this is referred to as instrumental conditioning or trial-and-error learning [45,46]. In
biological terms, the dopaminergic neurons that are located at the site of the striatum
encode the prediction error in terms of temporal differences and continue to learn to
choose the best actions toward the maximum reward [47]. Here the key point is that the
ideas in reinforcement learning of AI are inspired by animal learning, psychology, and
neuroscience [48].

In reinforcement learning in AI (shown in Figure 5), an intelligent agent interacts
with the environment that is in some specific state. There are various actions available to
the agent. The agent performs some action, and the action may change the state of the
environment to some other state. Here, the agent is given a reward if their action is correct
and is given a penalty if there is a mistake. Additionally, the agent consists of a policy and
reinforcement algorithm. Policy represents a mapping that selects actions based on the
given state of the environment. Here, the policy is like a key-value pair in a look-up table,
in which, against each state, the action to be taken is stored. More important is that the
learning algorithm updates the policy according to the states, actions, and rewards. The
purpose of learning is to maximize the rewards.
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For example, in a computer-based chess game, if a chess piece is chosen for a particular
chess grid and if the position is likely to be able to attack the opponent’s pieces, then this
position is good (i.e., reward); otherwise, the position is weak if it can be attacked by
the opponent (i.e., the gamer will lose the piece). Here, the intelligent agent (computer)
must understand the state of the environment and the possible actions. In addition to the
simple reinforcement model discussed above, the intense feeling generation of dopamine
for rewards inspired distributed reinforcement learning, where the agent tends to find
multiple factors that cause rewards and punishments in a wide spectrum of optimistic and
pessimistic ways [49].

4.6. Deep Reinforcement Learning

In the case of reinforcement learning in AI, if the environment is simple, then a look-up
table, like a simple policy, may be sufficient for implementation. But if the environment
is complex (as in video games), a simple look-up table may not be sufficient, and the
policy would be a parameterized function that can be derived by deep neural networks
(as in Figure 6), as discussed in [50]. The deep neural network provides gradient-descent-
based nonlinear mapping between the current states of the environment and the available
actions. In modern deep reinforcement learning, learning that is based on complementary
learning system (CLS) theory [51] is being used. As mentioned in [52], the human brain
performs two complementary tasks: one is generalization (from the experiences performed
by the neocortex), and the other is learning from specific events happening at specific
times and locations via the hippocampus. Additionally, the knowledge gained by the
hippocampus from rapid learning is stored in episodic memory and integrated into the
consolidated information in the neocortical system for long-term storage [53]. On par with
instance-based learning in biological neural networks, in deep reinforcement learning in
AI, the generalization ability of neural networks is integrated into the best past outcomes of
individual instances that are stored in episodic memory [54]. The concept of reinforcement
learning, in which generalized learning is integrated into learning from instances, is shown
in Figure 6 [51].
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4.7. Spiking Neural Network (SNN)

Though existing deep neural networks have led to the machine recognition of images,
sounds, and text, they consume huge computing resources, which may not be available in
a resource-constrained environment, such as with edge devices [55]. So, as an alternative,
spiking neural networks (SNNs) are being evolved. In biological neural networks, a neuron
passes its electric signal to another only when its membrane potential hits a particular
threshold. The same concept is introduced in SNN models, where a neuron only fires if
there is a threshold breakthrough [56]. In contrast to traditional neural networks in which
the signal transition takes place continuously as part of the propagation cycle, a spiking
neuron fires exactly at the point of hitting a threshold, as shown in Figure 7. Spiking neurons
are more energy efficient and can provide the means for implementing energy-efficient
tools for modeling complex information processing [57].
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Figure 7. Energy-efficient spiking neural network in AI.

Thus, neuroscience inspires the design of different ANN architectures and learn-
ing paradigms. In addition, when AI-based systems are equipped with psychological
insights, such as empathy, trustworthiness, etc., the system will provide enhanced human-
machine interaction.

5. AI for the Development of Neuroscience

The primary strength of AI is its potential to analyze huge amounts of complex data
and extract hidden patterns from within it. The signals from the brain are complex, and AI
serves as the most appropriate choice for extracting inferences and patterns. As mentioned
in [58], high-performing AI systems have been applied to the models that drive hypotheses
about brain function. Basically, AI helps with analyzing cognition processes by producing
large-scale simulations of the neural processes that generate intelligence. For example, as
described in [59], an IBM research group represented 8 × 106 neurons and 6400 synapses
per neuron in the IBM Blue Gene processor, which can serve as a research tool for the
study of neuroscience. With this research tool, neuroscientists can test their hypotheses
and analyze the results from simulations before investing huge resources in actual testing
with animals.
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5.1. AI helps in Brain Computer/Machine Interface (BCI)

BCI represents the direct communication between the brain and an external device,
such as the computer of a robotic arm. The device acquires the brain signals, analyzes them,
and converts them into commands that carry out the intended actions. The aim of a BCI is
to provide useful functions to people who have been affected by neuromuscular disorders,
such as amyotrophic lateral sclerosis, cerebral palsy, stroke, or spinal cord injuries [60].
A simplified block diagram of a BCI is shown in Figure 8. Usually, the signals from the
brain are acquired using semi-invasive techniques, such as electrocorticography, or with
noninvasive techniques, such as MagnetoEncephaloGraphy (MEG), positron emission tomog-
raphy, ElectroEncephaloGraphy (EEG), or any other semi-invasive or noninvasive method.
The acquired data are processed for noise removal and amplification. The amplified signal
is converted into a digital format. The digital data are preprocessed. The features are
extracted from the preprocessed data and are then classified. Ultimately, commands are
generated according to the classification. These commands are given to devices, such as a
robotic arm, which helps a person with paralysis make movements.
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paralyzed part.

As discussed in [61], when using AI classifiers, a two-dimensional cursor, along with
clicking abilities, helps a patient to type and use a computer like a healthy person. Further,
as discussed by the authors, an implant called BrainGate uses a cursor control to control
limb movements. Additionally, the authors discussed the use of AI for the effective control
of prostheses, which are external devices that replace a missing part of the body. The review
article [62] describes a wide range of AI-assisted BCI applications.

5.2. AI helps in Stimulation Studies and in the Analysis of Neurons at the Genetic Level

Measuring the gene expression of a specific cell type is crucial for determining the
cellular phenotype that triggers a specific neurodegenerative disease. Here, AI helps in
creating simulated models and facilitating neuron analyses from a genomic perspective.
This helps in obtaining in-depth information about impulse formation in the brain and its
transfer throughout the body. Such deeper studies help in identifying a specific cellular
phenotype that causes a particular disease [63]. Case studies, such as the Blue Brain
Project [64], aim to provide AI-based stimulated models that serve as virtual research tools
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to understand the characteristics of the human brain and their relationships to large-scale
cognitive functioning [65].

5.3. AI helps in the Study of the Connectome

A connectome is the complete map of the neural connections in a brain [66]. Functional
magnetic resonance imaging (fMRI) and diffusion MRI (DMRI) are used for the in-vivo
analysis of the functional and structural connectomes of the human brain. When compared
with standard medical images, which are of a grid-like structure, the connectome data
look like network-type data, where each brain region is represented as a node in the
network that may be connected either structurally and/or functionally to any other region
(i.e., the other node), with the connections represented by weighted edges [67]. In this
work, the authors described the need for specific training of machine learning algorithms
to deal with network-structured data and its applicability for the early diagnosis of autism,
delayed motor and cognitive development in preterm infants, and other neurodegenerative
diseases, namely Parkinson’s disease (PD) and Alzheimer’s disease (AD). Additionally,
the use of AI together with connectome data for the differential diagnosis of, say, for
example, early or late mild cognitive impairment (which is a challenge to traditional image
analysis techniques) has been described. Furthermore, the authors discussed the potential
of AI to reveal important connections and subnetworks, facilitating an understanding of
disease etiology.

5.4. AI helps in Neuroimaging Analysis

ANN architectures resemble the structure of the cognitive functions of humans, such
that these architectures can learn the composition of features, which ultimately results in
recognition of a hierarchy of structures in the data [68]. The brain uses high-dimensional
sensory datasets of enormous complexity, which are increasingly difficult to analyze; only
with machine learning techniques can the reconstruction of such datasets become real [69].
Additionally, as mentioned in [70], radiological imaging data grow at an unbalanced rate
with respect to the number of radiologists available. In order to meet the workload, the
available radiologists have to work with increased productivity, and a radiologist is likely
to interpret an image once every 3–4 s in an 8 h workday [71], with errors being inevitable in
constrained situations [72]. Deep neural networks can automatically extract features from
complex data [73], and they produce results with an accuracy equivalent to that of a radiol-
ogist while performing segmentation [74] and detection [75]. In addition to downstream
tasks, such as the detection, segmentation, characterization, and diagnosis of disorders,
deep neural networks are also used to perform different upstream tasks, like removing
noise, improving the resolution, normalizing images, lowering radiation and contrast
dose, speeding up image acquisition, image reconstruction, image registration, etc. [76,77].
Some of the common AI use cases in the neuroimaging analysis are given below.

• Speeding up MRI data acquisition—compressed sensing technology is being used as
a standard technique to reduce the time involved in the data acquisition of MRI [78]
and AI helps to reduce aliasing and improve the resolution of compressed images in
MRI [79];

• Improving signal-to-noise ratio—MRI images often suffer from a low signal-to-noise
ratio, and AI-based methods are used to eliminate noise [80]. Low-resolution images
can be converted into high-resolution images using deep convolutional networks,
as discussed in [81]. Further, in [82], the authors discussed how the quality of MRI
and CT images could be improved by using different techniques, namely “noise and
artifact reduction”, “super resolution”, and “image acquisition and reconstruction”.
How the two major limitations of PET imaging, namely, high noise and low-spatial
resolution, are effectively handled by AI methods is discussed in [83];

• Image reconstruction—the process of converting raw data into images is called image
reconstruction [84], and the applications of AI in the image reconstruction of MRI
images have been discussed in [85];



Sensors 2023, 23, 3062 14 of 29

• Image registration—AI methods are used in image registration or image alignment,
where multiple images are aligned for spatial correspondence [86]. Further, in the
case of DMRI, during image registration, along with spatial correspondence, the
spatial agreement of fiber orientation among different subjects is also involved, and
deep learning methods for image registration have improved accuracy and reduced
computation time [87]. Improved image registration using deep learning methods for
fast and accurate registration among DMRI datasets is presented in [88];

• Dose optimization—as discussed in [89], AI is being used in every stage of CT imag-
ing to obtain high-quality images and help reduce noise and optimize radiation
dosage [90]. Moreover, AI-based methods have found application in predicting ra-
diation dosages, as described in [91]. AI enables the interpretation of low-dose MRI
scans, which can be adopted for individuals who have kidney diseases or contrast
allergies [14];

• Synthetic generation of CT scans—deep convolutional neural networks are useful
for converting MRI images into equivalent CT images (called synthetic CT) for dose
calculation and patient positioning [92]. Further, AI has been increasingly applied to
problems in medical imaging, such as generating CT scans for attenuation correction,
segmentation, diagnosis (of diseases), and making outcome predictions [93];

• Translation of EEG data—AI-based dynamic brain imaging methods that can trans-
late EEG data in neural network circuit activity without human activity have been
discussed [94];

• Quality assessment of MRI—a fast, automated deep neural network-based method is
discussed in [95] for assessing the quality of MRIs and determining whether an image
is clinically usable or if a repeated MRI is required;

• As described in [96], explainable AI provides reasons for the decisions in neuroimaging data.

MRI scans can have up to hundreds of layers depending upon the scan resolution, and
thus manual segmentation is time-consuming, subjective, laborious, and unsuitable for
large-scale neuroimaging studies [97]. Though various imaging technologies have brought
mathematical and computational methods to the study of various structural, functional,
diffusion-related, and other aspects, the methods have to be automated using computer-
based image processing and AI-based tools. As discussed in [98], multistep planning,
including the spatial realignment of individual fMRI scans, the coregistration between
functional and anatomical scans, the spatial normalization of the subjects concerned, spatial
smoothing, computing parametric maps, performing testing, and reporting, obviously
sought the application of AI-based tools. As discussed in [99], deep learning models
directly work on the raw data from EEG, which are multivariate time-series data, and
extracted features with the required preprocessing and transformation, which are then
used for different analytical tasks. Brainvoyager [100] was developed as a simple fMRI tool
in the mid-1990s. It has grown as a cross-platform tool, integrating images from various
devices, namely EEG, MEG, functional near-infrared spectroscopy (fNIRS), and transcranial
magnetic stimulation (TMS). FreeSurfer [101] is a freely available open software package
that provides automatic measurements for neuroanatomic volume, cortical thickness,
surface area, and cortical gyrification (of regions of interest) throughout the brain [102]. It
is widely used to obtain cortical metrics from MRI images due to its ease of configuration,
accurate results, and high reproducibility [103]. In [104], the authors proposed a deep
learning-based automated pipeline, Fastsurfer, to automatically process structural MRI.
Fast-AID Brain is an efficient 2.5D-based deep learning tool that automatically segments
a human brain MRI image into 132 cortical and noncortical regions in less than 40 s on a
GPU [105].

5.5. AI in the Study of Brain Aging

CNNs help in estimating the age of a human brain from the structural MRI scan
inputs [106]. The authors showed that cavities containing cerebrospinal fluid are the
dominating feature in predicting the age of a brain. Brain aging is an important biomarker
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for identifying the risk of neurodegenerative diseases [107]. The AI models are trained to
produce detailed anatomic brain maps that reveal the specific patterns of aging. Then, the
biological age computed from the image is compared with the actual age. If the difference
between the two is greater, then the individual is at risk of Alzheimer’s risk.

6. Applications of AI for Neurological Disorders

Various neurological disorders can be broadly classified into the 7 following major
categories, as discussed in [108].

• Tumors;
• Seizure disorders;
• Disorders of development;
• Degenerative disorders;
• Headaches and facial pain;
• Cerebrovascular accidents;
• Neurological infections.

The applications of AI are reviewed with respect to the above categories and are
presented in this section.

6.1. AI in Tumors

The standard method to detect a brain tumor is an MRI scan. Machine and deep learn-
ing algorithms are applied to the MRI images for three major applications, namely, tumor
detection, segmentation, and grade estimation. The survey performed in [109] evidently
described four types of brain tumor segmentation & classification techniques, namely, clas-
sical machine learning techniques, CNN-based techniques, capsule neural network-based
techniques, and vision transformer-based techniques. Different feature extraction methods,
namely first-order statistical feature extraction, gray-level co-occurrence matrix, histogram-
oriented gradient, etc., have been used to extract the texture information from MRI images,
and the texture information is used by multiple machine learning algorithms to classify the
tumor [110]. CNN-based multigrading brain tumor classification was proposed in [111].
Different deep CNNs that classify brain tumors using user-defined hyperactive values
are proposed in [112]. Multiscale grade estimation using 3D CNNs is presented in [113].
Despite the effective applications of CNN in brain tumor analysis, the accuracy of CNN
is influenced by image rotations. Additionally, CNN required huge amounts of training
data. These two limitations were resolved when using capsule neural network [114]-based
methods. Further, due to having a smaller kernel size, CNNs are unable to extract the
long-range information that is associated with image sequences that occur sequentially
with respect to time, whereas the sequences are efficiently handled by vision transformer
(ViT) neural networks [115].

6.2. AI in Seizures

Epileptic seizures develop with a sudden abnormal surge of electrical activities in the
brain, and the detection of seizures is really a challenge due to the variability in their pattern.
Electroencephalography recordings were analyzed using machine learning algorithms for
the effective detection of seizures [116]. In [117], features from EEGs were extracted using
discrete wavelet transformation and K-means clustering, and then the extracted features
were analyzed using MLP for the detection of seizures. In [118], local neighbor descriptive
pattern and one-dimensional local gradient pattern methods were used for extracting the
features from EEG signals, and then the extracted features were analyzed using an ANN
for the detection of seizures. Similarly, automatic seizure detection is discussed in [119,120].
In contrast to the above methods [119,120], which extract features from single-channel EEG
data, in [121], automatic feature extraction was performed using a two-dimensional deep
convolution autoencoder linked to a neural network for classifying the extracted features
to detect seizures in children.
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6.3. AI in Intellectual and Developmental Disabilities

Intellectual and developmental disabilities, such as cerebral palsy, Down syndrome,
autism spectrum disorders, fragile X syndrome, attention-deficit/hyperactivity disorder,
etc., begin to appear in a child’s growth, typically before the age of 18. Multimodal data,
including neuroimaging data, genetic data, genomic data, electronic health records, clinical
data, and behavior data (collected using different methods), form inputs for the analysis
of intellectual disability (ID) and developmental disability (DD). The neuroimaging data
are analyzed with a DNN to detect the presence of ID or DD in children. The presence of
schizophrenia (SCZ) has been detected by a DNN by analyzing the functional connectivity
pattern in fMRI data. An autoencoder-based DNN was used to analyze the fMRI data for
the detection of autism [122]. In [123], an SVM algorithm was used to analyze EEG data for
the detection of attention-deficit/hyperactivity disorders in children. Fragile X syndrome
has an association with other medical recordings, such as circulatory, endocrine, digestive,
and genitourinary factors. Based on this concept, AI-assisted screening systems have
been developed to analyze the electronic health record of individuals for the detection of
fragile X syndrome [124]. In [125], regarding sensitivity and specificity measures, random
forest was found to outperform K-nearest neighbor, SVM, backpropagation, and deep
learning in classifying Autism spectrum disorders (ASDs) in children and adolescents. The
early detection of ASDs helps children at high risk undergo targeted screenings. Machine
learning can detect the presence of ASDs using a toddler’s eye movements. In addition,
a machine learning technique finds its role in the detection of ASDs from the presence of
blood and maternal auto-antibody-based biomarkers.

6.4. AI in Neurodegenerative Disorders

The major neurodegenerative disorders AD, PD, and motor neuron disease pose a
great challenge in that the symptoms of these diseases are not seen until a substantial
number of neurons are lost [126]. Therefore, early diagnosis is difficult. MRI images
can be analyzed using machine learning algorithms for the early detection of the above
diseases. The authors of [127] showed that a support vector machine (SVM) could use
MRI scans to successfully distinguish between individuals with AD and individuals with
frontotemporal lobar degeneration (FTLD), as well as between individuals with AD and
healthy individuals. In [128], 3D neural network architecture was used for the detection
of AD. Patients with mild cognitive impairment (MCI) are at high risk of getting affected
by AD. In [129], random forest was used to analyze MRI images for the prediction of MCI
to AD conversion from one–three years before clinical diagnosis. In [130], SVM-based AD
detection was performed using whole-brain anatomical MRI.

Motor neuron disease (MND), Huntington’s disease (HD), and PD are characterized
by motor dysfunction. Simple tasks like drawing and handwriting can be used for the early
detection of PD [131]. The authors of [132] used a combination of simple line drawings and
machine learning algorithms to aid with PD diagnosis for the first time. In [133], the authors
used different machine learning models, namely naïve Bayesian, decision tree, SVM, and
other models, to detect the presence of AD and related dementia. As presented in [134],
the individual features quantified with SVM weights as a significance map (p-map) were
useful in enhancing the classification of dementia. Neurodegenerative diseases, such as PD,
HD, and amyotrophic lateral sclerosis (ALS), produce gait disturbances, which are used
as diagnostic aid for the detection of neurodegenerative diseases. Though conventional
machine learning algorithms such as naïve Bayesian, SVM, and nearest neighbor algorithms
help in the study of gait disturbances, they lack in considering the time information
associated with gait disturbances. LSTM has been efficiently used for the study of gait
disturbances [135].

6.5. AI in Headaches

As discussed in [136], AI is being used for detecting migraines. In [137], a four-layer
XGBoostclassfier was used to analyze and classify the selfreport data of individuals into
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different types of headaches, including tension type headache (TTH), trigeminal autonomic
cephalalgia (TAC), migraine, epicranial, and thunderclap headaches. Both machine and
deep learning techniques are being used in the classification of headaches, as discussed
in [138]. In the diagnosis of headaches, the symptoms and experiences of the individuals
should be carefully listened to by physicians who are typically left with a busy schedule.
Natural language processing and machine learning are very useful in the analysis and
classification of headaches, as presented in [139].

6.6. AI in Cerebrovascular Accidents

A cerebrovascular accident attack (stroke) occurs when the blood supply to the brain
is reduced or interrupted. Because of a reduced or interrupted blood supply, the brain
will not get oxygen, and cells of the brain become inactive. The affected people are likely
to be left with permanent disability or death if the individuals are not given treatment
within 3 to 4.5 h of the onset of symptoms [140]. When there is an attack, it is essential to
perform an early diagnosis. There are different types of strokes, namely, ischemic stroke,
hemorrhagic stroke, and subarachnoid hemorrhage, as described in [141]. An error of
20–45% is involved in the diagnosis of stroke, even for experienced doctors [142]. In [142],
the authors have proposed a three-layer feed-forward ANN with a backpropagation error
method for the classification of stroke. AI techniques for stroke imaging analysis were
found to be encouraging [143]. The study [144] could yield 95% accuracy in the prediction
of acute ischemic stroke by analyzing MRI images using a simple SVM technique. The early
prediction of patients who are at high risk of acquiring malignant cerebral edema, which
is the major effect following ischemic stroke, has been performed using a random forest
algorithm in [145]. In [146], different machine learning algorithms, namely SVM, random
forest, and ANN, were used to detect the subtype of a stroke. The assessment of stroke
severity using machine learning algorithms was handled in [147].

6.7. AI in Neurological Infections

Though the central nervous system (CNS) is very resistant to infection by pathogens
due to well-protected bony structures, once infection occurs, it is likely to progress very
rapidly as the defense mechanism of the CNS is not enough to react. Despite high mortality
due to various infectious diseases of the central nervous system, which are generally caused
by viruses, bacteria, fungi, protozoan, etc., the detection of such diseases is very tedious
due to the poor symptoms of the diseases. Computed topography and magnetic resonance
imaging play a critical role in the diagnosis of neurological infectious diseases [148].

Viral and bacterial meningitis have similar symptoms, including a fever, headache,
neck stiffness, nausea, and vomiting. The differential diagnosis between bacterial and viral
meningitis is crucial, as failure to treat bacterial meningitis with proper antibiotics may
lead to sequential and permanent diseases [149]. In addition, treating viral meningitis
with an improper antibiotic would become an unnecessary treatment, and this may lead to
changes in the microbiome and causes stress to the individuals [150]. Most of the earlier
approaches for differential diagnostics use a standard method of finding an area under a
curve-type analysis, in which only one predictor variable can be used to find the type of
meningitis. In contrast to this kind of approach, in AI-based approaches, various predictor
variables, namely cerebrospinal fluid (CSF) neutrophils, CSF lymphocytes, neutrophil-to-
lymphocyte ratio (NLR), blood albumin, blood C-reactive protein (CRP), glucose, blood
soluble urokinase-type plasminogen activator receptor (suPAR), and CSF lymphocytes-to-
blood CRP ratio (LCR) are considered when predicting the type of meningitis, which led to
higher accuracy prediction [151].

Initially, the presence of meningitis is detected from the measured values of different
parameters, such as CSF and blood parameters like glucose ratio, proteins, leukocytes, etc.,
and then, if needed, the presence of the disease is confirmed via an invasive method like
lumbar puncture. Here, the AI-based methods are useful for avoiding invasive sampling.
In [152], the authors proposed an ANN-based method to detect the presence of meningitis
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based on temperature and various blood parameters with an accuracy of 96.67%, and
thus, the proposed approach is found to serve as an alternate to invasive procedures,
which involve a lengthy diagnosis time and more importantly, the individual remains
unresponsive during the diagnosis, and the invasive methods produce stress in individuals.

Neonatal sepsis with meningoencephalitis, where both meninges and the brain are in-
fected by pathogens, has high mortality and, hence, its early detection becomes very crucial.
A metabolomics approach has been practiced, whereby the metabolites that are responsible
for sepsis are focused on. In addition, nuclear magnetic resonance-based metabolomics
has also been used for the detection of neonatal sepsis with meningoencephalitis. Recently,
AI-based techniques were used for the analysis of metabolomics data in order to achieve
high accuracy. For example, in the research work [128], the authors distinguished the pres-
ence of meningoencephalitis in patients with neonatal sepsis from septic patients without
meningoencephalitis using machine learning techniques.

Further, maternal infection during pregnancy is a major factor in producing long-term
alterations in the functions of the fetal brain. For example, an elevated risk of autism
spectrum disorders (ASDs) is found to be associated with bacterial infections [153]. Anti-N-
methyl-D-aspartate receptor (anti-NMDAR) encephalitis is another common autoimmune
encephalitis that exhibits symptoms including cognitive dysfunction, speech disorders,
decreased consciousness, etc. Earlier studies have neglected the subtypes of the diseases.
Deep learning methods can be used to develop an automated system for the prognostic
prediction of the disease by extracting features from multiparametric MRI data [154].

Neuromyelitis optica spectrum disorder is an inflammatory disease of the central ner-
vous system, and it is detected by analyzing the presence of AQP4 antibody. Traditionally,
the Cox proportional-hazards model (Cox), which is a regression model, has been used for
determining the association between the survival time of patients and AQP4 antibody. The
Cox model has an inherent assumption that the concerned predictor variables are linearly
associated with the disease, which is too simple to fit reality, where machine learning
algorithms are efficient in fulfilling the need to analyze nonlinear associations [155].

Bacterial brain abscess is an intraparenchymal collection of pus [156], and it can be
fatal. The common symptoms of the disease include high fever, headache, changes in
consciousness, nausea, and vomiting. Cystic glioma is a kind of intracranial brain tumor
whose presence is generally analyzed using CT scans and MRI images. Timely differential
diagnostics should be carried out between these two diseases, as the treatments for these
two are different. Along with radiomics-based features, such as the texture, size, volume,
shape, and intensity characteristics of a tumor, the most complex features are extracted
with the help of deep convolutional neural networks to provide physicians with more
information to distinguish the above two [157].

Neurological intensive care units (ICU) are required to interpret various data, includ-
ing patient demographics, clinical data, physiological waveforms, continuous electroen-
cephalograms, laboratory tests, and images [158]. Here, machine learning techniques assist
physicians in clinical decision-making by automatically interpreting heterogeneous data
from different sources accurately. Neuro ICU patients are susceptible to CNS infections,
which need to be detected early so that increased length of stay at Neuro ICU and increased
mortality can be avoided [159]. Machine learning techniques are useful in identifying the
risk factors associated with CNS infections. In [160], the authors identified four factors
that are the most responsible for hospital-acquired ventriculitis and meningitis (presence
of an external ventricular device, recent craniotomy, presence of superficial surgical-site
infection, and CSF leaks) by using the ensemble-based XGBoost algorithm.

As discussed in [161], congenital hydrocephalus occurs in a baby born with excess
fluid in the brain; this may be caused due to spina bifida or infections from its mother and
is typically progressive and should be managed effectively. SVM predicts hydrocephalus
by extracting the morphological features from cranial ultrasound images [162].

The usefulness of AI within the field of neuro-oncology is discussed in [163]. AI-based
radiomic and radiogenomic tools give more precise initial diagnostic and therapeutic solu-
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tions for neuro-oncology. The field of radiomics extracts many quantitative features from
clinical images using data-characterization algorithms, in contrast to clinical radiology,
which relies on a visual assessment of images in subjective and qualitative terms [164].
Similarly, radiogenomics provides a system-level understanding of the underlying hetero-
geneous cellular and molecular processes.

Neurological infectious diseases are often difficult to diagnose, and for most infections,
treatments are not available for many pathogens. New infectious diseases are likely to
emerge due to increased human travel all over the world, environmental changes, new
pathogens, population growth, poverty, etc. Though technological advancements brought
improved diagnostics and immunosuppressive therapy, neurological infectious diseases
pose the following challenges:

• For most infections, no specific treatment is available, and the reversal of immune
suppression is the only available, viable treatment;

• Infections can be caused by unusual pathogens, and laboratories are not equipped to
detect such pathogens;

• Imaging techniques represent the most common diagnostic method, and the major
challenge here is that most infectious diseases are likely to produce only nonspe-
cific patterns;

• Many of the infected individuals may not have any symptoms, and such infections
can even remain undiagnosed;

• Infections may be seasonal, and such infections require specialized laboratories
for diagnostics;

• A wide range of pathogens are able to trigger immune disorders, and identifying the
exact pathogen for an immune disorder is itself tedious;

• Prevention strategies also remain unknown in many cases;
• More importantly, this infectious disease can trigger other neurodegenerative and

other neurological disorders.

7. Challenges and Future Directions

As indicated above, the convergence of AI and neuroscience has laid down a stim-
ulating foundation for realizing intelligent applications that can predict and diagnose
neurological disorders. Still, the implementation of such applications has been associated
with several challenges, which lead to future research directions as well.

7.1. Challenges in the Creation of Interlinked Datasets Due to the Working Culture of Teams
in Isolation

Neuroscience has the potential to provide basic contributions to medicine, computing,
and our understanding of human cognition. It has to adopt large-scale collaborations so
that efficient resources and competencies from different teams of people can be acquired.
Neuroscience has to shift from the present ‘small-scale’ working culture to large-scale teams
involving experts from different domains [165]. Though neuroscience has been growing
for many decades, different working teams focus on their concerned tasks in isolation. As
discussed in [165], geneticists work with mice, teams working on neural microcircuitry
work with rats, teams working on the visual cortex work with cats, teams working on
high cognition work with monkeys and human volunteers, etc. Here, the key point is that
despite the diverse teams working on different aspects, the teams are in isolation. Here
the challenge is to create interlinked datasets that can reveal a better understanding of
structures and cognitive functions via a holistic perspective. A more multidisciplinary
approach using AI, neuroscience, and system biology is essential to create such interlinked
datasets. When large teams of multiple disciplines are established, interlinked datasets can
be constructed. Predictive models and simulation studies on such big data will further lead
to innovations in the future.
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7.2. Challenges Associated with Depth of Understanding in Neuro-inspired AI

Neuroscience aims to analyze a new era of large-scale high-resolution data toward
identifying the loci of a disease or disorder for potential therapeutic targets, whereas neuro-
inspired AI focuses on problems where human performance exceeds that of computers [166].
As the authors described, AI experts try to produce solutions at an algorithmic level
rather than understanding the underlying mechanism. In this context, for AI-inspired
neuroscience, identifying the right depth of understanding is a big challenge. Toward this,
solutions are being implemented using a high level of abstraction (like black box solutions
in DNNs). Although this looks good from an implementation point of view, from the point
of interpretation or assessment, this poses a challenge.

7.3. Challenges Associated with the Interpretation and Assessment of AI-Based Solutions

Despite the potential ability of AI-based solutions, when such solutions are put to
practical use, they have to undergo rigorous assessments. The implemented solutions
are required to justify their outputs where the existing solutions are lacking [167]. In this
context, the concept of explainable AI is emerging. The AI-based solutions can adopt
explainable A- based interpretations for how the predictions are made. There are software
tools that can be integrated with AI models. With this empowerment, neuroscience experts
and doctors will gain a deeper trust in AI-based applications.

7.4. Challenges with Standards and Regulations

When implementing AI-based solutions for real-life applications, the first hurdle
comes from the regulations. There is a lack of standards in the current regulations to assess
the safety and efficacy of AI systems. In order to overcome this difficulty, the US FDA made
the first attempt to provide guidance for assessing AI systems [168]. As discussed in [169],
the current healthcare environment does not support data sharing. But it is mandatory
for building efficient systems with a complete understanding of a wide range of aspects
concerned. However, a healthcare revolution is underway to stimulate data sharing in the
USA [170].

7.5. Methodological and Ethical Challenges

On one side, AI-based algorithms are being trained to detect the early signs of neuro-
logical disorders from various classes of data. On the other side, the practical use of such
algorithms in clinical neuroscience for prediction and diagnosis is associated with various
issues, as discussed in [171].

• AI-based solutions are associated with inherent methodological and epistemic issues
due to possible malfunctioning and uncertainty of such solutions;

• The over-optimization and over-fitting of AI-based solutions are likely to introduce
biases in the results;

• There is another ethical dilemma; it is unclear whether AI models should be used to assist
physicians when making decisions or should be used for automatic decision-making;

• Though AI-based solutions help in improving the quality of life of patients with motor
and cognitive disabilities, it is also inherent that the AI-based solutions have autonomy
and impact the cognitive liberty of the individuals;

• AI models reveal the analyzed results transparently, irrespective of the risk or sensitiv-
ity associated with the results;

• The training data on which the algorithms are trained will introduce a neurodiscrimi-
nation issue for the individuals concerned in the data, and this is basically due to the
range of coverage of the data at hand.

7.6. Challenges with Neuroimaging Techniques

As discussed in [172], each neuroimaging technique has its own strengths and lim-
itations. Different neuroimaging techniques are being combined (multimodal imaging)
with the intention of obtaining complementary advantages from the individual techniques.
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Though multimodal imaging helps in achieving more advantages, there are still problems in
its practical implementation. For example, when EEG and fMRI are combined, the magnetic
resonance environment of fMRI presents some significant difficulties for safely recording
meaningful EEG. Further, the magnetic fields of the MRI scanner can be disrupted by the
presence of the EEG system [173,174]. In addition, another big challenge with multimodal
imaging is the integration of data from various methods [175].

Further, image segmentation and common registration functions are involved when
analyzing the images. Here, registration refers to aligning two or more images of the same
organ acquired at different times, which may be obtained using different modalities or may
be obtained from different points of view. When the images are obtained from different
neuroimaging techniques, there would be variability in the appearance of the tissue or
organ as the principles of image acquisition are different, and there is a lack of general rules
to establish the structure correspondence [176].

Other than the technical and practical issues, patient motion, co-operation, and medical
conditions also pose challenges. For example, pediatric neuroimaging is challenging due to
the rapid structural, metabolic, and functional changes that occur in the developing brain.
A specially trained team is needed to produce high-quality diagnostic images in children
due to their small physical size and immaturity [177].

7.7. Challenges with Data Availability and Privacy

Another aspect is that the performance metrics used in the algorithms do not align
with clinical applications. For AI models to be used for clinical applications, they would be
required to be validated with prospective data, i.e., the models should be assessed in real-
world settings and with current patients in a prospective manner. In contrast, most of the
models have been validated only with historical data. Unless medical data are available, the
gap between the accuracy of AI and the mark of clinical effectiveness cannot be achieved.
Data sharing has become very crucial. Unless data are shared among the concerned
collaborating teams of experts, real innovations and values cannot be attained. In addition
to data sharing, organizations related to the healthcare domain are required to follow
the standards related to the healthcare domain [178]. Further, the medical organization
should come forward to share the data without compromising the privacy of the concerned
individuals. Fully anonymized or deidentified data can be shared according to the criteria
set by the concerned standards for privacy and security [179]. For example, in the USA, the
privacy and security of the healthcare data of an individual are protected by the Health
Insurance Portability and Accountability Act (HIPPA) rules.

7.8. Challenges with Interpretation

Diagnostics errors in the interpretation of neuroimages by radiologists may happen
due to the following causes [180]:

• Failure to consult prior studies or reports;
• Limitations of an imaging technique (inappropriate or incomplete protocols);
• Inaccurate or incomplete history;
• Location of lesions outside the region of interest on an image;
• Failure to search systematically beyond the first abnormality discovered (“satisfaction

of search”);
• Failure to recognize a normal variant.

The combined effort of neurologists and radiologists will significantly reduce diagnos-
tic errors [181].

In addition to the above challenges, the reproducibility of the results obtained by
algorithms (as discussed in [182]), the biases and inequalities in algorithms, the biases from
an environment, demographics, methodological flaws, and a lack of quality data should
also be considered for corrective measures.

Thus, the directions for future research can be aligned toward
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• Making interlinked datasets from diverse and large collaborative teams from neuro-
science, computing, and biology;

• Preparing quality data up to the standards of clinical practices;
• Establishing standards and regulations for data sharing;
• Validating AI models with prospective data;
• Establishing performance metrics for AI models (up to the clinical effectiveness);
• Developing methods and techniques for integrating data from heterogeneous neu-

roimaging methods;
• Developing software to facilitate data fusion from multimodal neuroimaging;
• Establishing huge data repositories for the effective training of AI algorithms (as

training the algorithms with huge training data enables the model to understand the
problem at hand efficiently and enhances the accuracy of the models);

• Bringing in interoperability standards from the different organizations involved in the
neurological disease sector.

8. Conclusions

In this work, the complementary relationship between AI and neuroscience has been
reviewed by describing how the two fields help each other. The biological neural network
has brought in a shift from conventional machine learning models to deep neural network
architecture, which made many real-world applications possible. The variant architectures
of DNNs, along with reinforcement learning, have helped to solve complex applications,
such as robot-based surgery. Additionally, neuroscience has inspired the design and
development of energy-efficient spiking neural networks. In the neuroimaging field, AI
has introduced tremendous changes by providing both upstream tasks, such as enhanced
image acquisition, the elimination of noise, image reconstructions, image registrations, etc.,
and downstream tasks, such as the detection of abnormalities, characterization, diagnosis,
and treatment planning. Neuroscience obtained a major benefit from AI in the analysis of
complex neuroscience data. Large-scale AI-based simulations help neuroscientists to test
their hypotheses, as well as to arrive at new ideas. The power of AI-based models is highly
visible regarding brain data, which is phenomenal in size, speed, scope, and structure. The
applications of AI in the prediction and diagnosis of various neurological disorders were
reviewed, with the challenges and future directions of this area of research also highlighted.
A collaborative working culture with a multidisciplinary approach will certainly make AI
models efficient up to the clinical assessment level.
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