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Abstract: Object detection in unmanned aerial vehicle (UAV) images is an extremely challenging
task and involves problems such as multi-scale objects, a high proportion of small objects, and high
overlap between objects. To address these issues, first, we design a Vectorized Intersection Over
Union (VIOU) loss based on YOLOv5s. This loss uses the width and height of the bounding box as a
vector to construct a cosine function that corresponds to the size of the box and the aspect ratio and
directly compares the center point value of the box to improve the accuracy of the bounding box
regression. Second, we propose a Progressive Feature Fusion Network (PFFN) that addresses the
issue of insufficient semantic extraction of shallow features by Panet. This allows each node of the
network to fuse semantic information from deep layers with features from the current layer, thus
significantly improving the detection ability of small objects in multi-scale scenes. Finally, we propose
an Asymmetric Decoupled (AD) head, which separates the classification network from the regression
network and improves the classification and regression capabilities of the network. Our proposed
method results in significant improvements on two benchmark datasets compared to YOLOv5s. On
the VisDrone 2019 dataset, the performance increased by 9.7% from 34.9% to 44.6%, and on the DOTA
dataset, the performance increased by 2.1%.

Keywords: object detection; UAV aerial images; VIOU loss; YOLOv5; multi-scale feature fusion
network

1. Introduction

At present, there are two kinds of object detection methods used in aerial images
that are both based on deep learning techniques. The first method is based on candidate
regions and includes approaches such as R-CNN [1], Fast R-CNN [2], and Faster R-CNN [3].
The second method is based on regression and includes approaches such as the YOLO
series [4–11], SSD [12], RetinaNet [13], and Centernet [14], as well as various other improved
algorithms [15–24]. Object detection poses many challenges in unmanned aerial vehicle
(UAV) images, as shown in Figure 1. The UAV aerial dataset contains a large number of
small objects and the downsampling operation of the backbone network ignores a lot of
useful information. Using features from the P3 of YOLOv5 [7] results in too many detailed
features being discarded, which has a direct impact on the detection of small objects. There
are a large number of objects with highly similar features in the dataset and overlapping
objects pose additional challenges for the classification ability of the detection head. The
original network uses a CIOU loss [25], which takes into account both the aspect ratio of
the bounding box and the distance between the center of the real box and the predicted
box; however, it only uses the aspect ratio as an influencing factor and its description of the
width and height is vague. When the center points of the two boxes are consistent and their
aspect ratio is the same but their width and height differ, the CIOU loss may not accurately

Sensors 2023, 23, 3061. https://doi.org/10.3390/s23063061 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063061
https://doi.org/10.3390/s23063061
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9039-4685
https://doi.org/10.3390/s23063061
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063061?type=check_update&version=1


Sensors 2023, 23, 3061 2 of 15

reflect the actual object box. Additionally, the inverse trigonometric function used in the
calculation can increase computational complexity.

To address the above-mentioned problems, in this paper, we propose a Vectorized
Intersection Over Union (VIOU) loss to improve the regression accuracy of the bounding
box. This loss uses several additional penalty terms to clarify the relevant factors involved
in bounding box regression, such as the position (x, y) of the center point and the size
and shape of the bounding box, which are beneficial for the direct regression of related
parameters. For multi-scale objects, we explore how to fuse deep semantic features and
shallow detail features to achieve the best detection results. Through four comparative
experiments, we explore the sequence of fusion of shallow features and deep features, as
well as the fusion method (incremental or decreasing), and propose a Progressive Feature
Fusion Network (PFFN). Finally, combined with the decoupling ideas from YOLOv1 [4]
and YOLO X [26], we propose an Asymmetric Decoupled (AD) head. We fully decouple
the regression task from the classification task and use convolution kernels of different
scales to provide the classification network with multi-scale feature information.

Figure 1. Object detection issues in UAV aerial images: a high proportion of small objects, multi-scale
objects, a high overlap between objects, and complex backgrounds.

On the VisDrone 2019 dataset [27], the performance is improved by 9.7% from 34.9% to
44.6% compared to the original algorithm. On the DOTA dataset [15,28,29], the performance
is improved by 2.1% compared to the original algorithm. In this paper, our contributions
are as follows:

1. We propose the VIOU Loss, which simplifies the calculation and improves the regres-
sion accuracy of the bounding box.

2. We propose a new feature fusion network (PFFN), which fully integrates shallow
features and deep features, addresses the issue of multi-scale objects, and improves
the detection ability of small objects.

3. We propose an asymmetric decoupled head, which improves the network’s ability to
classify and locate similar and overlapping objects.

2. Related Work
2.1. Regression Loss Function

In object detection, it is usually necessary to measure the overlap between the predicted
box and the real box. In [30], the authors introduced the concept of the intersection-over-
union (IOU) ratio, which divides the union of the two boxes by the intersection of the
predicted box and the real box. The GIOU loss [31] introduces the minimum bounding box
as a penalty item based on the IOU loss, which promotes the two boxes to keep getting
closer and addresses the issue when the IOU is 0. The DIOU loss [25,32] introduces the
Euclidean distance between the center points of the two boxes and the diagonal of the
smallest enclosing box as indicators, which increases the convergence speed of the GIOU
loss and addresses the issue that the two boxes cannot be effectively measured when they
are surrounded by each other. Based on the above methods, the DIOU loss considers the
coincidence of the center points of the two boxes and also includes the aspect ratio factor
of the frame as a measurement index so that the prediction box can better complete the
regression. The CIOU loss adds the loss of the detection box scale and the loss of the length
and width based on the DIOU loss. However, the aspect ratio describes relative values,
which can lead to ambiguity. The EIOU loss [33] calculates the difference between the
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width and height based on the CIOU loss to replace the aspect ratio and introduces the
focal loss [13] to address the issue of unbalanced difficult and easy samples. The SIOU
loss [34] redefines the penalty metric by taking into account the vector angle between the
required regressions. The alpha-IOU loss [35] is a uniform exponentiation of existing loss
functions based on the IOU loss.

2.2. Neck

The neck is designed to efficiently utilize the feature maps extracted by the back-
bone at different resolutions. Common object detection methods, such as Faster R-CNN,
Mask R-CNN [36], YOLOv3 [5], RetinaNet [13], Cascade R-CNN [37], etc., use top-down
unidirectional fusion FPN [38] to build an architecture with horizontal connections. By
using low-level high-resolution detail feature information and high-level semantic feature
information, they aim to achieve better predictions. Panet [39] is the first model to propose
secondary fusion from bottom to top and is based on the FPN in Faster/Master/Cascade
R-CNN, simply adding a bottom-up fusion path. Huang [40] proposed the Cross-Scale Fea-
ture Fusion of a Multi-Level Pyramid Network (CF2PN). DFF-PANet [41] can reuse feature
maps in the backbone to enhance the detection capability of small- and medium-sized in-
stances. Hilal Tayara [42] proposed a densely connected feature pyramid network through
which high-level multi-scale semantic feature maps with high-quality information are
prepared for object detection. Hong Tian [43] upgraded the existing FPN network output
and improved the robustness of small target detection. In [44], the author studied the effect
of re-merging three stage features for each stage based on the FPN of YOLOv3 [5]. The
fusion of different stage features adopts the attention mechanism so that the contribution of
other stages to the features can be controlled. NAS-FPN [45] is composed of top-down and
bottom-up connections, which can fuse features across scales. The idea of Bi-FPN [46] is
the same as that of NAS-FPN, that is, to find an effective block in the FPN and then repeat
the superposition so that the size of the FPN can be freely controlled. Recursive-FPN [47]
inputs the fused output of a traditional FPN to the backbone for a secondary feature cycle.

2.3. Detection Head

Mask R-CNN introduces an additional detection head for instance segmentation.
IoU-Net [48] proposes a separate branch to predict the IOU loss between the box and
the real box and learn the uncertainty of the bounding box prediction through an ad-
ditional task to improve the localization results. YOLO X proposes a decoupled head,
which uses two parallel branches (each branch includes two 3 × 3 convolutional layers)
for regression and classification, respectively, and adds an IOU branch to the regression
branch. Song et al. [46,49,50] proposed that in the localization and classification tasks of
object detection, the focus and interest of the two tasks are different. Wu et al. [51–53]
reinterpreted the two subtasks of classification and positioning in the detection task and
found that the fc-head was more suitable for classification tasks and the conv-head was
more suitable for positioning tasks. Therefore, it is inappropriate to integrate regression and
classification tasks into one network. We propose a new asymmetric decoupled detection
head, which separates the classification and regression tasks and improves the classification
and localization capabilities of the network.

3. Methodology

Based on the characteristics of UAV aerial images, we construct a new regression loss
function, the VIOU. After fully exploring the characteristics of feature fusion, a new feature
fusion network is adopted, which is the “neck” part of the dashed box in Figure 2. We
apply the asymmetric decoupled head to the network, which is the “predict head” part of
the dashed box in Figure 2.
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Figure 2. The architecture of the network: (1) The backbone adopts Cspdarknet53, (2) The neck uses
PFFN, (3) The predict head uses the AD head. The specific structure of each module in the network is
described below.

3.1. VIOU Loss

We continue with the IOU-based route and propose a more efficient version of the loss
function, the VIOU loss, which is defined as follows:

LossV−IOU = 1 − IOU +
(x − xgt)2

(cw)2 +
(y − ygt)2

(ch)2 + e−a∗cosθ (1)

where cw and ch are the width and height of the minimum enclosing box of the prediction

box and the real box. (x−xgt)
2

(cw)2 +
(y−ygt)

2

(ch)2 represents the ratio of the difference between the
horizontal and vertical coordinates to the width and height of the minimum enclosing
bounding box, a represents the adjustable coefficient of the width and height of the penalty
item, and the slope of the exponential function can be adjusted using the parameter a.

cos θ =
r2 + rgt2 − d2

2 × r × rgt (2)

where r and rgt represent the norm of the two bounding boxes, as shown in Figure 3. Accord-
ing to the cosine theorem, d represents the distance between the ends of the two vectors.

Figure 3. VIOU loss. The loss function is divided into three parts: the IOU loss, center point position
loss, and vector loss of the width and height.
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We divide the loss function into three parts: the IOU loss, center point position loss,
and vector loss of the width and height, as shown in Formula (1). Due to the small coverage
area of the small objects in the image, the regression of their bounding boxes is more
challenging than large/medium-sized objects. In the prediction process, the prediction
bounding box is offset by one pixel and the error impact on small objects is much higher
than on large/medium-sized objects. The VIOU loss directly calculates the loss of the x and
y coordinates of the center point of the boundary box instead of the distance loss between
the two points, making it different from the current loss functions. The VIOU loss directly
minimizes the difference between the center point locations (x, y) of the prediction box
and the real box, making its regression more direct and resulting in better localization
performance. At the same time, we use the width and height of the bounding box as a
vector and utilize the translational invariance to make it share the origin of the coordinates
to construct a triangle. The length of the two sides of the triangle is the norm of the vector
constructed by the width and height values, as shown in Figure 3. The cosine function
can express the relevant characteristics of the triangle, norms, and distance of the end of
the two vectors, which directly constrain them in one formula and prevent divergence.
By combining it with the exponential function to construct a composite function with
parameter a, the proportion of the loss of the width and height can be adjusted. Through
the cosine, the norm corresponds to the size of the bounding box and the angle of the vector
corresponds to the aspect ratio of the bounding box. Thus, we can use the vector angle and
vector norm to constrain the width and height of the bounding box. This is very helpful for
the regression of small objects in multi-scale scenes. The VIOU loss can use a very simple
formula to guide the regression of the position, shape, size, and other attributes of the
bounding box.

3.2. Progressive Feature Fusion Network

In order to explore the best feature fusion method, we designed four new feature
fusion networks, as shown in Figure 3. Since the proportion of small objects in the dataset
is relatively high and the pixel size is small, we extract feature maps from the P2 of the
backbone network to enrich the utilization of detailed features, and at the same time, add a
P2 detection head of a 160 × 160 resolution, which will be responsible for small objects.

When using a convolutional network to extract image features, the first few layers of
the backbone network can extract shallow features from the image, and as the network
deepens, deeper features can be extracted. Shallow features have a higher resolution;
contain more positional information, local information, and detailed information; and
have fewer downsampling operations. Additionally, they are more friendly to small
objects. Due to fewer convolutions, they have lower semantics and more noise. Deep
features have stronger semantic information but have a low resolution and poor perception
of details. If the two are efficiently integrated by taking their strengths and discarding
their disadvantages, the model can be improved. To verify this using the above network,
explore the best order of fusion of shallow features and deep features and explore the
fusion method of increasing or decreasing, as shown in Figure 4. In our network, as
the convolution deepens, each node will continuously fuse the features of its own layer
with the features from the deep or shallow layers. In the process of fusion, the semantic
depth of the shallow network is continuously deepened so that the deep and shallow
features can be combined efficiently to achieve the best feature fusion performance. Each
detection head uses divide and conquer to detect objects of corresponding scales from a
local perspective and can also cover objects of different scales to the maximum extent from
a global perspective to complete the detection task of multi-scale objects.

Through experiments, from the above four groups of networks, we finally chose
version 4 as our feature fusion network, which we named the Progressive Feature Fusion
Network. This network can continuously transfer deep features to shallow layers during the
feature fusion process while avoiding the loss of detailed features caused by downsampling.
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Shallow detail features are fully combined with deep semantic features to achieve the
purpose of complementary advantages.

Figure 4. Structure diagram comparing the four groups of fusion networks. The specific modules are
shown in Figure 2.

3.3. Asymmetric Decoupled Head

We improved the detection head of YOLOv5 and decoupled the two tasks of classifica-
tion and regression, as shown in Figure 5. The decoupled head has an asymmetric structure
and divides the feature map of the backbone network into two prediction branches after
adjusting the number of channels using a basic convolution operation. In the classification
branch, the feature map first passes the convolution operation with a convolution kernel
size of 1 × 1, 3 × 3, and 5 × 5 and then splices the channels. The convolution layer of this
branch provides different sizes of receptive fields for the input feature map, providing rich
feature information for the subsequent classification and prediction tasks. In the regression
branch, after the feature map is extracted by the 1 × 1 convolution, it is divided into two
branches and the confidence prediction and box regression are performed by the 3 × 3
convolution. Compared with the classification branch, its regression branch uses fewer
convolution modules, which reduces the calculations. The classification branch focuses on
determining the category of the extracted features that are most similar to the object cate-
gory, whereas the positioning branch concentrates on refining the center point coordinates,
width, and height information of the box to correct the bounding box parameters. This
makes the classification focus more on the central content and the regression focus more on
the edge information.
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Figure 5. The structure of the asymmetric decoupled head. The specific details are indicated by
different colors.

4. Experiment

We chose VisDrone 2019-DET-train [27] as our training set and VisDrone 2019-DET-
val [27] as our validation set. As can be seen in Figure 6, the dataset contained 10 categories,
including “car”, “pedestrian”, and “motor”. It contained many confusing targets such as
“pedestrian” and “people”, “bicycle” and “motor”, and “tricycle” and “awning-tricycle”.
These were mostly small objects and most were located below the middle of the picture.
During training, we set the model’s conf-thres to 0.5, IOU-thres to 0.45, and batch size to 8.
To avoid overfitting or underfitting, we used mosaic enhancement and label smoothing
and trained using 300 epochs. We used the SGD optimizer for training and used an initial
learning rate of 0.001 with the cosine lr schedule. All models were trained on an NVIDIA
RTX 3090 GPU. We chose YOLOv5s as the baseline and its corresponding weights were
used for pre-training.

Figure 6. Information about the various types of objects in the dataset.

4.1. VIOU Property Comparison Experiment

In order to achieve the best performance, parameter a was tested with 7 values ranging
from 0.25 to 1.75 at intervals of 0.25. As shown in Figure 7, mAP0.5 gradually increased
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with the increase in a. When a was equal to 1, mAP0.5 reached a peak value of 0.364 and
then gradually decreased. It can be concluded that for this dataset, the optimal value of a
is 1.

Figure 7. The graph of VIOU-a: the horizontal axis represents the value of a and the vertical axis
represents the corresponding mAP0.5.

We applied some of the current major regression loss functions to YOLOv5 on the
VisDrone 2019 dataset and kept all the hyperparameters and other conditions. As can be seen
in Table 1, when we used our proposed VIOU as the regression loss function, the best result
achieved by the mAP0.5 was 36.4, which was an increase of 1.5% compared to the baseline
(CIOU) and an increase of 0.7% compared to the other best loss function (alpha-IOU).

Table 1. Comparison of different metrics on the VisDrone 2019 dataset. (The bold type represents the
best result).

Metrics Precision Recall AP0.5 AP0.5:0.95

IOU [30] 48.2 34.6 35.0 19.3
GIOU [31] 46.4 34.4 34.3 19.1
DIOU [25] 47.1 34.0 34.6 19.2
CIOU [25] 48.4 34.6 34.9 20.5
SIOU [34] 46.9 34.4 34.5 19.0
EIOU [33] 46.7 35.5 35.5 19.5
alpha-IOU 48.1 35.8 35.7 20.5

VIOU(Ours) 50.9 34.9 36.4 20.7

4.2. Comparison Experiment of Feature Fusion Characteristics of Neck Network

Four networks were designed to compare the mAP0.5 of Panet, specifically to explore
the working characteristics of the feature fusion network. It can be seen in Table 2 that after
introducing the features from P2 of the backbone into the network, the four feature fusion
networks all performed well. After adding the P2 high-resolution detection head, the net-
works could focus on small objects and retain a large number of detailed features. Among
them, the version 1 network had the worst performance as it employed incremental fusion
from the shallow layer to the deep layer. Due to the insufficient mining of shallow feature
information, it continued to downsample when merging with the deep layer, resulting
in a loss of feature details from the shallow layer. Additionally, the deep layer contained
relatively rich semantic information, making it difficult for the fusion to complement the
advantages of both shallow and deep layers. The version 2 network adopted a decreasing
fusion method from the shallow layer to the deep layer. In the same way as version 1,
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the features of the shallow layer were continuously downsampled and the features of the
deep layer were fused. Therefore, due to the downsampling, the advantages were not
complemented. However, the network was useful for the mining of shallow information
so the small object information had relatively sufficient semantic information in the high-
resolution layer. The version 3 network descended from deep to shallow fusion. This
method was similar to that used in version 2. Although its shallow layer maintained the
same convolution depth as version 1, it did not undergo downsampling to retain feature
details, and at the same time, it incorporated rich semantic depth from the deep layers.
Among the networks, the best performance was achieved by the version 4 network, which
employed incremental fusion from the deep layer to the shallow layer. It utilized a method
of deepening the convolution depth of the shallow layer feature map and transferring from
the deep layer to the shallow layer to fuse the semantic information. This allowed each node
to continuously integrate rich semantic information from the deep network, avoiding the
loss of detailed features due to downsampling and preserving shallow geometric details.

Table 2. Performance comparison of the five feature fusion networks. (The bold type represents the
best result. Pre: Precision; Rec: Recall; time: inference time (ms); memory: GPU memory (MiB)).

Neck Pre Rec mAP0.5 mAP0.5:0.95 Time Memory Parameters

Panet [39] 46.0 26.9 34.9 20.5 1.5 2387 7,037,095
Version 1 48.6 38.3 38.8 22.2 2.1 2693 9,751,892
Version 2 50.5 39.3 40.0 23.1 2.4 2727 7,681,236
Version 3 52.1 40.0 40.5 22.9 2.0 2743 8,603,028
Version 4 53.9 40.7 42.3 24.6 2.2 2679 7,408,532

4.3. Ablation Experiment

We experimented with each method on the VisDrone 2019 dataset and the results are
shown in Table 3. The main evaluation indicators are accuracy, recall rate, mAP0.5, and
mAP0.5:0.95.

Table 3. Ablation study. (Pre: Precision; Rec: Recall; time: inference time (ms); memory: GPU memory
(MiB)).

Version Pre Rec mAP0.5 mAP0.5:0.95 Time Memory Parameters

baseline 48.1 34.6 34.9 19.1 1.5 2387 7,037,095
+VIOU 50.7 34.6 36.4 20.7 1.5 2387 7,037,095

+VIOU + PFFN 55.2 41.1 43.2 25.2 2.5 2657 7,408,532
+VIOU + PFFN + AD head 55.8 42.7 44.6 26.6 7.1 3805 19,258,068

VIOU: The VIOU (a = 1) considered the IOU, the center point distance, and the shape
and size of the box when the bounding box was regressed, which reduced the difficulty
of the convergence of the regression box and the situation of wandering around during
training. When we changed the original loss function of the network to the VIOU, its
mAP0.5 increased by 1.5%, which had a good effect on helping the bounding box regression
during training.

PFFN: It can be seen from the data that when the PFFN was applied to the network,
the above four indicators were significantly improved. This shows that the original feature
fusion network did not fully mine and extract the features of the backbone network,
especially when we made a large change to the shallow structure, and achieved good
results. The original network was not friendly to objects with large-scale changes. Through
the redesigned feature fusion network, a certain number of fusion convolution nodes were
added at different resolution levels for semantic mining and the detailed features were
retained. The rich semantic information from the deep layer was continuously fused and
the fusion was fully compensated for. Insufficient semantic information in the shallow
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layer was eliminated and the loss of context information from the deep feature map was
reduced.

AD head: After applying the AD head to the network, all four evaluation indicators
improved. Therefore, separating the classification network and the regression network
improved the detection performance. The experimental structure demonstrated that the
focus and points of interest of the two tasks of classification and regression were different
so if the same network was used for classification and positioning, the performance would
be bad. It is worthwhile improving the classification and regression capabilities of detection
by our AD head.

4.4. Comparison of Different Detectors

To verify the effectiveness of the method in this paper, we selected some detectors for
detection on the VisDrone 2019 dataset and trained 300 epochs. The experimental results
are shown in Table 4. It can be seen that none of the current state-of-the-art detectors had a
high mAP, which indicates that they did not perform well in UAV aerial object detection.
As a result, the proposed YOLOv5s based on the VIOU loss, PFFN, and AD head achieved
better results than SSD, RetinaNet, YOLOv3-v8, and Faster R-CNN, which were designed
to detect UAV aerial objects.

Table 4. Comparison of performance on the VisDrone 2019 dataset. (The bold type represents the
best result).

Method Backbone mAP0.5 mAP0.5:0.95

SSD [12] ResNet-50 10.6 5.0
EfficientDet [46] EfficientDet-D1 21.2 12.9
RetinaNet [13] ResNet-50-FPN 25.5 15.1
CenterNet [14] ResNet-50 29.0 14.0

Faster R-CNN [3] ResNet-50-FPN 35.8 19.7
YOLOv3-SPP [5] DarkNet53 18.9 10.6

YOLOv5 CSPDarkNet 34.9 19.1
YOLOv6 [8] EfficientRep 28.8 19.0

YOLOv7 [10] ELAN 37.5 23.8
YOLOv8 [11] CSPDarkNet(C2f) 41.4 24.9

Ours CSPDarkNet 44.6 26.6

To better evaluate the detection validity of the proposed methods, we conducted some
comparative experiments on the DOTA dataset. There were 15749 training sets and 5297
verification sets in this dataset. It contained 15 categories of remote-sensing detection
objects, including “plane”, “ship”, “storage-tank”, “baseball-diamond”, “tennis-court”,
“basketball-court”, “ground-track-field”, “harbor, bridge”, “large-vehicle”, “small-vehicle”,
“helicopter”, “roundabout”, “soccer-ball-field”, and “swimming-pool”. As can be seen in
Table 5, our methods outperformed YOLOv5 and the latest YOLOv8 by 2.1% and 1.3%,
respectively. Compared with other target detection methods, our method also had more
advantages.

Table 5. Comparison of performance on the DOTA dataset. (The bold type represents the best result).

Method Backbone mAP0.5 mAP0.5:0.95

SDD VGG 42.7 23.1
EfficientDet EfficientDet-D1 58.9 33.7
CenterNet ResNet-50 56.7 30.8

Faster R-CNN ResNet-50-FPN 62.9 30.4
YOLOv5 CSPDarkNet 71.4 45.9
YOLOv8 CSPDarkNet(C2f) 72.2 49.0

Ours CSPDarkNet 73.5 49.2
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4.5. Visual Analysis

Figure 8 shows that the PFFN continuously fused feature information from deeper
layers. The network achieved this by utilizing nodes with different resolution layers
that allowed for the retention of a large number of detailed features from shallow layers.
Additionally, the PFFN increased the convolution depth on each feature layer, avoiding
the loss of small object features caused by downsampling. The added high-resolution
detection head enabled the algorithm to better complete multi-scale detection tasks. The
AD head could separate the classification and regression tasks, making the classification
network more focused on the prediction of each object category and improving the network
classification ability. A separate regression network makes its “points of interest” more
focused on the coordinates of the center point of the object and the width and height of
each object, making the border regression more precise.

Figure 8. Image detection comparison heat map (the picture on the left is the result of direct detection
by YOLOv5s, and the picture on the right is the result of our improved model detection). The
darker the red color, the greater the value. The darker the blue, the smaller the value. Through the
Grad-CAM, the probability value of the output category to be visualized is mapped to the last layer
of feature maps and the gradient value of each pixel of the feature maps is obtained to determine
how much influence each region has on the prediction of the model.

It can be seen in the right heat map of the first group that we detected more overlapping
small objects, which addressed the issue of losing detailed features due to high overlap
between small objects and improved the detection of large object scale changes. In the right
heat map of the second group, the thermal radiation of each “people” is more concentrated,
resulting in a more accurate object frame position and improved regression prediction
accuracy.

Figure 9 shows that there were some detection difficulties, which are common in UAV
aerial images. In the first set of pictures, there are many “people” riding a “motor” and the
object is small and highly overlapping. In the second group of pictures, the scale of the area
occupied by the “bus” and “pedestrian” in the center of the picture is very different and
the range of the object scale is too large. In the third group of pictures, some objects, e.g.,
“car” and “bicyle”, in the green belts on both sides could not be detected and the features
are unclear or incomplete due to light or occlusion. It can be seen from the comparison that
our methods achieved better performance.

The VisDrone 2019 dataset had 10 different categories. The mAP0.5 of each category
after applying the VIOU, PFFN, and AD head on the validation set compared to the baseline
are shown in Figure 10. It can be seen that the mAP0.5 improved across all categories with
different sizes, which shows that our methods are appropriate for objects of various scales.
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Figure 9. Picture detection effect comparison chart (the picture on the left is the result of direct
detection by YOLOv5s and the picture on the right is the result of our improved model detection).

Figure 10. AP for each category on the VisDrone 2019 validation set.

5. Conclusions

In this paper, our methods address the issues of multi-scale objects, a high proportion
of small objects, and high overlap in UAV aerial images. The VIOU loss helps the regression
of the bounding box during the training, making the positioning of the bounding box more
precise. The proposed PFFN and AD head are used to allow the model to better adapt
to the characteristics of UAV aerial image data to achieve the best detection performance.
The PFFN reduces the loss of small object features caused by downsampling and at the
same time, deepens the semantic depth of shallow features, greatly improves the detection
ability of small objects, and improves the model’s ability to detect multi-scale objects. The
proposed AD head is used to improve the regression ability of the network’s object box
and object classification for overlapping objects. The experiment results show that the
proposed model achieved an accuracy of 44.6%, which was 9.7% higher than the baseline
and higher than other detectors. On the DOTA dataset, the performance was improved by
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2.1% compared to YOLOv5s. Additionally, our methods are easily implementable, making
them convenient to apply in practical scenarios.
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