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Abstract: The cooperative aerial and device-to-device (D2D) networks employing non-orthogonal
multiple access (NOMA) are expected to play an essential role in next-generation wireless networks.
Moreover, machine learning (ML) techniques, such as artificial neural networks (ANN), can signifi-
cantly enhance network performance and efficiency in fifth-generation (5G) wireless networks and
beyond. This paper studies an ANN-based unmanned aerial vehicle (UAV) placement scheme to
enhance an integrated UAV-D2D NOMA cooperative network.The proposed placement scheme selec-
tion (PSS) method for integrating the UAV into the cooperative network combines supervised and
unsupervised ML techniques. Specifically, a supervised classification approach is employed utilizing
a two-hidden layered ANN with 63 neurons evenly distributed among the layers. The output class of
the ANN is utilized to determine the appropriate unsupervised learning method—either k-means or
k-medoids—to be employed. This specific ANN layout has been observed to exhibit an accuracy of
94.12%, the highest accuracy among the ANN models evaluated, making it highly recommended for
accurate PSS predictions in urban locations. Furthermore, the proposed cooperative scheme allows
pairs of users to be simultaneously served through NOMA from the UAV, which acts as an aerial
base station. At the same time, the D2D cooperative transmission for each NOMA pair is activated to
improve the overall communication quality. Comparisons with conventional orthogonal multiple
access (OMA) and alternative unsupervised machine-learning based-UAV-D2D NOMA cooperative
networks show that significant sum rate and spectral efficiency gains can be harvested through the
proposed method under varying D2D bandwidth allocations.

Keywords: machine learning; UAV placement; artificial neural network (ANN); deep neural network
(DNN); NOMA; cooperative communications; D2D

1. Introduction

Undoubtedly, the utilization of unmanned aerial vehicles (UAVs) as UAV flying
base stations (UFBSs) is of potential interest in the context of new-generation wireless
communication systems. UAV-enabled wireless communication systems can provide
wireless coverage extension, capacity enhancement, communication restoration during
disaster events, and aerial data collection within the framework of Internet of Things
(IoT) applications [1,2]. In contrast to conventional wireless communication systems that
depend on fixed terrestrial infrastructures, UFBSs are dynamic and simple to deploy and
reconfigure. Thus, their use introduces several degrees of freedom in terms of flexibility,
wide coverage, and communication restoration during a disaster and temporary events.
However, the anticipated advantages of deploying UFBSs are heavily contingent on their
precise location within the region of interest to offer terrestrial users reliable and high-
quality communication [3].

Sensors 2023, 23, 3014. https://doi.org/10.3390/s23063014 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063014
https://doi.org/10.3390/s23063014
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2591-9289
https://orcid.org/0000-0002-3707-3313
https://orcid.org/0000-0002-6858-3674
https://orcid.org/0000-0002-6649-6577
https://doi.org/10.3390/s23063014
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063014?type=check_update&version=2


Sensors 2023, 23, 3014 2 of 30

1.1. Background

Identifying the proper horizontal and vertical locations of UFBSs concerning other
ground or flying objects is one of the most challenging parts of establishing UAV-based
communication systems that achieve optimal or near-optimal performance. Hence, several
research attempts in the technical literature have proposed various UFBSs placement
techniques to maximize the aerial network communication performance and exploit the
advantages provided [4–10]. The authors in [4] proposed a low-complexity method that
optimizes UAVs’ 2D location, admission control, and power allocation using penalty
function and successive convex approximation techniques. This approach maximizes the
quality of service for terrestrial users and is effective, as confirmed by simulation results.
Furthermore, the authors in [5] jointly optimized the 2D locations and the transmit power of
multiple UFBSs to maximize the system sum rate using a distributed learning method that
achieves stochastic stability. Collisions between the UFBSs were prevented by determining
their respective heights in advance. Moreover, in [6], the 2D placement and the power
allocation of the UFBSs are jointly optimized to increase the UAV network’s performance.
The proposed method consists of two sub-processes. The first sub-process finds the optimal
2D position, while the second further determines the optimal power allocation to maximize
the terrestrial users’ total sum rate.

The works [4–6] have presented conventional optimization methods to determine the
optimal location of the UFBSs. Notwithstanding, other approaches focus on leveraging
the machine learning (ML) advantages to deal with the UFBSs placement problem [7–10].
More specifically, the authors in [7] suggested a UAV-aided offloading approach for ter-
restrial networks that uses an unsupervised ML method to optimize UFBS deployment in
high-traffic areas. The proposed method is divided into two sub-processes—user clustering
employing the k-medoids algorithm and cluster selection scheme for identifying the UFBSs
with the highest offloading factor. Another ML-based solution that aims to offload terres-
trial base stations (TBSs) is proposed in [8]. The proposed scheme is based on the weighted
expectation–maximization algorithm and estimates both the user distribution and the
downlink traffic demand to determine the optimal UFBSs location. Similarly, the authors
of [9] studied the joint 3D placement and UAV-user associations in UAV-assisted networks.
For the 2D positioning of UAVs, a modified version of the k-means algorithm is utilized,
while for the altitude optimization problem, they propose a game theoretic approach. Sim-
ulation results have shown that the proposed scheme outperforms other trivial cases where
users are associated, over iterations, with the closest UAV. Lastly, in [10], UFBSs are treated
as long-term evolution (LTE)-advanced heterogeneous networks (HetNet) to cover safety
incidents. In this approach, the UFBSs are deterministically positioned on a precalculated
hexagonal grid with fixed placement points, restricting the placement optimality.

UFBS optimal placement increases the possibility of obtaining LoS conditions, thus
enhancing the physical communication link quality. Therefore, effective resource manage-
ment techniques should be utilized to optimally exploit the improved physical links and
provide highly spectral efficient communication to several ground users. Towards the goal
of intelligent integration of the UFBSs into fifth-generation (5G), beyond 5G (B5G), and
sixth-generation (6G) communication systems, non-orthogonal multiple access (NOMA) is
expected to be a fundamental radio access technique [11,12]. The basic principle of NOMA
is to serve multiple users simultaneously in a single resource block (space/time/frequency)
by multiplexing them in the power domain. To accomplish this objective, superposition
coding (SC) is performed at the transmitter and successive interference cancellation (SIC) at
the receiver [13]. Moreover, combining NOMA with high spectral efficient multiple-input
multiple-output (MIMO) techniques, such as quadrature spatial modulation (QSM) [14,15],
can further enhance the spectral efficiency and increase the capacity of non-terrestrial
wireless networks [3].

Recent research attempts have investigated the use of NOMA to enhance the perfor-
mance of UAV-enabled communication systems [16–18]. The authors of [16] have studied
a NOMA-based UAV-enabled communication network. Specifically, a path-following al-
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gorithm is proposed to solve the max-min rate optimization problem, which is subjected
to the constraints of the total power, available bandwidth, UAV altitude, and antenna
beamwidth. The numerical results have shown that the NOMA scheme outperforms OMA,
in terms of achievable rate, for different system parameters. Subsequently, the authors
in [17] developed a novel NOMA UAV-assisted offloading architecture for cellular networks
to significantly enhance the system’s spectrum efficiency. Specifically, the 3D trajectory
design and power allocation optimization problem are formulated to maximize the sys-
tem sum rate. For this purpose, ML-based methods, namely k-means and mutual deep
Q-network (MDQN), are utilized to deal with this problem. Another strategy [18] proposes
a resource allocation scheme for a UAV-assisted full-duplex (FD) NOMA system to improve
spectrum efficiency, reduce terrestrial users’ power requirements, and maintain quality
of service (QoS) requirements. The method utilizes a joint uplink/downlink stepwise
optimization approach to solve the NP-hard optimization problem. Simulation results
demonstrate that the proposed method outperforms other methods in terms of spectrum
and energy efficiency.

Besides the optimal placement of the UFBS and the selection of an efficient radio
access technique, leveraging physical transmission techniques can further enhance the
overall UAV communication quality. Device-to-device (D2D) communication is one such
technique. For instance, in highly dense urban areas where several devices coexist within
a distance of a few meters, they can benefit through the utilization of a cooperative trans-
mission scheme. Consequently, integrating D2D communications into UAV networks
has recently attracted a lot of attention, and related issues have also been studied in the
literature [19–23]. In [19], the authors have derived the closed-form expressions for the out-
age probability in a UAV-assisted NOMA network with D2D communication capabilities.
Also, they have formulated a power control optimization problem to maximize the D2D
sum rate while ensuring a minimum rate for each UAV-connected user. The proposed
method is computationally efficient but has a lower sum rate than other methods, as this
has been confirmed via the simulation results. Furthermore, the energy-efficient resource
allocation problem in D2D communications underlying UAV-enabled networks is inves-
tigated in [20]. Especially, this study attempts to optimize the overall energy efficiency
of all D2D pairs while ensuring the secrecy rates of all users via combined power control
and channel allocation. Accordingly, the Lagrangian dual and Kuhn–Munkres algorithms
are utilized to solve this problem. The simulation results have shown that the proposed
approach performs better than other benchmark methods. Moreover, the authors of [21]
exploited the advantages that UAV-assisted communications offer and effectively com-
bined with the NOMA technique. Particularly, they present a D2D-enhanced UAV-NOMA
network architecture in which D2D is added to improve the dispatching efficiency of files.
So, a graph-based file dispatching protocol is provided to decrease the UAV-assisted file
dispatching mission time and control interference. Simulation results confirm the benefits
of the proposed D2D-enhanced UAV NOMA network architecture and the efficacy of the
planned protocol. The research presented in [22] proposed a novel approach to address
disaster management issues utilizing a UAV-assisted SWIPT-enabled NOMA-based D2D
network. They formulated a nonlinear power allocation optimization problem that max-
imized the system’s energy efficiency performance and solved it using the Dinkelbach
approach. Simulation results show that the advanced NOMA system outperforms the
ordinary NOMA scheme. Alternately, ref. [23] has investigated a sequential optimization
problem for resource allocation and communication mode selection in a UAV-assisted D2D
cellular network to improve energy efficiency and ensure satisfactory transmission rates
for all ground UEs. They proposed a reinforcement learning-based scheme to solve this
problem, which has been shown to be effective through simulated results.

1.2. Contributions

As presented in the previously detailed literature review, several studies on standalone
UAV networks utilize unsupervised machine learning methods such as k-means and k-
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medoids to place the UAV in the region of interest. However, applying these algorithms
individually to a UAV-NOMA and D2D cooperative network might degrade the overall
network quality while rendering the D2D network unnecessary. Hence, to achieve enhanced
network quality, it is vital to consider the interactions and trade-offs between the two
algorithms and the network elements and adopt an integrated approach [7,24].

Concerning the operation of the two placement methods, both k-means and k-medoids
are centroid-based clustering techniques. The two methods are fed with the terrestrial users’
coordinates as an input feature to find the point where the UFBS should be placed. In such
scenarios, k-means behaves well when the terrestrial users form spherical clusters without
outliers [24]. In contrast, k-medoids is robust to the outliers and correctly represents the
cluster center [7]. Hence, by efficiently combining k-means and k-medoids algorithms,
the UAV can be positioned in the most suitable location to ensure effective coverage for
D2D communication. This combined approach considers both the similarities in the data
points as well as the actual data points themselves and potential outliers or noise in the data.
As a result, it leads to a more precise and reliable UAV placement. Thus conspicuously,
the combination of these two algorithms exploits the strengths of both k-means and k-
medoids in determining the ideal UAV placement [25].

Nevertheless, whenever the UFBS needs to be relocated, it is necessary to determine
the most suitable placement method by comparing the results obtained from both clustering
algorithms, i.e., k-means and k-medoids. This decision-making process requires the real-
time execution of both ML methods, thus increasing the overall time complexity. Also,
k-means and k-medoids are clustering algorithms that can be used to group data points
together based on their similarities. However, deciding which algorithm to use can be
complex and may depend on several factors. Essentially, when the dataset contains non-
spherical clusters, outliers, or clusters of different sizes, it is difficult to model a decision-
making approach with a simple threshold boundary. Hence, this can make it challenging
to identify the unsupervised ML method that should be utilized.

Inspired by this observation, the placement scheme selection (PSS) can be regarded
as a supervised classification problem, which can be handled through a fully connected
artificial neural network (ANN) to enhance the overall system QoS. ANNs can be used to
predict which clustering algorithm to use between k-means and k-medoids because they
are able to learn the underlying patterns in the data and identify which algorithm is better
suited for the given dataset. Moreover, ANNs can capture complex relationships between
the input data and the output cluster labels, which can be difficult to model with a simple
threshold boundary. Consequently, this paper presents and analyzes an ANN-based UAV
placement scheme to enhance the network performance of an integrated UAV-NOMA and
D2D cooperative network. The proposed method intelligently integrates the UFBS into the
cooperative network by efficiently combining the k-means and k-medoids unsupervised ML
algorithms. Concerning the UAV-NOMA and D2D cooperative network, pairs of users are
simultaneously served through the UFBS, which utilizes a NOMA optimal user pairing and
power allocation strategy. At the same time, terrestrial cooperation is enabled by adopting
the D2D communication paradigm, thus improving the overall communication quality.
To the authors’ knowledge, this is the first time supervised machine learning techniques,
such as the ANN, and unsupervised machine learning algorithms, such as k-means and
k-medoids, are combined to improve the integrated UAV-NOMA D2D cooperative network.
Specifically, the following major contributions are provided:

• An ANN-based UFBS placement framework is established in order to improve the
overall communication quality of a UAV-NOMA and D2D cooperative network. To-
wards this end, supervised ML algorithms (ANN) and unsupervised ML algorithms
(k-means and k-medoids) are combined.

• State-of-the-art data mining strategies are presented to transform raw data into an
intelligible format for ANN algorithms and avoid underfitting and overfitting draw-
backs. To the best of our knowledge, it is the first time that specific strategies have
been provided in the field of UAV-NOMA and D2D cooperative networks.
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• A step-by-step approach on how to handle the issue of hyperparameter tuning in ANN
models is provided to enhance the predictability of the UFBS placement procedure.

• For the UFBS NOMA transmission, an optimal power allocation and user pairing
strategy is considered [26]. Also, the proposed scheme promotes the cooperation
between aerial and D2D networks.

1.3. Structure

The remainder of this paper is organized as follows. Section 2 presents the considered
system model, while Section 3 outlines the unsupervised machine-learning-based methods
for the UFBS placement procedure. Next, the data collection, data pre-processing, learning,
validation, and testing procedures, and the performance metrics of the proposed ANN-
based placement scheme selection are outlined in Section 4. Finally, simulation results are
given in Section 5, followed by conclusions and future directions in Section 6.

2. System Model

From the system point of view, we consider a cooperative UAV and D2D-aided wireless
communication system, where the UFBS is mainly responsible for communication. The D2D
scheme is employed between the ground mobile terminals (GMTs) to achieve higher data
rates and spectral efficiency without the involvement of any additional terrestrial or flying
base station.

The wireless network architecture is depicted in Figure 1, where a two-tier hetero-
geneous network is formed, operating in two different and non-overlapping spectrum
bands. From now on, these two ways of communication will be referred to as UFBS NOMA
transmission when the GMTs receive the data directly from the UFBS through the NOMA
scheme and the D2D cooperative transmission when the GMTs cooperate to improve the
overall communication quality. Concerning the UFBS NOMA transmission, all GMTs are
served by the UFBS via the air-to-ground (A2G) link, utilizing the NOMA technique ac-
cording to an optimal power allocation and user pairing strategy [27,28]. More specifically,
the total available UFBS’ bandwidth Bu is divided into K slots, equally distributed to the
GMT pairs, as depicted in Figure 1. Each GMT pair k (1 ≤ k ≤ K) consists of a strong GMTi
and a weak GMTj ground terminal, with i 6= j, which are sharing the same sub-channel
in the frequency/time domain. The UFBS classifies the GMTs of each pair as either weak
or strong based on the A2G channel conditions. Following the NOMA principle, in each
pair of users the strong GMTi first decodes the signal of the weak GMTj from the received
superposition-coded signal and then performs successive interference cancellation (SIC) to
retrieve its signal. Hence, leveraging this knowledge, the utilization of the D2D cooperative
transmission scheme on the ground can further enhance the communication quality of the
weak users of the system. Concerning the D2D ground communication procedure, each
strong GMTi decodes and forwards (DF) the received UFBS’s signal to the weak GMTj of
its pair, thus providing reception diversity through the ground assistance. Consequently,
each weak GMTj in each pair will receive two different copies of the same signal, one from
the UFBS and the other from its pair, i.e., the strong GMTi, which acts as a relay.

From a technical standpoint, the communication system consists of N = 2K GMTs,
where K is the number of GMT pairs and a UFBS located in an R-radius circle region of
interest A. Each GMTl (1 ≤ l ≤ N) is randomly placed in the region of interest, and its
location is expressed as ul = (xu

l , yu
l , zu

l ) ∈ A. The 3D location of the UFBS is denoted
as p1 = (xp

1 , yp
1 , zp

1 ) ∈ A. The UFBS is equipped with an antenna with transmit gain Gu
t ,

and total available transmit power Pu. Also, the downlink operating frequency of the UFBS
is Fu. Furthermore, the operating frequency, the total available bandwidth, and the transmit
power for the D2D transmission are denoted as Fd, Bd, and Pd, respectively. Moreover,
the GMTs are equipped with two antennas, one for the reception of the UFBS’s signals
with reception gain Gu

r , and the other for D2D communication, i.e., for transmission and
reception, with transmit and receive gain Gd

t =Gd
r . We consider that the common antenna

for transmission and reception regarding D2D communication is implemented through a
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radio frequency (RF) switch. Hence, each GMT can only transmit or receive during a D2D
frequency/time slot.

$$

$$

Figure 1. System model.

Finally, the seamless communication between the UFBS and the GMTs requires a
reliable and efficient backhaul network. In this regard, we propose the use of zero-touch
commissioning (ZTC) cloud radio access network (C-RAN) for the UAV backhaul, as it can
provide efficient and automated network management [25,29]. The ZTC-C-RAN model
comprises a control element that performs the ZTC procedures, including the instantiation,
configuration, and synchronization of the UAV and D2D cooperative network as well as the
placement of the UFBS in the region of interest A. Furthermore, the proposed ZTC-C-RAN
is benefited from the satellite communication as a backhaul relay between the UFBS and the
control center, providing ultra-reliable low latency communication (URLLC) and enhanced
mobile broadband (eMBB) network slices responsible for routing the control and data plane
information to the terrestrial and aerial segments of the proposed scheme.

2.1. Air-to-Ground and Device-to-Device Channels

The channel between UFBS and its associated GMTs is characterized as an A2G
channel. To conduct performance analysis, the channel complex coefficient for each
GMTl (1 ≤ l ≤ N) is denoted as hu

l , and follows the complex Gaussian distribution with
zero mean and unit variance ∼ CN (0, 1). Additionally, the path loss attenuation of the
UFBS signal is modeled using the elevation angle-based path loss model [25] in an urban
environment, and is represented as follows:

PLu
l (h, rl) = FSLl + ηLoSPLoS(h, rl) + ηNLoS(1− PLoS(h, rl)), (1)

where FSLl is the free space pathloss given by FSLl = 20 log
(

4πdl Fu
c

)
, dl is the transmission

distance between UFBS and each GMTl (1 ≤ l ≤ N), and c is the speed of light. In addition,
the ηLoS and ηNLoS coefficients reflect the extra losses for LoS and Non-LoS (NLoS) air-to-
ground transmission links, and they depend on the propagation environment. Moreover,
PLoS denotes the probability of the LoS component between the UFBS and each GMTl and
is modelled as a function of the altitude h of the UFBS and the 2D Euclidean distance rl
between the UFBS and each GMTl. Hence, PLoS can be expressed as follows [30]:

PLoS(h, rl) =
1

1 + a exp(−b(arctan( h
rl
)− a))

, (2)

where a, b are parameters determined by the propagation environment. Regarding the D2D
link between the strong GMTi and weak GMTj of each pair k (1 ≤ k ≤ K) the multipath
fading is modeled by the complex Gaussian distribution with zero mean and unit variance
∼ CN (0, 1). The complex channel coefficient for the D2D link is denoted as hd

k . Moreover
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the path loss model for the D2D communication of each pair k (1 ≤ k ≤ K), used from [27],
is as follows:

PLd
k(d

e
k) = 157 + log10(d

e
k), (3)

where de
k is the distance in km between the strong GMTi and the weak GMTj of each

pair k (1 ≤ k ≤ K). Furthermore, the A2G and the D2D links under consideration are
assumed to be degraded by additive white Gaussian noise (AWGN), which is statistically
modeled by the normal distribution ∼ N

(
0, σ2

q

)
with q = {u, d}. The noise power of

the A2G and D2D receivers are given by Nu = kBTuBu and Nd = kBTdBd, respectively;
where kB is the Boltzmann constant, and Tu, Td are the A2G and D2D receiver system noise
temperatures, respectively. Therefore, the corresponding noise variances for each receiver
type are σu =

√
Nu and σd =

√
Nd.

2.2. Transmission and Reception Structure

As previously stated, the UFBS forms K user pairs, where each pair k (1 ≤ k ≤ K)
consists of one strong GMTi and one weak GMTj. Therefore, the wireless communication
system under consideration comprises K strong GMTs and K weak GMTs (2K GMTs in
total). Additionally, we assume that the UFBS transmits to the N GMTs without any
delays. Such an assumption is acceptable for a broadcast system in which the UFBS
transmits the information repeatedly, and the GMTs get this information immediately. Thus,
the superimposed NOMA signal, transmitted to each pair k by the UFBS, is expressed as:

xu
k =

√
Gu

t

(√
αiPusi +

√
αjPusj

)
, (4)

where si, sj ∈ C are the signals of GMTi and GMTj, respectively. Also, αi and αj denote the
fraction of the total UFBS transmit power Pu allocated to each GMT, with αi + αj = 1.

The signals received by the strong GMTi and the weak GMTj for each k pair are
obtained as follows:

yu
i =

√
Gu

r
PLu

i
hu

i xu
k + zu, (5)

yu
j =

√
Gu

r
PLu

j
hu

j xu
k + zu, (6)

where zu ∼ N
(
0, σ2

u
)

represents the AWGN of the A2G link. Simultaneously, the received
signal at the weak GMTj when the D2D cooperative transmission is activated, is given by
the following expression:

yd
j =

√
Gd

r

PLd
k

hd
k xd

j + zd, (7)

where zd ∼ N
(
0, σ2

d
)

stands for the AWGN noise in the D2D link. Since we have considered
the decode and forward (DF) operation regarding the D2D links, the strong user GMTi of
each pair k immediately decodes the received UFBS NOMA signal xu

k and then estimates
the weak user’s signal ŝj. Subsequently, the strong user GMTi forwards ŝj to the weak user
GMTj through transmitting the signal:

xd
j =

√
Gd

t Pd ŝj. (8)
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2.3. Signal-to-Interference-Plus-Noise Ratio (SINR) Analysis

In general, for each GMTl (1 ≤ l ≤ N) in the considered communication system,
the A2G channel gain is calculated as:

Γu
l =

Gu
t Gu

r
PLu

l Nu
|hu

l |
2, (9)

including additional gains, losses, and the noise power of the UFBS receiver Nu. Hence,
using (5), the instantaneous signal-to-noise ratio (SNR) γu

i of the strong GMTi to detect its
own signal si, assuming perfect SIC, is given as follows:

γu
i = αiPuΓu

i (10)

where Γu
i is the A2G channel gain of the strong GMTi, which involves the noise power

of the UFBS receiver Nu, as it can be observed in (9). Furthermore, the instantaneous
signal-to-interference plus noise ratio (SINR) γu

k , for detecting the signal sj of the weak user
GMTj on the strong user GMTi, is expressed as:

γu
k =

αjPuΓu
i

αiPuΓu
i + 1

. (11)

Moreover, the SINR γu
j at the weak user GMTj, for detecting its own signal sj from the

UFBS is obtained by:

γu
j =

αjPuΓu
j

αiPuΓu
j + 1

, (12)

where Γu
j is the A2G channel gain for the weak GMTj. Furthermore, the SINR γd

k at the
weak user GMTj for detecting its signal, which is relayed by the strong user GMTi in the
same pair k, equals:

γd
k = PdΦk, (13)

where Φk is the channel gain of the D2D link between the strong GMTi and the weak GMTj
belonging to the same NOMA pair k (1 ≤ k ≤ K) and is expressed as:

Φk =
Gd

t Gd
r

PLd
k Nd
|hd

k |
2, (14)

2.4. Achievable Rates Analysis

As the SINR expressions of the strong GMTi and the weak GMTj for each pair k have
been determined, it is straightforward to compute the corresponding achievable rates.
The theoretical achievable rate of each GMTl , when we consider a conventional UAV-OMA
transmission scheme, can be mathematically expressed as:

Ro
l =

Bu

2K
log2(1 + PuΓu

l ), (15)

In contrast, in the case of a UAV-NOMA scheme, the maximum downlink NOMA
achievable rates which succeed by the strong GMTi and the weak GMTj through the A2G
channel are:

Ru
i =

Bu

K
log2(1 + γu

i ), (16)

Ru
j =

Bu

K
log2

(
1 + γu

j

)
, (17)
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respectively. Moreover, for the strong GMTi, the achievable rate of the weak GMTj’s signal
is equal to:

Ru
k =

Bu

K
log2(1 + γu

k ). (18)

Also, the maximum achievable rate Rd
k concerning the established D2D link between

the strong user GMTi and the weak user GMTj is expressed as:

Rd
k =

Bd
K

log2

(
1 + γd

k

)
, (19)

Since the weak GMTj can receive its signal directly from the UFBS or via the strong
GMTi of the pair it belongs to utilizing the D2D communication capabilities, GMTj’s device
always chooses to be served by the link that offers the highest achievable rate. Thus, it holds
that the maximum achievable rate of each weak GMTj that belongs to the NOMA pair k,
combining the UAV-NOMA with cooperative D2D scheme, can be calculated as follows:

RCOPD2D
j = max

(
Ru

j , Λj

)
, (20)

where Λj is the achievable rate through the D2D communication with the strong GMTi.
In fact, the weak GMTj’s signal is decoded on the strong GMTi, and the D2D communica-
tion provides the channel to forward this decoded signal from the strong GMTi to the weak
GMTj. As a result, the weak GMTj can never receive a rate greater than Ru

k , meaning that
Λj ≤ Ru

k . Essentially, the quality of the D2D communication will determine whether the
weak GMTj will enjoy the maximum possible rate Ru

k or less. Specifically, we can recognize
the following cases:

Case 1. The D2D channel is profitable for the weak user, i.e., Rd
k ≥ Ru

k , and the achievable
rate of the weak user is Λj = Ru

k . This happens because the weak user can never receive a rate
greater than the achievable decoding rate of its signal on the strong user.

Case 2. The D2D channel is not profitable for the weak user, i.e., Rd
k < Ru

k , and the achiev-
able rate of the weak user is equal to the transmission rate that the D2D communication can provide,
i.e., Λj = Rd

k . In this case, we observe that the achievable rate of the weak user is limited based on
the capabilities of the D2D communication channel.

Based on the above cases concerning the use of D2D communication for receiving
the signal on the weak user, we observe that the minimum rate between the achievable
rates Rd

k and Ru
k is always selected. Therefore, in the case where D2D communication is

used, it follows that the achievable rate of the weak user is equal to Λj = min
(

Ru
k , Rd

k

)
.

By substituting Λj in (20):

RCOPD2D
j = max

(
Ru

j , min
(

Ru
k , Rd

k

))
. (21)

Utilizing the UAV-NOMA and D2D-aided scheme the total sum rate which is suc-
ceeded on each pair k is equal to:

Rk = Ru
i + RCOPD2D

j . (22)

Therefore, the total system sum rate that can be achieved by utilizing the aforemen-
tioned cooperative scheme is:

Rs =
K

∑
k=1

Rk (23)
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2.5. User Pairing Policy

So far, we have noted that the system’s GMTs are separated into K groups of two
members each, but we have not specified how the GMTs are allocated to each group. Hence,
in this sub section, we propose the maximum weight perfect matching (MWPM) pairing
policy which takes into account both the A2G and D2D channel conditions. The primary
objective is to maximize the system’s total sum rate. Therefore, a matching technique must
be implemented between the GMTs in order to discover those user pairs that optimize
the system’s overall sum rate. The MWPM method generates (N

2 ) pairings between the N
GMTs and retains the K that maximize the system sum rate. For this purpose, it is necessary
to define a binary matrix Θ that represents the pairing relationship between the GMTs
as follows:

θi,j =

{
1 GMTi paired with GMTj
0 otherwise

(24)

The dimension of the pairing matrix Θ that is retrieved from the MWPM method is
equal to N×N. Moreover the diagonal elements of the pairing matrix Θ are all equal to zero
because one GMT cannot pair itself. Also, due to the fact that the matrix components θi,j
and θj,i both pertain the same GMT pairing, it can also be argued that θi,j = θj,i. Therefore,
the MWPM pairing policy can be expressed as the following maximization problem:

max
θi,j

N

∑
i=1

N

∑
j=i+1

θi,j

(
Ru

i + RCOPD2D
j

)
,

s.t.
i−1

∑
j=1

θj,i +
N

∑
j=i+1

θi,j = 1, ∀i = 1, 2, 3, · · · , N

θi,j ∈ {0, 1}, 1 ≤ i, j ≤ N.

(25)

The maximization problem (25) can be regarded as a matching problem in a fully
connected undirected graph G(V, E), where the total number of vertices is equal to the
total number of GMTs |V| = N. E is the set of all feasible edges θi,j, connecting all users to
each other with i 6= j and i, j = {1, 2, ..., N}. In order to solve this issue optimally, we use
the Blossom algorithm to obtain an optimal pairing strategy between the GMTs [31].

2.6. Power Allocation Strategy

Concerning the UFBS NOMA transmission, the objective is to maximize the sum rate
of each pair of GMTs under the condition that both GMTs enjoy at least the rate utilizing
the conventional UFBS OMA transmission. This is an optimization problem which is
mathematically expressed as follows:

max
αi

Ru
i + Ru

j ,

s.t. Ru
i ≥ Ro

i ,

Ru
j ≥ Ro

j ,

0 ≤ αi ≤ 1.

(26)

The solution to this problem has been obtained in [26,27] by identifying the optimal
value of αi, as:

αi =

√
1 + Γu

j Pu − 1

Γu
j Pu

. (27)

To conclude, in Table 1, the definitions of most of the parameters involved in this study
are included.
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Table 1. System model parameters definition.

Parameter Definition

A Circle region of interest

ul 3D location of each GMTl

p1 3D location of UFBS

N Total number of GMTs

K Total number of GMT pairs

Gu
t UFBS transmit antenna gain

Bu UFBS bandwidth.

Pu UFBS transmit power

Fu UFBS operating frequency

Bd D2D bandwidth

Pd D2D transmit power

Fd D2D operating frequency

Gd
t D2D transmit antenna gain

Gd
r D2D receive antenna gain

Nu A2G receivers noise power

Nd D2D receivers noise power

PLu
l A2G path loss for each GMTl (1 ≤ l ≤ N)

PLd
k D2D path loss for each k pair of users (1 ≤ k ≤ K)

xu
k Superimposed NOMA signal of each k pair∼(1 k K)

αi Power allocation factor of the strong GMTi

Γu
l A2G channel gain for each GMTl (1 ≤ l ≤ N)

yu
i The received signal by the strong GMTi from the UFBS

yu
j The received signal by the weak GMTj from the UFBS

yd
j

The received signal by the weak GMTj from his pair’s strong GMTi when the D2D
cooperative transmission is activated.

γu
i SNR of the A2G link of the strong GMTi assuming perfect SIC

γu
k

SINR of the A2G link of the strong GMTi for detecting the signal sj from his pair’s
weak GMTj

γu
j SINR of the A2G link of the strong GMTi for detecting its own signal

γd
k

SINR of the D2D link of the weak GMTj for detecting its own signal, which is relayed
by his pair’s strong GMTi

Φk
D2D channel gain for the weak GMTj when the D2D cooperative transmission
is activated

Ru
i

Maximum downlink NOMA achievable rate which succeed by the strong GMTi
through the A2G channel

Ru
j

Maximum downlink NOMA achievable rate which succeed by the weak GMTj
through the A2G channel

Ru
k

Maximum downlink NOMA achievable rate of the weak GMTj’s signal which
succeed by his pair’s strong GMTi through the A2G channel

Rd
k

Maximum achievable rate which succeed by the weak GMTj through the
D2D channel
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3. UFBS Placement Procedure

In this section, we analyze the placement procedure of the UFBS in the region of
interest A. For this purpose, we propose an UFBS placement procedure that is divided into
two sub-processes. The first sub-process aims to find the 2D plane position of the UFBS.
For this purpose, k-means and k-medoids algorithms are exploited and assessed [7,9].
The second sub-process seeks to discover the UFBS’s height aiming to improve coverage
and communication quality, thus determining its location in the three-dimensional space.

3.1. 2D UFBS Placement
3.1.1. k-Means Analysis and Setup

This sub-subsection describes the UFBS 2D placement procedure utilizing the k-means
algorithm. In more detail, the k-means algorithm is fed with the coordinates ul (1 ≤ l ≤ N)
of all GMTs located within the region of interest A. Subsequently, the algorithm groups
the users into a cluster and returns as output the centroid point pc

1 ∈ A where pc
1 =

(xpc
1

1 , ypc
1

1 , zpc
1

1 ). The goal of the k-means method is to minimize the centroid-point to group
distances metric, expressed as ∑ul∈U ‖ul − pc

1‖2. In particular, this expression represents
the objective function of the following minimization problem:

arg min
pc

1∈A
∑

ul∈U
‖ul − pc

1‖2. (28)

Therefore, the UFBS should be placed in pc
1 to achieve improved communication

quality. The operation of the 2D UFBS placement process using the k-means algorithm is
summarized in Algorithm 1.

Algorithm 1 2D UFBS placement process through the k-means algorithm

1: input: The set of coordinates of all GMTs U = {u1, u2, . . . , uN}, and the number of
UFBSs Υ

2: ε = 10−6

3: t = 0
4: Initialize Υ centroid points Ct =

{
pc

1, pc
2, ..., pc

Υ
}
⊆ U, randomly

5: repeat
6: Sk = ∅, ∀k = 1, 2, · · · , Υ
7: for i← 1 to N do
8: k∗ = arg min

k=1...Υ
‖ui − Ct

k‖

9: Sk∗ = Sk∗ ∪ {ui}
10: end for
11: for k← 1 to Υ do
12: Ct

k =
1
|Sk | ∑ul∈Sk

ul .
13: end for
14: t = t +1
15: until Ct − Ct−1 ≤ ε
16: output: A set of centroid points that the Υ UFBSs will be deployed Ct.

For simplicity, it is assumed that the number of UFBS Υ = 1. However, as can be
shown in Algorithm 1, the k-means algorithm can be straightforwardly applied to scenarios
with Υ > 1. Hence, in our case, the centroid pc

1 is given by the following three steps:

Step 1: Determine the coordinate Yu of the UFBS as follows: Yu =
∑N

i=1 yu
i

N

Step 2: Determine the coordinate Xu of the UFBS as follows: Xu =
∑N

i=1 xu
i

N

Step 3: Configure the point pc
1 that the UFBS should be placed as follows: pc

1 = (Xu, Yu, h),
where h is the initial height of the UFBS before the 3D UFBS placement procedure.
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Finally, it is essential to acknowledge that the choice of the optimal number of clusters
for a clustering problem is not straightforward and may be influenced by a range of factors,
including the specific requirements and objectives of the analysis, as well as the inherent
properties of the data. Within the context of our system model, the user locations are
randomly distributed within a circular region of interest, forming a single cluster. This
characteristic of the data renders the choice of Υ equal to 1 in k-means clustering a sensible
and appropriate decision, as it adequately captures the underlying structure of the data.
The resulting cluster is representative of the overall distribution of users and adequately
reflects the inherent properties of the dataset. In this particular scenario, using a single
cluster is sufficient to accurately and effectively represent the nature of the user distribution
and therefore is a suitable approach to analyze the data [32].

3.1.2. k-Medoids Analysis and Setup

In this sub-subsection, the basic principles of the k-medoids algorithm are presented.
The k-medoids method can be used for the 2D placement of the UFBS in A in the same
fashion as k-means. However, the way that the UFBS placement point p1 is selected
differs between the two approaches. As previously stated, in the k-means UFBS placement
scheme, the centroid point pc

1 is the empirical mean of the coordinates U of the GMTs
in A. However, in k-medoids, it is one of the actual GMTl (1 ≤ l ≤ N), and it is called
medoid point pm

1 . Specifically, in k-means, the point-to-group-centroid distance is assessed
concerning a virtual point pc

1 ∈ A, while in k-medoids, it is measured concerning one
of the actual data points ul ∈ A

(
pm

1 = ul
)

where (1 ≤ l ≤ N), i.e., actual GMTs location.
Similarly to the k-means algorithm, the goal of the k-medoid method is to minimize the
medoid-point to group distances metric, expressed as ∑ul∈U ‖ul − pm

1 ‖2 by solving the
following minimization problem:

arg min
pm

1 ∈A
∑

ul∈U
‖ul − pm

1 ‖2. (29)

The operation of the 2D UFBS placement process using the k-medoids algorithm is
summarized in Algorithm 2.

In the same manner with k-means, it is assumed that the number of UFBS Υ = 1. How-
ever, as can be shown in Algorithm 2, the k-medoids algorithm can be straightforwardly
applied to scenarios with Υ > 1. Additionally, Algorithm 3 is the modified version of
Algorithm 2 for the special case where Υ = 1.

3.2. 3D UFBS Placement

Following the determination of the UFBS’s 2D deployment location, the 3D UFBS
placement procedure adjusts the UFBS’s altitude to provide the highest quality of service
to GMTs within the area of interest A. Thus, the farthest GMTl from the point p1 where the
UFBS is finally placed should be identified, according to the horizontal two-dimensional
distance rl . After that, the convenient height for the critical point p1 is found by solving the
following equation using (1):

∂PLu
l (h, rp1

l )

∂h
= 0. (30)

For the considered A2G path-loss model, as the altitude of the UFBS increases the path
loss initially decreases and then increases again. This behavior can be attributed to the
dependence of the particular A2G model on the elevation angle and the distance between
the UFBS and each GMTl . As the height of the UFBS increases the elevation angle also
increases, leading to an increased probability of line-of-sight, i.e., obscurance by buildings
and other surrounding objects is reduced. Based on this behavior, the A2G path loss PLu

l
function is convex [25]. Thus, it can be deduced that the global minimum is consistently
located at the critical point which can be derived through the Equation (30).
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Algorithm 2 2D UFBS placement process through the k-medoids algorithm

1: input: The set of coordinates of all GMTs U = {u1, u2, . . . , uN}, and the number of
UFBSs Υ

2: ε = 10−6

3: t = 0
4: Initialize Υ medoid points Ct =

{
pm

1 , pm
2 , ..., pm

Υ
}
⊆ U, randomly

5: Sk = ∅, ∀k = 1, 2, · · · , Υ.
6: for i← 1 to N do
7: k∗ = arg min

k=1...Υ
‖ui − Ct

k‖

8: Sk∗ = Sk∗ ∪ {ui}
9: end for

10: At = ∑Υ
k=1 ∑ul∈Sk

‖ui − Ct
k‖

2

11: repeat
12: for k← 1 to Υ do
13: for i← 1 to N do
14: if ui /∈ Ct then
15: Swap the role of Ct

k with ui
16: Repeat steps 6 to 9
17: B = ∑Υ

k=1 ∑ul∈Sk
‖ui − Ct

k‖
2

18: if B < A[t] then
19: t = t +1
20: Ct

k = ui
21: At = B
22: end if
23: end if
24: end for
25: end for
26: until Ct − Ct−1 ≤ ε
27: output: A set of centroid points that the Υ UFBSs will be deployed Ct.

Algorithm 3 2D UFBS placement process through the k-medoids algorithm with Υ = 1

1: input: The set of coordinates of all GMTs U = {u1, u2, . . . , uN}
2: Bk = 0, ∀k = 1, 2, · · · , N
3: for i← 1 to N do
4: Bi = ∑N

j=1 ‖ui − uj‖2

5: end for
6: j∗ = arg min Bi

i=1...N
7: output: The medoid point that the UFBS will be deployed uj∗ .

3.3. Computational Complexity of k-Means and k-Medoids Algorithms

Another crucial aspect is to estimate the computational complexity of the examined
k-means and k-medoids algorithms based on their respective methods as described in
Algorithms 1 and 2, respectively. K-means is a centroid-based algorithm, and k-medoids is
a medoid-based algorithm.

The computational complexity of the k-means algorithm has been proven to be
O(nkId), where n is the number of data points, k is the number of clusters, I is the number
of iterations, and d is the number of dimensions [33]. It uses the mean of the data points to
calculate the cluster centroid and updates the assignment of the data points to the closest
cluster centroid. The algorithm requires multiple iterations until convergence. The time
complexity of the k-means algorithm is affected by the number of data points, the number
of clusters and the number of dimensions.



Sensors 2023, 23, 3014 15 of 30

The computational complexity of the k-medoids algorithm has been proven to be
O(k(n− k)2 I), where n is the number of data points, k is the number of clusters, and I is
the number of iterations [34]. K-medoids selects a single data point as the representative
of a cluster, known as the medoid, and updates the assignment of the data points to the
closest medoid. The algorithm requires multiple iterations until convergence. The time
complexity of the k-medoids algorithm is affected by the number of data points, clusters,
iterations, and the distance metric used.

In summary, both algorithms have a polynomial time complexity, and the main
difference is that k-means use centroids, and k-medoids use medoids as the center of
the cluster. As a result, the k-means is sensitive to the initial choice of centroids, while
k-medoids is less sensitive and tends to find the global optimum more quickly.

4. ANN-Based Placement Scheme Selection

The main difference between the two algorithms mentioned before, is that the virtual
centroid point pc

1 ∈ A given from the k-means where the UFBS will be placed, will be
equidistant from all GMTs. Conversely, the medoid point pm

1 ∈ A given from the k-medoids
will be a GMT location within the region of interest that will minimize the objective function
(see (29)). Consequently, if the GMTs are spread equally in the area of interest, the pc

1 point
provided by k means will improve the channel quality of GMTs, since the distances of the
GMTs from the UFBS will be almost identical and the LoS probability will be significantly
high. On the contrary, if a GMT is remote (outlier), the k-means algorithm will try to find
the point pc

1 equidistant from every GMT, detaching it quite a bit from the majority of GMTs
and thus increasing the GMTs’ propagation losses. In contrast, the k-medoids through the
proposed pm

1 point reduce the point-to-group-centroid distances, achieving higher A2G
channel gains and increasing the QoS of the overall system.

To better highlight the advantages of each algorithm, let us consider a toy network
with GMTs located in the 2D plane as depicted in Figure 2. Focusing on Figure 2 on the
right, the group of GMTs in the right form a cluster, while the rightmost GMT is an outlier.
The pc

1 ∈ A point proposed by the k-means is greatly influenced by the outlier and thus
cannot represent the correct cluster center. In contrast, the medoid point pm

1 ∈ A provided
by k-medoids is robust to the outlier and correctly represents the cluster center. On the
contrary, regarding Figure 2 on the left, we notice that there is no remote GMT, and everyone
is close to each other, forming a cluster of GMTs. Consequently, the pc

1 ∈ A proposed from
the k-means is equidistant from all GMTs, thus increasing the channel gain compared to
the pm

1 ∈ A, which is not equidistant from all GMTs offered from the k-medoids algorithm.
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Figure 2. Comparisons between the k-means and k-medoids regarding the UFBS placement procedure.

Motivated by this observation, the PSS can be regarded as a supervised classification
problem, where it can be approximated through the utilization of a fully connected artificial
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neural network (ANN) to enhance the overall system QoS. Since an ANN model learns
how to efficiently match predictions to patterns seen during the training method, a data set
containing various features that affect the A2G transmission should be created. To this end,
this section presents the data set generation procedure, the date prepossessing, and the
hyper-parameter tuning of the ANN model.

4.1. Data Set Generation

In this subsection, the dataset generation procedure concerning the training of the
ANN model is presented. The objective of the ANN model is to predict the UFBS placement
method to enhance the overall communication quality according to specific key perfor-
mance indicator (KPI). In this work, the considered KPI that should be improved is the total
system sum rate, Rs, given in expression (23). Hence, the optimization problem that the
ANN model aims to solve is represented by Equation (23), which expresses the objective
function that the ANN model seeks to maximize. This can be achieved through the ability
of a well trained ANN model to recognize patterns, indicating when each method should
be conducted to achieve the highest system sum rate. Using Equation (23) as a KPI for
dataset generation ensures that the generated data is relevant and valuable for training
and evaluating ANN models. Furthermore, incorporating a KPI directly aligned with the
problem being addressed can guarantee that the model is configured optimally for the
targeted classification task and exhibit superior performance for the specific issue [35].
Hence, considering the k-means and the k-medoids algorithms, the ANN should determine
which of these two UFBS placement methods will achieve the highest Rs. Furthermore,
the calculation of Rs involves various transmission parameters of the considered wireless
communication system presented in Section 2, such as the 3D location of the UFBS, as well
as the A2G propagation model. Therefore, all these aspects should be carefully considered
during the training procedure of the ANN model.

In general, optimizing the total system sum rate, i.e., the Rs, can offer valuable in-
sights into the optimal allocation of system resources, including bandwidth and transmit
power [36]. In the context of a UAV-NOMA and D2D cooperative network, optimizing Rs
can help identify the most effective resource allocation strategies for achieving optimal sys-
tem performance. For instance, optimizing the total system sum rate allows the cooperative
scheme to allocate bandwidth and power to UAVs and D2D users to maximize the total data
rate transmitted over a given period. In addition, this optimization process can consider
the physical layer parameters of the UAV and D2D users, including their communication
requirements. For example, UAVs may require higher power allocations to maintain stable
connections due to their altitude. Additionally, the distance of D2D users from the UFBS
can impact their channel conditions and overall communication performance. Consid-
ering these physical layer parameters during the optimization process, the system can
allocate resources more efficiently and effectively, leading to improved overall performance.
In summary, optimizing the sum rate in a UAV-NOMA and D2D cooperative network
can help achieve the best use of resources and enhance the system’s overall performance.
It is noted that the proposed capacity based optimization of the Rs can be considered as
the upper bound on the maximum amount of data that can be reliably transmitted over a
communication channel as the size of the channel goes to infinity. However, achieving this
limit is often difficult in real world scenarios due to practical constraints such as noise and
interference in the channel.

Focusing on the data set generation process, Monte Carlo simulations were carried
out using Matlab© (MATLAB (Version R2021a) [Computer software]. MathWorks, Natick,
MA, USA) software to conduct the entire training data set D, following the system model
described in Section 2 and depicted in Figure 1. More specifically, in each simulated
transmission frame, the GMTs are generated randomly following the uniform distribution
into the circular region of interest, while the UFBS is placed through the two unsupervised
algorithms mentioned above. It is noted that all GMTs are served by the UFBS via the A2G
link, utilizing the NOMA technique, while the D2D cooperative transmission is activated to
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improve the overall communication quality. The A2G and D2D channel gains are generated
based on expressions (9) and (14), respectively, while the urban environment parameters
are given in Section 5. Concerning the dataset format, it can be expressed as D = {(xi, yi)}
with i = 1, . . . , d, where d is the total number of instances. Also, xi ∈ Rw is the input
vector of the i-th instance comprised of w features and yi ∈ {k−means, k−medoids} is
the class of xi. In the following, the input features vector xi consists of eight parameters,
i.e., w = 8, that affect the placement procedure of the UFBS and are presented in detail in
Table 2. Moreover, for the computation of class yi, we evaluate the total system sum rate
Rs in each simulated frame (see Equation (23)) for each UFBS placement procedure. Thus,
the class value of the i-th instance, yi, is determined as the placement method that achieved
the highest Rs.

To precisely train the ANN model and to prevent over-fitting and under-fitting issues,
the entire data set D is divided into training, validation, and testing subsets using the data
splitting approach. A popular strategy for data partitioning is to use 70–80% of the entire
dataset for training, with the remaining proportion used to improve and assess the trained
models. Consequently, 70% of the total samples are chosen for the training phase, 15% for
validation, and the remaining 15% for testing the proposed ANN model [37]. The training
set is used to train the ANN, the validation set is used to evaluate the performance of the
ANN during training, and the testing set is used to evaluate the performance of the ANN
after training.

Table 2. The features utilized in the developed ANN model.

Feature Description

Dptc
The sum of distances between each GMTl (1 ≤ l ≤ N) and the UFBS located in the
centroid point pc

1 ∈ A

Dptm
The sum of distances between each GMTl (1 ≤ l ≤ N) and the UFBS located in the
medoid point pm

1 ∈ A

rpc
1

min The minimum 2D distance of the GMTs from the point pc
1 ∈ A

rpc
1

max The maximum 2D distance of the GMTs from the point pc
1 ∈ A

rpm
min The minimum 2D distance of the GMTs from the point pm

1 ∈ A

rpm
max The maximum 2D distance of the GMTs from the point pm

1 ∈ A

PLpc
sum

The sum of the propagation losses of the GMTs in the case of placing the UFBS at the
point pc

1 ∈ A

PLpm
sum

The sum of the propagation losses of the GMTs in the case of placing the UFBS at the
point pm

1 ∈ A

4.2. Data Pre-Processing

The effectiveness of an ANN is highly dependent on the quantity and quality of
training data. Consequently, regardless of which classifier is used, inferior models are
generated if the training data are inaccurate. In light of the above assertion, stratified
sampling and data normalization procedures are utilized to obtain the most incredible
performance of the ANN model.

As an essential data pre-processing step, instance selection is employed not only to
cope with the infeasibility of learning from massive data sets, but also to reduce the risk of
the ANN model tending towards the majority and avoid coming up with what is known
as the accuracy paradox [38]. For this purpose, stratifying sampling is applied. Hence,
the overall training set is reduced, and the class values are uniformly distributed in the
training sets, as shown in Figure 3. After removing redundant instances per class values,
3000 data samples were collected, which means a 50% reduction of the initial 6000 raw
data samples. In addition, an ANN model cannot attain optimal performance if the feature
values are in different units and scales.
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Figure 3. Distribution of data set per class.

In order to resolve these challenges, it is necessary to use a normalizing technique
that eliminates the effects of those mismatches. Using this approach, the values of the
dataset’s features are scaled into a given range while keeping the original dataset’s overall
distribution and ratios. Hence, before the training phase, all input features were normalized
for this purpose. The formula for normalizing is as follows:

Xnorm =
X− Xmin

Xmax − Xmin
(31)

where X is a value of the corresponding feature under normalization, Xmax and Xmin are
the maximum and the minimum value of this feature, respectively, and Xnorm ∈ [0, 1] is the
final normalized value [37].

4.3. ANN Model Construction

ANN has the most hyper-parameters to be tuned among all the ML algorithms.
Consequently, this subsection provides a concise but adequate description of the standard
hyperparameters of an ANN model and their tuning.

The first step in hyperparameter tuning is finding the layer type [39]. Since non-linear
data collection is used in this study, we investigate a fully connected multi-layer perceptron
(MLP) network in which the input from the dataset propagates in one direction through
one or more hidden layers. Therefore, using the normalized feature vectors obtained
through (31) and their corresponding labels, we can build an ANN model consisting of
one input layer, li = 1, lh ∈ {1, 2, ..., L} hidden layers, and one output layer lo = 1 for the
PSS prediction. The li layer consists of mi = 8 neurons which represent the input features
vector xi for the ANN:

xi =
[

Dptc, Dptm, rpc
min, rpc

max, rpm
min, rpm

max, PLpc
sum, PLpm

sum

]
. (32)

Each term mentioned in (32) is a real number and is described in detail in Table 2.
Moreover, the lo consists of mo = 2 neurons, which is the total number of classes that we
want to predict. The number of neurons mh per hidden layer can be determined as [40]:

mh =

[
mi +

√
d

lh

]
(33)

Consequently, if there is one hidden layer (lh = 1), the number of neurons is 63
according to (33). Similarly, the number of neurons for two hidden layers (lh = 2) is 31.5
per layer, resulting in the selection of 32 and 31 neurons for the first and second hidden
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layers. Additionally, we model ANN with lh = 3 and lh = 4 hidden layers, and the number
of neurons per each hidden layer is listed in Table 3.

Table 3. Examined ANN layouts.

lh mh Layout Converged
Epoch

Minimum
Loss Score

Training
Time (s)

1 63 ANN8−63−2 26 0.09 0.81
2 32/31 ANN8−32−31−2 37 0.06 0.92
3 21/21/21 ANN8−21−21−21−2 56 0.08 1.4
4 16/16/16/15 ANN8−16−16−16−15−2 58 0.15 1.6

The following step in hyperparameter tuning concerning ANN models is to determine
the activation and the loss function. In this study, the rectified linear unit (ReLU) activation
function is employed in hidden layers. It is easy to build and overcome the constraints
of widely used activation functions like Sigmoid and Tanh. Furthermore, since PSS may
be seen as a binary classification problem, the output layer activation function is SoftMax.
Regarding the loss function, cross-entropy is utilized since it is the most widely used for
classification problems. Therefore, in order to find the best ANN hyperparameters, the se-
lected loss function should be minimized. The minimization of the loss function is achieved
through gradient descent (GD) with momentum backpropagation. The momentum term
navigates the GD along the relevant direction and softens the oscillations in irrelevant di-
rections. For this purpose, the grid search method is utilized. Accordingly, the momentum
is tested for values between 0.2 and 1 with a step of 0.1. In the last phase of hyperparameter
tuning, the learning rate and the number of epochs are chosen. The learning rate is eval-
uated for values between 0.001 and 0.1 with a step of 0.001, while the number of epochs
range is set to be from 1 to 1000. In addition, the early stopping criterion is used to improve
the model’s generalization capability and minimize overfitting. Finally, in Table 4, all the
finalized hyperparameters are listed for ANNs methods derived throughout the training,
validation, and testing process.

Figure 4 presents the evaluation of the training, validation, and testing phases in
terms of the loss function versus the number of epochs. In essence, the number of epochs
directly affects the adopted method’s convergence. The low number of epochs entails
that the algorithm may converge at a local minimum. Nonetheless, too many epochs
may lead to over-learning. The results in Figure 4 concerning the modelled ANNs prove
that the loss function for all processes, i.e., training, validation, and testing, converges
smoothly, obtaining constant loss values and reaching the global minimum in a short
period. The acquired global minimum loss for the convergence during the testing phase,
and the corresponding epoch values are listed in Table 3. According to Table 3, ANN
with two hidden layers demonstrates the best performance among all the examined ANN
techniques, providing the minimum loss score of 0.06. Furthermore, for each ANN layout,
the training time is also recorded. Specifically, the training times for ANN with one, two,
three, and four hidden layers are 0.81, 0.92, 1.4, and 1.6 seconds, respectively. Comparing
the training time of the assessed ANNs models, it is evident that the training time depends
directly on the applied layout structure. Finally, the conventional time complexity (TTC)
for any ANN layout is O(n3) [37]. The TTC represents the standard theoretical asymptotic
complexity, which takes into account only the training samples n. It only examines training
samples, since the training phase is the most time-consuming operation in ML algorithms
and occurs offline, and not in real-time scenarios.
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Table 4. Chosen hyperparameters values for ANNs models.

Parameters Values

Activation functions ReLU and SoftMax
Training algorithm Gradient Descent

Learning rate 0.01
Maximum number of epochs to train 1000

Loss function cross-entropy
Minimum performance gradient 10−6
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Figure 4. Loss convergence progression versus epochs for the training, validation, and testing phase
of all the introduced ANNs.

4.4. ANN Model Selection

This section presents the evaluation results obtained from the ANNs methods for
the testing set. The evaluation of the ANNs methods and, by extension, the choice of the
ANN algorithm to solve the PSS classification problem is achieved based on the accuracy,
precision, recall, and F1 score performance metrics.

Specifically, accuracy, precision, recall, and F1 score are commonly used evaluation
metrics for assessing the performance of ML models, particularly in classification tasks.
These metrics are calculated based on the number of true positive (TP), true negative (TN),
false positive (FP), and false negative (FN) predictions made by the model. Accuracy is the
proportion of correct predictions made by the model out of all predictions made. In the
context of sum-rate maximization, a high accuracy score would indicate that the ANN can
predict the best PSS more often accurately, and it is calculated as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(34)
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Precision is the proportion of true positive predictions made by the model out of all
positive predictions made. For example, in the context of sum-rate maximization, a high
precision score would indicate that when the ANN predicts a PSS, it is more likely to be the
best prediction that maximizes the system sum rate, and it can be expressed as follows:

Precision =
TP

TP + FP
(35)

Recall (also known as sensitivity or true positive rate) is the proportion of true pos-
itive predictions made by the model out of all actual positive cases. In term of sum-rate
maximization, a high recall score would indicate that the ANN is able to find more of the
actual PSS solutions, and it is calculated as follows:

Recall =
TP

TP + FN
(36)

F1 score is a harmonic mean of precision and recall. In the context of sum-rate
maximization, a high F1 score would indicate that the ANN has a good balance of precision
and recall, making fewer false PSS predictions while also identifying most of the relevant
cases. It is calculated as:

F1 = 2× Precision× Recall
Precision + Recall

(37)

Figures 5 and 6 present the evaluation results obtained from the ANN methods for
the testing set. Accuracy, precision, recall, and the F1 score are used to evaluate the ANN’s
approaches. More specifically, the accuracy of each ANN model is depicted in Figure 5,
while Figure 6 illustrates the mean precision, recall, and F1-score obtained from each ANN
method. The classification accuracy in Figure 5 reveals that the best prediction is achieved
through the ANN with two hidden layers ANN8−32−31−2. Comparing the performance
of the different ANN layouts, the prediction accuracy decreases until the neural network
reaches two hidden layers in depth. Then, by extending the depth of the ANNs to more
than two hidden layers, the accuracy is diminished. Specifically, the prediction accuracy
increases from 92.5% for a single hidden layer (ANN8−63−2) to 95.32% for a two-layered
(ANN8−32−31−2) and then decreases to 92.3% and 92.7% for a three (ANN8−21−21−21−2) and
four-layered (ANN8−16−16−16−15−2) structure, respectively. As can be observed in Figure 6,
the assessed ANN models exhibit exceptional performance with an F1-score greater than
91%, maintaining an average accuracy and average recall greater than 91%. Among the
evaluated ANNs, the neural network with two hidden layers ANN8−32−31−2 achieves the
best prediction result. The specific model yields a mean precision of 94.12%, a mean recall
of 93.14%, and an average F1-score of 93.63%. Hence this level of accuracy in a balanced
data set implies that the model has recognized and formed strong correlations between
features and class and has avoided overfitting issues. Moreover, this success is related to
the two-layered neural network’s ability to effectively approximate nonlinear functions
and reliably predict the PSS class value. Hence the ANN with two hidden layer is chosen
to solve the PSS classification problem.
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Figure 5. Accuracy comparison between the different ANN layouts.

Figure 6. F1-score, precision, and recall performance measurements of all ANN layouts.

5. Performance Evaluation

In this section, the system sum rate and the spectral efficiency results from Monte
Carlo simulations conducted in Matlab© are presented to evaluate the performance of the
proposed ANN-based PSS. The simulations were executed on a computer consisting of a
Windows 10 64-bit operating system, Intel Core i7-8700 CPU, and 16 GB of RAM. Moreover,
the impact of various system parameters, such as D2D bandwidth allocation and the UFBS
transmit power Pu, on the performance of the proposed method is studied.

Furthermore, the proposed ANN-based PSS is compared against the standalone UFBS
placement schemes k-medoids and k-means [7,9]. These two methods will be referred to
as the k-means deployment process (MEA-DP) and the k-medoids deployment process
(MED-DP). More specifically, comparisons are made between different networks schemes,
such as the cooperative UAV-NOMA and D2D scheme termed as NOMA-D2D, and two
standalone UAV transmission schemes without D2D communication capabilities between
the GMTs, the UAV-NOMA optimal user pairing scheme [26], called NOMA, and the time
domain UAV-OMA scheme, termed as OMA. In order to assess the performance of the
proposed scheme as well as the compared ones, we define the spectral efficiency as:

SE =
Rach
Bocc

, (38)
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where Rach is the achievable system sum rate and Bocc denotes the total utilized network
bandwidth. Concerning both the standalone OMA and NOMA transmission scheme,
Bocc = Bu, while for the NOMA-D2D scheme, Bocc = Bd + Bu. The rest of the selected
parameters regarding the abovementioned scenarios are listed in Table 5.

Table 5. Simulation parameters.

Parameters Values

Simulated frames 100,000
Number of GMTs N 20
Region of interest circle radius R 500 m
UFBS downlink frequency Fu 1.8 GHz
D2D operating frequency Fd 2 GHz
UFBS transmit power Pu 0–24 dBm
GMT transmit power Pd 24 dBm
UFBS Tx antenna gain Gu

t 0 dBi
GMT Rx antenna gain Gg

r with g = {u, d} 0 dBi
GMT Tx antenna gain Gd

t 0 dBi
Terrestrial environment Urban
Urban environment parameters a = 9.61, b = 0.16, ηLoS = 1, ηNLoS = 20
UFBS bandwidth Bu 5 MHz
Receiver noise temperature Tg with g = {u, d} 24.6 dBK

Figure 7 presents the spectral efficiency performance of the proposed ANN-based
PSS for different terrestrial D2D bandwidth values and between the different network
schemes. As it can be observed, the proposed ANN-based PSS scheme combined with
the NOMA-D2D transmission technique for Bd = 0.2 provides significant spectral effi-
ciency gains compared to the other NOMA-D2D cooperative networks with Bd 6= 0.2 and
the standalone NOMA and OMA schemes. It is noteworthy that the proposed strategy,
utilizing a Bd equal to 0.1 MHz, exhibits comparable performance with a Bd equals to
0.2 MHz for low UFBS transmit power values. Conversely, for high UFBS transmit power,
the proposed strategy utilizing a Bd equals to 0.2 MHz is determined to result in the near
optimal spectral efficiency. Also, regarding the NOMA-D2D cooperative network with
Bd ≤ 1.2 MHz, the proposed method achieves higher spectral efficiency gain than the stan-
dalone NOMA and the OMA scheme for all UFBS power transmission values. In contrast,
for Bd > 1.2 MHz, the suggested method’s spectral efficiency in a NOMA-D2D cooperative
network is inferior to that of NOMA. This occurs because there is no need for additional
bandwidth since the weak users’ rates are always constrained by the decoding rates of their
signals at the strong users (21). Therefore, regarding the communication network, Bd values
greater than 1.2 MHz are considered a waste of resources. Additionally, for Bd = 1.2 MHz,
a switch case statement can be established. More specifically, in the case where the Pu is
lower than 20 dBm, the NOMA-D2D cooperative network outperforms the NOMA scheme,
while for Pu > 20 dBm, the standalone NOMA outperforms the NOMA-D2D cooperative
scheme. This phenomenon occurs for large Pu values since the A2G channel between the
weak GMTs and the UFBS is strengthened, resulting in greater achievable rates for the
weak GMTs via the direct A2G connection. Hence the D2D communication between the K
pairs is mainly avoided, as the offered data rates via the D2D links are lower than those
that can arise through the A2G links. This claim can be verified by expression in (21).
Moreover, spectral efficiency degradation is observed when the terrestrial D2D bandwidth
Bd is greater than 1.2 MHz. In this case, the weak users can not efficiently exploit the
capabilities offered by the wireless D2D channel link, as the rate received through the
terrestrial cooperation is restricted by the decoding rates achieved by the strong users of
each pair. This observation is derived as a result of the constraints imposed by (17)–(19),
as well as from the explanation of cases 1 and 2 in Section 2.4. As an illustrative case for
this phenomenon, the baseline standalone OMA scheme behaves better than the NOMA-
D2D scheme with Bd = 3.0 MHz in terms of spectral efficiency. Therefore, in the case of
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cooperative NOMA schemes such as the proposed one, the value of the terrestrial D2D
bandwidth Bd should be carefully chosen to avoid wasting spectrum resources. Also,
in the NOMA-D2D cooperative network, for UFBS transmit power in the range of 0 to
12 dBm, it can be observed that the spectral efficiency is approximately the same for Bd
values equal to 0.1 and 0.2 MHz. However, for UFBS transmit power higher than 12 dBm,
the proposed method with Bd = 0.2 MHz achieves higher spectral efficiency than the others.
In other words, Bd = 0.2 MHz is a near-optimal D2D bandwidth value for the considered
communication system.
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Figure 7. Spectral efficiency for the ANN-based PSS and different terrestrial D2D bandwidth values.

In Figure 8, the sum rate performance of the proposed ANN-based PSS is examined
for the different network schemes. It can be easily observed that the employment of the
suggested PSS technique in the NOMA-D2D cooperative network readily outperforms
OMA and NOMA schemes for all UFBS transmit power values and regardless of the
D2D bandwidths value allocations. Moreover, for the NOMA-D2D cooperative network,
we observe that the sum rate is approximately the same for any value of Bd > 0.1 MHz.
This can be supported by (21), which demonstrates that there is no need to devote more
bandwidth to D2D transmission. Also, for UFBS transmit power in the range of 0 to 12 dBm,
it can be observed that the sum rate is approximately the same for all Bd values. Hence,
large Bd values for low-to-medium UFBS transmit powers are thus seen as a waste of
resources. Therefore, for that UFBS transmit power range, there is a maximum value Bd,
which should not be exceeded to avoid wasting resources. Nevertheless, the findings
from Figures 7 and 8 demonstrate that dynamic bandwidth allocation is required for D2D
out-band communication to improve both the sum rate and spectral efficiency performance.

Figures 9 and 10 show the effects caused by the different placement methods on
the spectral efficiency and the system sum rate, respectively. More specifically, Figure 9
illustrates the spectral efficiency performance of the different communication schemes,
NOMA-D2D with Bd = 0.2 MHz, NOMA, and OMA, utilizing the different placement
procedures. As can be observed, the ANN-based PSS applied to the NOMA-D2D coopera-
tive network scheme achieves significant spectral efficiency gains compared to MEA-DP
and MED-DP for all UFBS power transmission values. Also, observing all the network
schemes individually (i.e., NOMA-D2D, NOMA, and OMA), the proposed ANN-based
PSS outperforms the other two methods for all UFBS power transmission values. This
results from the ability of the ANN to recognize patterns, indicating when each method
should be conducted. Furthermore, regardless of the placement method, the cooperation
between the aerial and D2D networks is promoted, i.e., the NOMA-D2D method, since it
achieves the maximum spectral efficiency rates compared to standalone NOMA and OMA
schemes. Moreover, for all UFBS transmission power values, the MEA-DP outperforms the
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MED-DP scheme in all three network configurations. This is justified by the explanation
given in Section 4. Specifically, as the GMTs are placed randomly and uniformly in the
region of interest, the probability of an outlying user appearing is very low. Consequently,
in most cases, the k-means algorithm places the UFBS at such a point that it is equidistant
by the users, thus improving the quality of channels gains against k-medoids. Lastly,
the spectral efficiency of the ANN-based PSS applied to the standalone NOMA scheme is
higher than that of MED-DP in the NOMA-D2D cooperative network scheme for Pu values
of approximately up to 22 dBm. This phenomenon occurs due to the improvement of the
A2G channels through the proposed placement scheme. Consequently, in contrast to other
cooperative systems, such as satellite D2D cooperative networks [27], the success of aerial
and D2D cooperative networks strongly relies on the UFBS placement procedure. Hence,
an inaccurate prediction concerning UAV’s position might degrade the overall network
quality and lay the D2D network unnecessary.
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Figure 8. Sum rate for the ANN-based PSS and different terrestrial D2D bandwidth values.
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Figure 9. Spectral efficiency for Bd = 0.2 MHz and different UFBS placement schemes.
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Figure 10. Sum rate for Bd = 0.2 MHz and different UFBS placement schemes.

Next, Figure 10 presents the sum rate for Bd = 0.2 MHz and different placement
procedures for NOMA-D2D, NOMA, and OMA network schemes. Throughout the Pu
range and regardless of the placement method scheme, it can be shown that the sum rate of
the NOMA-D2D cooperative network is superior to that of NOMA and OMA, respectively.
Similarly, as in spectral efficiency in Figure 9, the proposed ANN-based PSS outperforms
the other two placement procedures for all network schemes. Moreover, it is observed
that the proposed method, when applied in a NOMA scheme, can achieve higher spectral
efficiency gains for the MED-DP applied in NOMA-D2D for Pu > 22 dBm. Therefore,
in such a scenario, with the deployment of the proposed method, we could avoid D2D
transmission and save the entire D2D bandwidth.

Overall, the sum rate results of the NOMA-D2D cooperative scheme in all placement
procedures indicate that the weak user’s achievable rate can be significantly improved. This
advantage results from strong users cooperating with weak users of the system through
out-band D2D communication.However, the sum rate and the spectral efficiency in all
network schemes are heavily contingent on the UFBS placement within the region of
interest. Regarding the results in Figures 7–10, the proposed ANN-based PSS outperforms
the other two methods in all network schemes and can offer terrestrial users reliable and
high-quality communication.

Finally, Table 6 summarizes the key characteristics of the proposed ANN-based PSS
and the compared MEA-DP and MED-DP schemes. Specifically, our method is less sensitive
to outliers compared to MEA-DP, making it more robust in noisy environments. It also has
higher reliability compared to both MEA-DP and MED-DP. Regarding spectral efficiency
and sum rate, our method outperforms both MEA-DP and MED-DP, indicating that it may
be a better choice for optimizing the utilization of resources and achieving higher data
transmission rates in the given scenario.

Table 6. Comparison of the main properties of ANN-based PSS and MEA-DP and MED-DP schemes.

Performance indicator ANN-Based PSS MEA-DP MED-DP

Sensitive to outliers No Yes No
Reliability High Medium Medium
Spectral efficiency High Medium Medium
Sum rate High Medium Medium
Influenced by the distribution of
GMTs in A

Medium High Medium

Fairness High High Low
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6. Conclusions and Future Directions

Summarizing this paper, we proposed an ANN-based PSS method that maximizes the
spectral efficiency and the sum rate in a NOMA-D2D cooperative network. It is the first time
supervised ML methods are combined with unsupervised ones to enhance the placement
procedure of the UFBS; the examples demonstrate the improvements achieved. To evaluate
the performance of the ANN-based PSS policy, we compared it with two stand-alone unsu-
pervised ML methods schemes. The results showed that the proposed method outperforms
the other two in different network scenarios, such as NOMA-D2D cooperative, NOMA,
and OMA schemes, regarding sum rate and spectral efficiency terms. Furthermore, the re-
sults show that utilizing the proposed method in a UAV-aided D2D-NOMA-cooperative
network can offer terrestrial users reliable and high-quality communication compared with
stand-alone NOMA or OMA schemes.

Possible future directions include studying various machine learning models as base
learners and forming ensemble approaches to enhance the predictability of the placement
procedure. Furthermore, in future work, we consider examining machine learning methods
to identify the optimal D2D bandwidth value that achieves the maximum sum rate and,
simultaneously, the maximum spectral efficiency regarding a UAV-aided D2D-NOMA-
cooperative network. Finally, of potential interest is the integration of virtual MIMO in
the context of aerial–terrestrial networks to improve communication between UAVs and
other devices. Specifically, UAVs typically have limited size, weight, and power con-
straints, which can make it challenging to install multiple antennas and radio resources
on them. By using virtual MIMO, various UAVs can work together as a single MIMO
system and share their antennas and radio resources, increasing the range and capacity of
the communication [41,42]. In addition, virtual MIMO can also improve the robustness of
communication in UAV networks, as it can reduce the impact of fading and interference
caused by the dynamic and often hostile environment in which UAVs operate.
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6G Sixth Generation
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ANN Artificial Neural Network
AWGN Additive White Gaussian Noise
B5G Beyond 5G
D2D Device-to-Device
DDPG Deep Deterministic Policy Gradient
eICIC Enhanced Inter-Cell Interference Coordination
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FD Full-Duplex
FSL Free Space Pathloss
GD Gradient Descent
GMT Ground Mobile Terminal
HetNet Heterogeneous Network
IoT Internet of Things
KPI Key Performance Indicator
LoS Line of Sight
LTE Long Term Evolution
MDQN Mutual Deep Q-Network
MEA-DP k-Means Deployment Process
MED-DP k-Medoids Deployment Process
MIMO Multiple-Input Multiple Output
ML Machine Learning
MLP Multi-Layer Perceptron
NLoS Non Line of Sight
NOMA Non-Orthogonal Multiple Access
OMA Orthogonal Multiple Access
PSS Placement Scheme Selection
QoS Quality-of-Service
QSM Quadrature Spatial Modulation
RF Radio Frequency
SC Superposition Coding
SIC Successive Interference Cancellation
TBS Terrestrial Base station
UAV Unmanned Aerial Vehicle
UFBS UAV Flying Base Station
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