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Abstract: As the demand for thermal information increases in industrial fields, numerous studies
have focused on enhancing the quality of infrared images. Previous studies have attempted to
independently overcome one of the two main degradations of infrared images, fixed pattern noise
(FPN) and blurring artifacts, neglecting the other problems, to reduce the complexity of the problems.
However, this is infeasible for real-world infrared images, where two degradations coexist and
influence each other. Herein, we propose an infrared image deconvolution algorithm that jointly
considers FPN and blurring artifacts in a single framework. First, an infrared linear degradation
model that incorporates a series of degradations of the thermal information acquisition system is
derived. Subsequently, based on the investigation of the visual characteristics of the column FPN,
a strategy to precisely estimate FPN components is developed, even in the presence of random noise.
Finally, a non-blind image deconvolution scheme is proposed by analyzing the distinctive gradient
statistics of infrared images compared with those of visible-band images. The superiority of the
proposed algorithm is experimentally verified by removing both artifacts. Based on the results, the
derived infrared image deconvolution framework successfully reflects a real infrared imaging system.

Keywords: infrared image; non-blind deconvolution; fixed pattern noise; non-uniformity correction;
regularization; optimization

1. Introduction

Infrared images enable the detection of subjects, even in poor image acquisition
conditions, such as extremely dark illumination or bad weather, by sensing the thermal
radiation of each object [1]. Owing to its unique characteristics, which are different from
those of visible-band images, infrared imagery has been extensively utilized in various
fields of application, such as military, surveillance, medical science, agriculture, and fire
detection [2]. The use of a focal plane array (FPA) has enabled the mass production
of infrared cameras and accelerated the advancement in thermal imaging systems [3].
However, the obtained thermal images generally suffer from two major degradations:
fixed pattern noise (FPN) and blurring artifacts. Thus, numerous signal-processing-based
algorithms have been studied to effectively reduce the observed limitations and expedite
the efficient utilization of these imaging sensors by restoring precise thermal information.

FPN, widely known as non-uniformity (NU) noise, is spatially patterned noise that is
primarily generated by manufacturing flaws, inhomogeneous responsivities of pixels, and
dark currents of photo detectors [4]. Complementary metal–oxide semiconductor (CMOS)
image sensors for infrared imaging systems suffer from higher non-uniformity than charge-
coupled device (CCD) sensors, owing to the presence of amplifiers. In particular, column
FPN, which denotes strongly column-directed spatial noise, is the most-commonly observed
limitation owing to the presence of column-parallel amplifiers and the analog-to-digital
converter (ADC) of each column. As the column FPN occupies a large proportion of the
degradation factor for the quality of thermal images, we focused on effectively reducing
the deterioration while preserving the other image contents.
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The other degradation factor, image blur, fades the sharp subjects in the observed
images owing to some physical limitations of the image acquisition process, which is repre-
sented by the point spread function expressed by the acquired observation of a single-point
subject. Artifacts are divided into two types depending on the problems: motion blur
generated by camera shake or the motion of objects and optical blur caused by the optical
system or lens–camera arrangement [5]. Image deconvolution removes the observed blurs
by solving the inverse problem of linear degradation models, and various approaches have
been studied for visible-band images [6–8]. In particular, non-blind deconvolution algo-
rithms can restore the observed degradations when the point spread function is given and
have been extensively studied for the deep consideration of imaging systems considering
restored image characteristics [9–11]. Several studies have been conducted to overcome
blurs and random noise for infrared images [12,13]; however, they did not consider FPN in
the modeling, which dominates the quality of the observed infrared images. Individual
restored images of previous studies illustrated fine restoration results under the random
noise assumption, but the earlier-proposed algorithms are difficult to employ practically
because of the presence of FPN in real infrared images.

In this paper, we propose a non-blind deconvolution algorithm for infrared images
that considers an FPN. First, we derived an observation model for thermal images that
jointly considers blur, random noise, and FPN. As both the FPN and blur models were
linearly designed in previous studies, they were combined in the lexicographically ordered
vector representations. Subsequently, the objective function for estimating the column
FPN was derived in the maximum a posteriori (MAP) framework. Since the column FPN
primarily consists of column-directed components, a regularization function that reflects
the characteristics is proposed for precise estimation. Subsequently, an infrared image
deconvolution strategy was developed based on the characteristics of infrared images that
are different from those of visible-band images. The gradient distributions of the infrared
images were compared with those of conventional images to investigate their statistical
characteristics. Finally, efficient minimization methods for each optimization strategy were
derived: the alternating directional-method-of-multipliers (ADMM)-based method for
global gradient priors of FPN and the iteratively reweighted-least-squares (IRLS)-based
algorithm for the spatially variant data fidelity of deconvolution problems. Consequently,
the observed degradations of the infrared images were more effectively reduced by the
proposed algorithm compared to conventional algorithms, which successively remove
observed FPN and blur artifacts, as shown in Figure 1: the residual noise of the FPN-
removed image is boosted during the deconvolution process in the conventional framework,
while both artifacts are successfully suppressed in the proposed framework.

The remainder of this paper is organized as follows: In Section 2, we investigate
previous studies on FPN and image deconvolution problems and derive an appropriate
observation model for infrared images. In Section 3, we propose an infrared image decon-
volution algorithm that jointly considers the FPN and the observed blurs. In Section 4,
the performance of the proposed algorithm is compared with that of the conventional
algorithms in terms of denoising and deconvolution. Finally, in Section 5, we present
our conclusions.
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(a) (b) (c) (d) (e)

Figure 1. Comparative restored thermal images of an infrared camera. Thermal images commonly
demonstrate quite worse qualities compared to visible-band images, so they require additional
restoration processes. The conventional thermal image restoration framework consists of the FPN
removal and deblur processes. The proposed framework jointly considers both problems in the
deconvolution process. (a) Acquired visible-band image; (b) acquired thermal image; (c) FPN-
removed image [14]; (d) deblurred image [11] after FPN removal process [14]; (e) restored image of
the proposed framework.

2. Related Work
2.1. Fixed Pattern Noise of Thermal Images

FPN refers to the spatial noise that is usually generated by the hardware characteristics
of thermal imaging systems. It is composed of photo response non-uniformity (PRNU) and
dark signal non-uniformity (DSNU), which are commonly caused by differences in pixel
responsivity. The former denotes the gain of observations versus the true temperatures of
the subjects, and the latter represents the offset that is independent of them. The observed
image containing the FPN of the infrared images was modeled using the following equation:

y(i, j) = a(i, j) · x(i, j) + b(i, j) + n(i, j), (1)

where y(i, j) and x(i, j) represent the
(
col · (i− 1) + j

)
elements of the observed image and

the latent image, respectively. n(·) represents random noise, which is generally assumed
to be distributed with a Gaussian distribution. Moreover, a(·) and b(·) represent the
characteristics of FPN: the multiplicative term, PRNU, and the additive term, DSNU. The
goal of the FPN removal algorithms is to estimate the true values of a(·) and b(·) and
eliminate them from the observations.

Non-uniformity correction (NUC) compensates for the inherent parameters of imaging
detectors to remove the observed FPN. NUC has been studied in two ways: scene-based
and calibration-based methods. Scene-based methods utilize multiple raw images from
the same infrared camera and some statistical assumptions regarding the observed FPN
to remove the unknown NU [15–17]. Even though they require rigid input data, such as
sequences of infrared images, they commonly show lower accuracy with larger complexities
compared to calibration-based methods. Calibration-based algorithms use infrared data of
a specific temperature reference generated by a blackbody radiation source [14,18–20]. Two-
point methods [18] estimate the gain and offset of the linearly approximated FPN models
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based on two observations of high and low temperatures. Multi-point algorithms [19]
extend the aforementioned study [18] and demonstrate improvements in performance
by modeling the piecewise linearity of the observed FPNs more precisely. Additionally,
curve-fitting methods [14] have been studied to generalize the non-linear characteristics
of responsivities and effectively operate for thermal images covering a wide range of
temperatures. Such calibration-based algorithms efficiently remove the observed FPN and
enable the real-time implementation of NUC; however, they neglect the random noise in the
observations, which induces critical side-effects in the restored image qualities. In this study,
we propose a calibration-based FPN estimation method in an optimization framework to
effectively reflect both noises in deconvolution problems with reasonable computations.

2.2. Image Deconvolution

Image deconvolution restores high-quality images from degraded observations by
removing degradations such as blurs and random noise. The degradation process of
a common image acquisition process is defined as follows:

y = Hx + n, (2)

where y, x, and n denote lexicographically ordered vector representations of y(i, j), x(i, j),
and n(i, j), respectively. H represents the system matrix of the blur kernel h, and the
deconvolution algorithm is divided into non-blind and blind, depending on whether this
term is known or unknown. In this study, we attempted to solve non-blind deconvolution
problems for infrared images, which are still highly ill-posed owing to the singularity
of H and the irregularity of n. In addition to blur degradation, infrared images commonly
suffer from the aforementioned FPN, as depicted in Figure 2. Therefore, the infrared image
observation model including blurs and FPN is derived as follows:

y = AHx + b + n, (3)

where b represents the vectorized expression of additive FPN b(i, j) and A denotes the
diagonal matrix, whose

(
col · (i − 1) + j

)
th diagonal component is multiplicative FPN

a(i, j). High-quality infrared images can be obtained by solving the inverse problem of
Equation (3), jointly removing the blurs and FPN.

Original scene

Blur Degradation Fixed Pattern Noise

Observed

Random Noise

Infrared Image Acquisition Model

Figure 2. Framework of infrared image acquisition process. For the original scene, blur degradation
occurs in the optical system, fixed pattern noise is generated by the responsivity of the sensor, and
random noise is acquired during observation.



Sensors 2023, 23, 3033 5 of 18

The objective function of the infrared image restoration problem is defined as follows:

F(x) =
1
2
||AHx + b− y||22 + λ · R(x), (4)

where the first term represents the data fidelity, which penalizes the restored image to
the observation model, and the second term, R(x), represents the regularization function,
which reduces the uncertainty of inverse problems by employing prior information on
high-quality infrared images. Moreover, λ symbolizes the regularization parameter that
controls the significance between the data fidelity and the regularization function, which
primarily determines the restored image characteristics. Therefore, to enhance the image
quality restored by solving this problem, a regularization function that derives the unique
characteristics of high-quality thermal images should be designed.

Various regularization approaches have been studied to accurately describe the innate
characteristics of conventional visible-band images. Hunt et al. [21] derived the constrained
least-squares approach to characterize the smoothness of high-quality images, which is also
known as the smoothness prior. Rudin et al. [22] proposed total variation regularization to
preserve edges in the horizontal and vertical directions, and Farsiu et al. [23] extended this
idea using bilateral filters to jointly consider diagonal edges. Russel et al. [24] first invented
the natural image prior derivation and considered the statistical characteristics of natural
images. Moreover, various studies have attempted to precisely model them using various
distributional models. Cho et al. [25] attempted to describe different patchwise statistical
attributes by deriving a spatially variant regularization function for the generalized Gaus-
sian distribution (GGD) model. Zoran et al. [26] employed the Gaussian mixture model
(GMM) and derived the expected patch log likelihood (EPLL) framework to consider patch
statistics more deliberately. Lee et al. [10] proposed an automated prior selection algorithm
that precisely estimates the inherent gradient statistics from the observations. However,
few studies have been conducted on infrared images in this field. Thus, we propose an
effective regularization function by analyzing the infrared image statistics.

3. Proposed Algorithm

In this paper, we propose an infrared image deconvolution algorithm that simulta-
neously overcomes both blur degradation and FPN. First, the multiplicative and additive
components of the FPN were calculated from the calibration data based on the visible
features of the column FPN. Subsequently, a non-blind image deconvolution problem that
incorporates the estimated FPN was derived, reflecting infrared image statistics within
the maximum a posteriori (MAP) framework. Finally, the optimization strategies for FPN
estimation and image deconvolution were separately studied for each process to enhance
the efficiency depending on the characteristics of the objective functions.

3.1. Estimation of Fixed Pattern Noise

Calibration-based FPN estimation algorithms commonly require pre-processing tasks
to extract the physical characteristics of image acquisition devices, but have been extensively
employed for real-world cameras owing to their high efficiency. The method utilizes
calibration data that capture the blackbody at constant temperatures and estimates the
additive and multiplicative terms of FPN from the observations, as shown in Figure 3a.
The image yk of a blackbody at the same temperature tk can be modeled as follows:

yk = tka + b + n, (5)

for 1 ≤ k ≤ K, where K indicates the number of calibration frames, and a represents
the vector representation of a(i, j). In the experiments, tk was determined as the mean
value of the measured blackbody to maintain the average intensity of the infrared images
after the FPN removal process. The FPN estimation problem corresponds to the a and
b-determination problems considered in this study. Previous FPN removal algorithms also
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aimed to accurately find the components, but failed to consider the presence of random
noise n in the reference data, which resulted in strong errors in the estimated FPN.

𝐲1 of 𝑡1

Fixed Pattern Noise Estimation Process

𝐲2 of 𝑡2 𝐲𝑘 of 𝑡𝑘

⋯

estimated ො𝐚 estimated መ𝐛

(a)

Estimated Fixed Pattern Noise

estimated ො𝐚

estimated መ𝐛

Observed IR Image

(b)

Figure 3. Materials of the proposed fixed pattern noise estimation algorithm. (a) Framework of the
proposed FPN estimation algorithm using calibration data; (b) estimated FPN components of the
proposed algorithm for five different infrared images.

We interpreted the FPN estimation problem in the optimization framework to reduce
side-effects and improve the estimation performance by reflecting the characteristics of
the observed FPN. In the proposed derivation, the multiplicative noise a is calculated by
subtracting the consecutive calibration frames in Equation (5), the optimization problem of
which is expressed as follows:

â = arg min
a

{
1
2

K−1

∑
k=1
||(tk+1 − tk)a− (yk+1 − yk)||22

}
. (6)

Subsequently, the additive noise b was computed by determining the least-squares
solution using the estimated a:

b̂ = arg min
b

{
1
2

K

∑
k=1
||b + tka− yk||22

}
. (7)

The derived Equations (6) and (7) compensate for the boosted random noise problem
by reducing randomness with the use of multiple frame data. Therefore, the accuracy of
the FPN estimation process depends significantly on the number of reference frames, and
strong random noise is difficult to remove using this stochastic approach.

To overcome these practical limitations, we developed a regularization strategy that
reduces the ill-posedness of the problem by introducing prior information to the observed
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column FPN. The column FPN primarily consists of column-directed patterns without row-
directed components and exhibits extremely high sparsity only in their vertical gradients
with the exception of horizontal gradients. Thus, the vertical edge-preserving prior is
derived by enforcing gradient sparsity in the column direction, and the regularized problem
including this information is developed as follows:

Fa(a) =
K−1

∑
k=1

λa,k

2
· ||(tk+1 − tk)a− (yk+1 − yk)||22 + ||∇ca||11, (8)

and

Fb(b) =
K

∑
k=1

λb,k

2
· ||b + tka− yk||22 + ||∇cb||11, (9)

where Fa(a) and Fb(b) represent the derived objective functions and ∇c denotes the gradi-
ent operator in the column direction. The penalized column gradient sparsity was expected
to strongly suppress the observed random noise while reconstructing similar values in the
column direction for the computed FPN.The estimated FPN components demonstrate high
precision by closely describing the attributes of the column FPN, regardless of the observed
infrared images, as depicted in Figure 3b.

3.2. Thermal Image Deconvolution

The qualities of the restored images are primarily determined by how accurately and
deliberately the regularization function describes the characteristics of the high-quality
images. Therefore, for the fine restoration of thermal images, prior information on clean
thermal images should be investigated in advance. Compared with high-quality images,
thermal images generally exhibit fewer high-frequency components, such as details and
textures, but smoother areas, such as flat regions. These distinctive visual characteristics
are displayed as gradient distributions of different shapes for various RGB–thermal image
datasets [13,27–29], as depicted in Figure 4.

Trimodal Dataset

(a)

CATS Dataset

(b)

Figure 4. Cont.
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FLIR Dataset

(c)

SRIP Dataset

(d)

Figure 4. Visual comparison between visible-band images and infrared images for several datasets.
Additionally, they are compared through their gradient distributions in the log scale. In the distribu-
tions, the blue and red lines represent the RGB images and thermal images, respectively. (a) Trimodal
dataset [27]; (b) CATS dataset [28]; (c) FLIR dataset [29]; (d) SRIP dataset [13].

In this study, we analyzed the gradient statistics to characterize the high-quality ther-
mal images. Gradient priors have been extensively studied for visible-band images owing
to their effectiveness and computational simplicity [9]. The first-order derivative opera-
tor, which computes the gradient statistics of observations, filters out the high-frequency
information of the images. Thus, the output signals of visible-band images are generally
distributed as heavy-tailed distributions, owing to the large number of sharp edges. In con-
trast, fewer details and a wider smoothness of thermal images are exhibited as higher peaks
and shorter tails in their gradient distributions compared to those of visible-band images.
We investigated these observable differences by statistically modeling the distributions
using the following GGD model f :

f (∇x; p, σ) =
p

2σΓ(1/p)
exp

(
− ||∇x||p

σ

)
, (10)

where Γ(·) represents the gamma function and p and σ denote two shape parameters
of the GGD that determine the height of the peaks and the width of the tails of the
distributions, respectively.

We employed statistical modeling in our previous study [10], which numerically
estimated the two parameters that most closely describe the reference distributions. As
shown in Figure 5, the comparatively higher peaks and shorter tails of the thermal images
are represented by smaller values of p and σ. To use these statistics as prior information,
the model estimated in Equation (10) can be transformed as follows:

log
(

f (∇x; p, σ)
)

∝ −||∇x||p
σ

. (11)



Sensors 2023, 23, 3033 9 of 18

(a) (b) (c) (d)

Figure 5. Examples of modeled gradient distributions of the individual RGB and thermal image
dataset in Figure 4. The above gradient distributions are approximated to the GGD model with
our previous statistical modeling algorithm. The graphs below exhibit the modeled parameters p
(horizontal axis) and σ (vertical axis) for each image of the dataset. In the above distributions, the
blue and the red lines denote RGB and thermal distributions, and the black dotted lines denote the
statistical models describing them. In the graphs below, the blue and the red dots denote the statistical
parameters of RGB and thermal images, respectively. (a) Trimodal dataset [27]; (b) CATS dataset [28];
(c) FLIR dataset [29]; (d) SRIP dataset [13].

In the MAP framework of image deconvolution problems, the thermal image prior
in Equation (11) is derived as the regularization function of the objective function F(x),
as follows:

F(x) =
1
2
||AHx + b− y||22 + λ · ||∇x||pp, (12)

where the regularization parameter λ is inversely proportional to σ. High-quality thermal
images can be restored by solving the above image deconvolution problem for small values
of p and large values of λ, reflecting the strong gradient sparsity of thermal image statistics.

3.3. Optimization Methods

In this subsection, we derive optimization algorithms to minimize the proposed objec-
tive functions in Equations (8), (9), and (12). The components of the FPN, the multiplicative
FPN a and the additive FPN b, were successively estimated in advance, and the obser-
vation model of infrared images in Equation (3) was obtained. Subsequently, the clean
infrared image was restored by solving the deconvolution problem. The optimization
strategy was studied differently for each variable to efficiently solve problems depending
on their attributes.

First, the convex and non-smooth problem of multiplicative FPN a in Equation (8) was
solved using the ADMM framework. The ADMM is a powerful optimization algorithm
because of its fast convergence rate in overcoming the non-smoothness of the objective
functions. The strategy efficiently solves complicated problems by simplifying them with
additional auxiliary variables and splitting them into several sub-problems. The derived
objective function is expressed as follows:

La(a, ua, va) =
1
2

K−1

∑
k=1

λa,k · ||(tk+1 − tk)a− (yk+1 − yk)||22 + ||ua||11

+
ρa

2
||ua −∇ca + va||22 −

ρa

2
||va||22,

(13)
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where ua denotes an auxiliary variable that replaces ∇ca and ρa indicates a penalty param-
eter that enforces the similarity between ∇ca and ua. Moreover, va denotes a dual variable
in the ADMM derivation. The objective function was minimized by successively solving
the problems of variables a, ua, and va in the ADMM framework.

The a sub-problem is characterized by smoothness and convexity; therefore, the
inverse problem can be efficiently solved in the frequency domain as follows:

an+1 = arg min
a

{
1
2

K−1

∑
k=1

λa,k · ||(tk+1 − tk)a− (yk+1 − yk)||22 +
ρa

2
||∇ca− un

a − vn
a ||22

}

= F−1

{
F
{

∑K−1
k=1 λa,k(tk+1 − tk) · (yk+1 − yk) + ρa∇T

c (un
a + vn

a)
}∣∣∣F{∑K−1

k=1 λa,k(tk+1 − tk) · I
}∣∣∣2 + ρa

∣∣∣F{∇c
}∣∣∣2

}
,

(14)

where F and F−1 denote the fast Fourier transform (FFT) and inverse fast fast Fourier
transform (IFFT) operations, respectively. Since the complex problem is easily optimized
by simple division in the frequency domain, it significantly reduces the computations and
determines the efficiency of the algorithm. The convex, but non-smooth ua sub-problem is
expressed as follows:

un+1
a = arg min

ua

{
ρa

2
||ua −∇ca + vn

a ||22 + ||ua||11

}
, (15)

where the gradient operator in the regularization term in Equation (8), which incurs large
computational costs in optimization, is abbreviated. Therefore, this problem can be solved
using the following soft thresholding method:

un+1
a = shirink(∇ca− vn

a , 1/ρa)

= max{|∇ca− vn
a | − 1/ρa, 0} · sign(∇ca− vn

a),
(16)

where shirink(·) stands for the shrinkage operator and sign(·) denotes the signum function
that returns the signs of the real vectors. The dual variable va is then updated as follows:

vn+1
a = vn

a + un+1
a −∇an+1. (17)

Upon calculating the multiplicative FPN a using Equations (14), (16), and (17), the
additive FPN b is computed similarly in the ADMM framework. The objective function
of b in Equation (9) is characterized by convexity and non-smoothness, but shows less
complexity compared to that of a owing to the absence of coefficients tk. The process
requires a previously estimated a and aims to minimize the following optimization problem:

Lb(b, ub, vb; a) =
1
2

K

∑
k=1

λb,k · ||b + tka− yk||22 + ||ub||11

+
ρb
2
||ub −∇cb + vb||22 −

ρb
2
||vb||22,

(18)

where ub = ∇cb and vb are auxiliary variables for reducing the complexity and ρb
penalizes the fidelity of ub to ∇cb. From the derived function, the convex and smooth b
sub-problems are efficiently solved in the frequency domain as follows:

bn+1 = arg min
b

{
1
2

K

∑
k=1

λb,k · ||b + tka− yk||22 +
ρb
2
||∇cb− un

b − vn
b||

2
2

}

= F−1

{
F
{

∑K
k=1 λb,k · yk + ρb∇T

c (un
b + vn

b)
}∣∣∣F{∑K

k=1 λb,k · I
}∣∣∣2 + ρb

∣∣∣F{∇c
}∣∣∣2

}
.

(19)
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Subsequently, the other variables ub and vb are computed using calculations similar to
ua and va in Equations (16) and (17). Through the above calculations, the multiplicative
FPN a and additive b are efficiently achieved, representing the visual characteristics of the
column FPN.

Finally, the infrared image deconvolution problem in Equation (12) is developed based
on the estimated FPN a and b. However, because the objective function is composed of
a spatially variant data fidelity term and a non-convex regularization term, it is difficult
to minimize and requires a large number of computations for convergence. Although
the ADMM performs well in solving some optimization problems, it fails to treat spatial
variance, which cannot be interpreted in the frequency domain. Therefore, we introduced
an iteratively reweighted least-squares (IRLS) strategy to simplify the complexity by over-
coming the non-convexity of the proposed Lp-regularized problem. The IRLS approximates
the non-convex term to a quadratic expression by computing the coefficients of the cor-
responding term regarding the variables of the current iteration, n, as those of the next
iteration, n + 1, and derives a series of weighted least-squares problems. For the function
proposed in Equation (12), the approximated convex function can be expressed as follows:

F(xn+1) ≈ 1
2
||AHxn+1 + b− y||22 + λ · (∇xn+1)TW(∇xn+1), (20)

where

W = diag

(
p ·
(
(∇x(i, j)n)2 + ε

) p
2−1
)

, (21)

ε > 0 is a negligibly small parameter, and ∇x(i, j)n represents the (i, j)-th components
of the vector ∇xn at iteration n. The optimization problem of the compressive sensing
field has been simply solved by direct inversion; however, it cannot be applied in this
deconvolution field owing to the spatially variant variant multiplicative noise matrix A
and the presence of gradient operator ∇. Therefore, we employed the conjugate gradient
method, which efficiently solves complex, but convex problems, even with spatially variant
operators, through numerical iterations. Consequently, a high-quality thermal image x can
be restored.

4. Experiment Results

In this section, we validated the performance of the proposed algorithm in terms of
denoising and deconvolution. The former handles the problems of removing FPN and
random noise from infrared images, whereas the latter jointly considers blur artifacts in
addition to noise. Both problems commonly aim to restore high-quality infrared images
from the observed poorly conditioned images.

The synthesized versions of the high-quality infrared images of the CATS dataset [28]
shown in Figure 6 and real-world infrared images of the SRIP dataset [13] were utilized
to evaluate the restoration performance. For noise removal problems, the clean thermal
images were contaminated by column-directed FPN and additive white Gaussian noise
at the 20 dB scale, and they were formerly degraded by the point spread functions of real
blurs [30] for the deconvolution problems. On the other hand, the observed real thermal
images were utilized without any additional degradation.
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(a) (b) (c) (d)

Figure 6. Test images selected from high-quality infrared image dataset [28]. Additional degradations
are synthesized for the images according to the problems. (a) CARS; (b) COUNTRYARD; (c) HOUSE;
(d) ISE.

4.1. FPN Removal

In this section, we evaluated the efficacy of the proposed algorithm in simultaneously
reducing FPN and random noise. The proposed FPN removal strategy corresponds to the
calibration-based method, which requires observed data of ground-truth temperatures,
so the calibration data of blackbodies with four identical temperatures were additionally
utilized. For a fair comparison, the restoration performance of the proposed algorithm
in overcoming noise was compared with well-known calibration-based FPN removal
algorithms: the two-point [18], multi-point [19], and polynomial [14] methods.

Previous studies focused on accurately estimating multiplicative and additive noise
from calibration data by assuming a linear observation model. Therefore, we demonstrated
the results of the proposed algorithm in two ways: after estimating the FPN components
using our FPN calculation algorithm, one method (Proposed 1) obtains the restored image
from the linear calculation, similar to the two-point method [18], and the other (Proposed 2)
employs the proposed image deconvolution algorithm in Equation (12), assuming H is an
identical matrix, to only consider denoising problems.

The restored infrared images of the noise removal algorithms are qualitatively com-
pared in Figure 7. As illustrated, most algorithms successfully recovered identifiable
contents from the degraded observations, and Proposed 1 demonstrated a more effective
denoising performance than conventional algorithms by accurately estimating the elements
of the column FPN. This is because the common assumption of most previous studies was
that calibration images are noise-free. However, they were also obtained by a thermal
imaging system that contains random noise during the image acquisition process, and this
is effectively considered in the proposed FPN estimation algorithm through the regular-
ization function specifying the column FPN in Equations (8) and (9), respectively. Even
though the multiplicative and additive FPN terms were precisely estimated, there still
remained strong residual noise in the resulting images of Proposed 1, as the linear model
approach aimed to only remove the observed FPN, not random noise. In the proposed
optimization framework, the observed noise is suppressed by the statistical characteristics
of high-quality thermal images, as shown in the results of Proposed 2, which illustrated the
closest image characteristics to the original infrared image, both in the flat regions of the
parking lot and the detailed regions of cars.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 7. FPN-removed results of synthesized images restored by calibration-based FPN removal al-
gorithms. (a) Degraded image; (b) two-point method [18]; (c) multi-point method [19]; (d) polynomial
method [14]; (e) Proposed 1; (f) Proposed 2; (g) original image.

To quantitatively compare the restored image qualities, four image quality assessments
(IQAs) were employed: peak-signal-to-noise ratio (PSNR), structural similarity index map
(SSIM) [31], roughness (Ro) [32] index, and effective roughness (ERo) [33] index. The PSNR
and SSIM are the most-widely utilized IQAs to quantify the restoration performance by
measuring the similarity of the restored images compared to the corresponding original
image. Therefore, they commonly require reference images that are nearly impossible to be
acquired for real-world images. Ro quantifies the degree of NU, which is the most-critical
artifact in thermal images, by computing the ratio between the energies of an image and
its edges, and ERo extends the metric utilizing high-frequency components of individual
images. These two measurements are also available to measure the restoration performance
for real-world infrared images because they do not require the original images. A compari-
son of the measured assessments is given in Table 1. As illustrated, the performance of the
FPN removal algorithms became more effective as the FPN components were more deli-
cately modeled with the two-point, multi-point, polynomial, and Proposed 1, displaying
higher values in the PSNR and SSIM and lower values in Ro and ERo. Moreover, Proposed
2 outperformed the other algorithms by a large margin for most images and measurements,
verifying its unrivaled performance when considering random noise.
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Table 1. Quantitative measurements of restored infrared image qualities of denoising algorithms
using four quality assessments: PSNR, SSIM, Ro, and ERo.

Measurement Figure 6 Degraded Two-Point Multi-Point Polynomial Proposed 1 Proposed 2

PSNR

CARS 16.418 27.992 33.189 34.297 35.885 39.748
COUNT 22.833 35.169 40.200 41.315 42.863 44.616
HOUSE 19.441 34.661 36.922 37.239 39.122 41.657

ISE 13.490 31.844 35.545 36.068 37.850 40.062

SSIM

CARS 0.4861 0.4807 0.7329 0.7774 0.8330 0.9357
COUNT 0.5411 0.8061 0.9286 0.9438 0.9602 0.9759
HOUSE 0.5252 0.7715 0.8487 0.8575 0.9027 0.9461

ISE 0.3668 0.7161 0.8493 0.8631 0.9046 0.9478

Ro

CARS 1.2146 0.2533 0.1493 0.1347 0.1157 0.0646
COUNT 1.2231 0.1230 0.0811 0.0752 0.0682 0.0479
HOUSE 1.2837 0.1556 0.1254 0.1224 0.1035 0.0679

ISE 1.2092 0.1996 0.1449 0.1394 0.1214 0.0895

ERo

CARS 1.9039 3.0121 2.9257 2.8966 2.8312 2.4240
COUNT 1.8813 2.9325 2.7921 2.7569 2.7004 2.4497
HOUSE 1.9018 2.9968 2.9221 2.9150 2.8587 2.6381

ISE 1.8886 2.8896 2.7512 2.7261 2.6291 2.3505

4.2. Infrared Image Deconvolution

The performance of the proposed non-blind thermal image deconvolution algorithm
was experimentally validated and compared with those of conventional studies on visible-
band images [6,8,10,11]. To construct the simulation set, clean infrared images were blurred
by real image blurs [30] and subsequently degraded by the column FPN and random noise.
The proposed algorithm simultaneously overcomes the observed blurs, FPN, and random
noise by jointly considering the degradations. However, conventional deconvolution
approaches aim to only remove blurs and random noise. Therefore, for conventional
algorithms, the observed FPN of the degraded images is first reduced by the calibration-
based NUC method [14], and subsequently, the non-blind deconvolution problem is solved
to remove the blur degradations. On the other hand, the proposed algorithm was operated
simultaneously to restore high-quality thermal images from degraded observations. The
blur kernel information is provided for both approaches, as they commonly solve non-blind
deconvolution problems.

There have been few studies on infrared image deconvolution problems, as thermal
images are typically employed for the detection of subjects, rather than the observation of
individual content. However, as the application fields of these techniques have broadened,
the demand for high-precision thermal information has increased, and their physical limi-
tations can be overcome using deconvolution algorithms, which have not been extensively
studied for infrared images. Thus, we employed state-of-the-art non-blind image decon-
volution methods for visible-band images to qualitatively validate the proposed infrared
image restoration algorithm. Levin et al. [6] derived a probabilistic model expression for
deblurring problems and defined the natural image prior, which is a common characteristic
of high-quality visible-band images. Liming et al. [8] employed an iteratively reweighted
L1 minimization algorithm to overcome the non-convexity in the gradient sparsity of de-
convolution problems. Jon et al. [11] focused on the distributions of overlapping patches
and combined overlapping group sparsity with a natural image prior to penalize grouped
sparsity. Lee et al. [10] proposed an automatic prior selection algorithm that automatically
determines the most-effective prior term for visible-band images. The thermal images
restored by these well-established algorithms for visible-band images were compared with
those of the proposed algorithm.

Figure 8 shows the resulting thermal images restored by the individual deconvolu-
tion algorithms. The degraded image was initially denoised by the polynomial-based
FPN removal algorithm. However, as illustrated in the figure, it still suffered from con-
siderable noise in flat regions and blurring artifacts in detailed regions. The results of
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deconvolution algorithms commonly demonstrate effective performance in recovering
high-frequency information, such as edges and details in the restored images, but most of
the severe side-effects are commonly observed in the form of boosted noise; in particular,
Liming et al. [8] and Jon et al. [11] transformed the residual noise into overly enhanced
patterns in flat regions. Meanwhile, the restored images of the proposed algorithm suc-
cessfully improved the detailed regions while effectively suppressing noise. The restored
thermal images are quantitatively compared in Table 2. The results of the proposed al-
gorithm demonstrated better performance on most images in terms of the PSNR and
SSIM, demonstrating that the restored images closely describe the corresponding original
images. In particular, the latter showed much more overwhelming performance, which
were quite more sensitive to noise than the former. Additionally, the Ro and ERo of the
proposed algorithm mostly exhibited lower values than those of the conventional algo-
rithms, verifying that NU was effectively removed during the deconvolution process of the
proposed framework.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8. Thermal image deconvolution results of synthesized images restored by non-blind image
deconvolution algorithms. (a) Degraded image; (b) initially denoised image [14]; (c) Levin et al. [6];
(d) Liming et al. [8]; (e) Jon et al. [11]; (f) Lee et al. [10]; (g) proposed; (h) original image.

Table 2. Quantitative measurements of restored infrared image qualities of non-blind deconvolution
algorithms using four quality assessments: PSNR, SSIM, Ro, and ERo.

Measurement Figure 6 Degraded Denoised [14] Levin [6] Liming [8] Jon [11] Lee [10] Proposed

PSNR

CARS 16.356 29.576 32.549 33.256 34.240 33.473 33.488
COUNT 22.823 33.592 37.454 37.271 38.163 37.867 38.058
HOUSE 19.456 33.006 36.416 36.791 37.118 37.036 37.126

ISE 13.437 29.470 34.371 34.154 35.215 35.050 35.091

SSIM

CARS 0.4804 0.6925 0.8655 0.8825 0.8756 0.8827 0.8962
COUNT 0.5278 0.8604 0.9114 0.9015 0.9043 0.9151 0.9333
HOUSE 0.5312 0.7827 0.9098 0.9050 0.8939 0.9076 0.9227

ISE 0.3574 0.7484 0.8837 0.8538 0.8804 0.8877 0.9142

Ro

CARS 1.2262 0.1232 0.0555 0.0440 0.0514 0.0474 0.0406
COUNT 1.2325 0.0588 0.0450 0.0463 0.0460 0.0430 0.0327
HOUSE 1.2476 0.1091 0.0307 0.0354 0.0419 0.0385 0.0279

ISE 1.2119 0.1217 0.0837 0.0945 0.0856 0.0832 0.0701

ERo

CARS 1.8624 3.0403 2.6509 1.9245 2.1347 2.2837 2.0028
COUNT 1.8398 3.0057 2.3159 2.0497 2.2818 2.2158 1.9754
HOUSE 1.8541 3.0411 2.2530 1.8918 2.0505 2.3234 1.9518

ISE 1.8395 2.9929 2.0909 1.9028 2.1518 1.9719 1.7762
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Finally, the real-world images of the SRIP dataset were restored using the aforemen-
tioned FPN removal and non-blind deconvolution framework. As mentioned above, only
the proposed algorithm jointly considers degradation and restores the true thermal informa-
tion from the observations. As the images of the dataset contain real-world blurs, FPN, and
random noise, no other degradation processes were conducted on them. The blur kernels,
which should be known for non-blind image deconvolution algorithms, are initially recon-
structed from the captured line spread function of the infrared camera. Figure 9 illustrates
the observed real data of visible-band and infrared images and visually compares the
qualities of the restored infrared images. As illustrated, infrared images are commonly con-
taminated by an amount of FPN and random noise with smoothing artifacts compared to
visible-band images showing a lack of details. Even after the initial FPN removal algorithm,
there remained much noise owing to the harsh conditions of the real image acquisition
process compared to that of synthetic images. The purpose of the proposed algorithm was
to improve the details of infrared images while removing unwanted artifacts. Consecutive
FPN removal and deconvolution processes for conventional algorithms commonly fail to
obtain high-quality images from observed infrared data. Levin et al. [6] and Lee et al. [10]
reduced some of the observed noise, but failed to preserve the detailed information of each
image. Liming et al. [8] and Jon et al. [11] sharply enhanced high-frequency information,
but the noise was also boosted during the restoration process. In contrast, the proposed
algorithm successfully recovered the edge components while effectively removing both
the FPN and random noise. The performance of the proposed algorithm in NUC was
also validated by the measurements in Table 3: the Ro and ERo of the proposed algorithm
demonstrated the lowest values among those of the other conventional algorithms.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 9. Thermal image deconvolution results of real-world infrared images restored by non-blind
image deconvolution algorithms. (a) Visible-band image; (b) observed infrared image; (c) initially
denoised image [14]; (d) Levin et al. [6]; (e) Liming et al. [8]; (f) Jon et al. [11]; (g) Lee et al. [10];
(h) proposed.
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Table 3. Quantitative measurements of restored real infrared image qualities of non-blind deconvolu-
tion algorithms by following two quality assessments: Ro and ERo.

Dataset Measurement Observed Denoised [14] Levin [6] Liming [8] Jon [11] Lee [10] Proposed

SRIP Ro 0.9240 0.0846 0.0586 0.0457 0.0439 0.0465 0.0291
ERo 2.8831 2.9420 2.7735 2.0096 2.0193 2.3095 1.9874

5. Conclusions

Although actual thermal image acquisition systems include a series of blur and FPN
problems, they have been independently studied in previous studies for simplification. In
this study, we proposed an infrared image deconvolution algorithm that simultaneously
overcomes both degradations by jointly considering them using the derived observation
model. The visual features of a column FPN were investigated and utilized to specify the
characteristics of the FPN components in the form of prior information. Subsequently,
a non-blind deconvolution strategy for thermal images was derived based on a compar-
ative analysis of the gradient statistics of visible-band and infrared images. Finally, the
constructed objective functions were successively minimized via the respective optimal
algorithms. The convex problem of multiplicative and additive FPN was solved in the
ADMM framework, and the spatially variant non-convex problem of deconvolution was
optimized by the compositive utilization of IRLS and the conjugate gradient method. The
efficacy of the proposed thermal image deconvolution framework was validated simu-
latively and experimentally by removing FPN and blur problems, and its superiority in
performance was verified in terms of the PSNR, SSIM, Ro, and ERo.
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