
Citation: Cakic, S.; Popovic, T.; Krco,

S.; Nedic, D.; Babic, D.; Jovovic, I.

Developing Edge AI Computer

Vision for Smart Poultry Farms Using

Deep Learning and HPC. Sensors

2023, 23, 3002. https://doi.org/

10.3390/s23063002

Academic Editors: Mostafa Rahimi

Azghadi and Kun-Chih Chen

Received: 6 February 2023

Revised: 5 March 2023

Accepted: 8 March 2023

Published: 10 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Developing Edge AI Computer Vision for Smart Poultry Farms
Using Deep Learning and HPC
Stevan Cakic 1,2,* , Tomo Popovic 1,2 , Srdjan Krco 3 , Daliborka Nedic 3, Dejan Babic 1 and Ivan Jovovic 1

1 Faculty for Information Systems and Technologies, University of Donja Gorica, Oktoih 1,
81000 Podgorica, Montenegro

2 DigitalSmart, Bul. Dz. Vasingtona bb, 81000 Podgorica, Montenegro
3 DunavNET, Bul. Oslobodjenja 133/2, 21000 Novi Sad, Serbia
* Correspondence: stevan.cakic@udg.edu.me

Abstract: This research describes the use of high-performance computing (HPC) and deep learning
to create prediction models that could be deployed on edge AI devices equipped with camera and
installed in poultry farms. The main idea is to leverage an existing IoT farming platform and use
HPC offline to run deep learning to train the models for object detection and object segmentation,
where the objects are chickens in images taken on farm. The models can be ported from HPC to edge
AI devices to create a new type of computer vision kit to enhance the existing digital poultry farm
platform. Such new sensors enable implementing functions such as counting chickens, detection
of dead chickens, and even assessing their weight or detecting uneven growth. These functions
combined with the monitoring of environmental parameters, could enable early disease detection and
improve the decision-making process. The experiment focused on Faster R-CNN architectures and
AutoML was used to identify the most suitable architecture for chicken detection and segmentation
for the given dataset. For the selected architectures, further hyperparameter optimization was carried
out and we achieved the accuracy of AP = 85%, AP50 = 98%, and AP75 = 96% for object detection
and AP = 90%, AP50 = 98%, and AP75 = 96% for instance segmentation. These models were installed
on edge AI devices and evaluated in the online mode on actual poultry farms. Initial results are
promising, but further development of the dataset and improvements in prediction models is needed.

Keywords: computer vision; convolutional neural networks; deep learning; digital farm management;
edge AI; high-performance computing; machine learning; smart farms

1. Introduction

According to the United Nations Food and Agriculture Organization (FAO), the de-
mand for food is expected to grow by 60% between 2010 and 2050, whereas the demand
for animal protein will grow by around 1.7% per year, contributing to the growth of the
poultry feed market over the upcoming years [1]. The poultry industry production chain
should be continuously optimized and streamlined to meet demand, while simultaneously
limiting effects on the environment and improving the well-being of the animals during
their short lifespan [2]. Poultry farms are faced with continuous and unavoidable chal-
lenges, from controlling all the basics of life (food, water, light, air, sanitation, cleaning) to
disease outbreaks and disposal of dead animals. Most of these tasks have had to be done
manually, or with the help of modern machinery such as decakers, washers, and heaters.
However, some tasks, such as predicting and stopping disease outbreaks before they affect
large portions of a flock, ensuring animal well-being, and even remotely optimizing the
environmental conditions on farms have remained out of reach until recently. Thousands
of chickens can be raised in barns simultaneously and the use of digital tools, such as farm
management systems supported by the data collected using Internet of Things (IoT) sensors,
opens new possibilities to make the life of farmers easier and to provide them with more

Sensors 2023, 23, 3002. https://doi.org/10.3390/s23063002 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23063002
https://doi.org/10.3390/s23063002
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2418-4820
https://orcid.org/0000-0001-5245-3691
https://orcid.org/0000-0002-7310-6063
https://doi.org/10.3390/s23063002
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23063002?type=check_update&version=1


Sensors 2023, 23, 3002 2 of 17

in-depth information about their animals. IoT-based smart agriculture solutions typically
include monitoring of the environmental conditions, which are very important for raising
chickens. Measuring air temperature, air humidity, CO2, and ammonia levels is required
as a basis for a successful production. Additionally, having insight into chicken body
temperature, behavior, and vocalization provides the possibility to undertake adequate
measures on time. High-performance computing (HPC) plays a key role in supporting
the development of integrated applications across the edge-cloud supercomputer layers
in addressing critical scientific, engineering, and societal problems [3]. Combining the
evolution of IoT and artificial intelligence (AI) technologies with on-farm video or picture
recording has made it possible to create more intelligent tools that can reduce losses, and
cut down on manual labor, while increasing feed-to-food ratio and reducing mortality rates,
among many other benefits.

More specifically, for poultry farms, in order to improve early disease detection and
prevent outbreaks and losses, AI-based prediction models can support functions such as
the counting of chickens, assessing the growth and homogeneity during the growing cycle,
and the timely detection of dead animals. This research work focuses on the use of HPC
to create prediction models for chicken detection and chicken segmentation from images
taken on the farm. These models would then be used on edge devices as a part of the IoT
sensors installed on the farm. Therefore, the main focus of the research is developing edge
AI computer vision to enhance smart poultry solutions using HPC and deep learning.

The context of the project is best illustrated with a comprehensive system architecture
of the proposed IoT-based digital platform for poultry farms shown in Figure 1. The overall
architecture is organized in three distinct layers: (a) the edge subsystem, with sensors and
IoT nodes with on-board processing, which is responsible for measurement acquisition
and edge computing; (b) the digital farming platform, a cloud-based platform responsible
for sensor data collection and aggregation ensuring secure access to data and IoT device
management, as well as execution of the business logic, permanent storage of data, and
decision support functions; and the (c) portals layer which provides user interfaces in
different forms, typically a web application for standard users, a mobile app for farmers
while on the move, and a data visualization for advanced users and custom reporting.

In this given context, our research focuses on the use of HPC and AI to develop new
functions in the form of smart sensors based on IoT cameras and edge AI devices located
in the edge subsystem layer, the section marked with number 1. These smart IoT camera
nodes use the prediction models on edge devices and they would send the outputs to the
core business platform. New functions of the system that can be derived from new sensor
readings can find their place in the digital farming platform layer as a part of the farm
management component, labeled as the segment marked with number 2. For example, these
functions can include detection of dead chickens and estimation of weight, and together
with other sensor data and functions available in the existing platform, can be used to
develop solutions for early disease detection and possibly preventing disease spreading.

This paper is an extension of the paper “Developing Object Detection Models for
Camera Applications in Smart Poultry Farms” [4] by the same research team. The research
is expanded by including both object detection and instance segmentation, and automated
machine learning (AutoML) to perform grid search to determine hyperparameters to fine-
tune the model training process. This improves the accuracy and helps in selecting an
optimal neural network for their use on edge platforms. The research is conducted in the
context of the FF4EuroHPC project, a European initiative that helps facilitating access to
all HPC-related technologies for SMEs aiming at increasing the innovation potential of
European industry [5].



Sensors 2023, 23, 3002 3 of 17

Figure 1. A high-level system architecture of the IoT-based platform for smart poultry farms.

In this paper, we discuss the development of computer vision for smart poultry
farm solutions using HPC and deep learning models. The paper is organized as follows:
introduction section, related work, materials and methods, results and discussion, and
conclusion. The materials and methods section describes the conceptual approach, datasets,
selection of software and hardware tools, and experiment setup. The results and discussion
section shows the results of the experiment for both object detection and segmentation
and gives insight into the system integration and initial field evaluation. The conclusions
summarize the main contributions, key results, and benefits, as well as future steps.

2. Related Work

Deep learning algorithms are finding their place in image processing and computer
vision applications. In recent years, the most mentioned neural network architecture for
computer vision is convolutional neural networks (CNNs). However, there are new trends
that increasingly highlight the transformer as state-of-the-art architecture, i.e., the visual
transformer [6]. For analyzing and detecting objects in images there are two approaches
that are often encountered. The first one is the You Only Look Once (YOLO) algorithm [7],
and the second is the faster R-CNN algorithm [8]. A general observation is that YOLO
is commonly used for real-time detection of objects, when the prediction model takes
a very short time period to execute [7]. On the other hand, faster R-CNN is used in
situations when precision is more important than the speed of the model, and when
detecting smaller objects is important [8]. Another algorithm with the same purpose
that offers a balance between prediction speed and model precision quality is single shot
multibox detector [9]. The latest versions of the YOLO algorithm promise great speed and
improved accuracy when compared to other algorithms. as shown in the comparative
analysis given in [10]. As for object segmentation, the mask R-CNN neural network stands
out as one of the most optimal [11]. In this research, different variants of faster R-CNN
neural networks for object detection and Mask-RCNN for segmentation are analyzed.
In [12], the authors provide a detailed analysis of different approaches to solving the
segmentation problem. In [13], the authors deal with the implementation of the neural
network LC-DenseFCN, focusing on the use of this neural network is to count chickens



Sensors 2023, 23, 3002 4 of 17

in an image. The network developed in this paper is based on the combination of two
networks, LC-FCN and LC-ResFCN [14]. The chicken detection accuracy achieved by
LC-DenseFCN is around 93.84% while the prediction speed is 9.27 frames per second (FPS).
A comparison with YOLO [7], EfficientDet [15], and mask R-CNN [11] was provided and
for the specific task of counting chickens in an image, and LC-DenseFCN proved to be
the fastest and most accurate network. Authors in the [16] deal with the detection and
counting of chickens in a cage-free environment. As the authors stated, they implemented
the YOLOv5x-hens model based on the YOLOv5x model and reported that the accuracy of
the YOLOv5x-hens model in recognizing chickens is about 95% in different environments
(age, light intensity, observational angle). As a critical problem, the authors pointed out
that the problem of this model is when it is used to detect younger chickens that are about
one week old. This is especially problematic when they mix with other objects such as a
feeder, but also when they are in a dense flock. In [17,18], the authors compare two key
approaches that are used today for object detection, YOLO and Faster R-CNN algorithms.
They reported that the advantage of the YOLO approach is the speed of prediction, and
in newer versions, the accuracy of the YOLO algorithm may surpass the Faster-RCNN
algorithm. A key benefit of the faster R-CNN approach is the more successful recognition of
smaller objects. Authors in [18] stated that through YOLOv3, developers tried to overcome
the problem of poor detection of smaller objects, but with some compromises, which led to
worse recognition accuracy of larger objects when compared to the Faster R-CNN model.
The authors in [18] decided to use Faster R-CNN because they had cameras placed at a
higher height, thus they needed to detect smaller objects. In addition, the FPS parameter
was not so important to them, which is one of the critical advantages of the YOLO algorithm.
The paper [19] also describes how the faster R-CNN network can be used to detect chickens
and monitor their movement on the farm. They state that they managed to get their method
with average precision (AP) 93% accuracy in detecting chickens. The paper [20] uses
the YOLOv5 algorithm to detect and track chickens on a farm, and they developed the
ChickTrack model, which was tested in different environments. The authors stated that
practical uses of the model can be challenging, and after the model testing was done in
different environments, mean average precision (mAP) can have a lower value. The authors
reported that the value for mAP is around 50%. Object detection and counting are also used
in other areas of agriculture for different animals. The authors in [21] deal with counting
piglets, and their key idea was to extend the counting CNN model [22]. They showed that
they managed to reduce the mean average error (MAE) by a significant value compared
to the counting CNN. The work [23] also deals with counting, but in this case, livestock
is in the open. They show that mask R-CNN proved to be the best model compared to
faster R-CNN, SSD, and YOLOv3. Another interesting paper is [24], which deals with the
detection of dead chickens based on a model based on the YOLOv4 algorithm. It stated that
the accuracy of this model is slightly above 97%. The paper [25] deals with the assessment
of gender ratio in which they state that the accuracy of their model is almost 97%. In the
research [26] authors deal with instance segmentation tasks for a goose. They stated that
AP50 for both detection and segmentation is 96%. Finally, hyperparameter optimization
using AutoML was discussed in [27].

In this paper, we report on the research that focuses on prediction models for pro-
cessing images collected in poultry farms using faster R-CNN for chicken detection and
Mask R-CNN for chicken segmentation. The development of models was done using HPC
systems and we specifically dealt with finding the optimal hyperparameters for the models
using AutoML.

3. Materials and Methods

Figure 2 depicts the conceptual approach used in our study in order to utilize HPC/AI
to develop prediction models for smart IoT solutions for farms. This would be a typical
computing continuum use case relying on the combination of IoT, edge AI, cloud, and
HPC [3]. The setup assumes a presence of an offline loop in which the datasets are used to



Sensors 2023, 23, 3002 5 of 17

create, train, and fine tune prediction models, and an online loop responsible for processing
images captured in the field in “real-time”, e.g., in a matter of seconds, using trained
models on edge AI devices. As shown, input data can come from IoT sensors and cameras,
humans and other conventional data sources. In our study, as input data, we used images
from cameras installed on poultry farms and input from domain experts needed to create
and annotate the datasets. The annotated images were used in the offline loop for model
computations on HPC, while the input data for the online loop were only the images
coming from the camera sensors installed in farms. The outputs from the prediction models
are sent to the digital farming system where they can be used for further analysis, decision
support, alerts, and creation of reports.

Figure 2. Conceptual approach for the development of computer vision for smart agriculture using
HPC and deep learning: (a) offline HPC/AI loop: the dataset is used to train and refine prediction
models using HPC resources, (b) online loop: images captured in the field in real-time processed by
trained models ported to the edge AI device.

3.1. Datasets

With deep learning algorithms, data is one of the key parameters influencing the
quality of the developed model. The key activities to be carried out in this step are the
collection, labeling, and processing of data so that it can be used to train deep learning
models. For this experiment, the dataset is based on images of chickens extracted from
the video material that was recorded in a couple of farms in Serbia and Montenegro. All
of the images in the dataset were resized to 750 × 500 pixels and kept in JPG file format.
The annotations were performed by several team members using the tool computer vision
annotation tool (CVAT). This tool allows a quite comfortable annotation of images that
can later be used for training and testing different prediction models. When exporting
the annotated images, they are accompanied with annotations stored in JavaScript object
notation (JSON) file format. These annotations follow the common objects in context
(COCO) format [28]. With this format, the coordinates of the annotations on the image and
the object categories are stored for each image.

For training the prediction models for detecting chickens in images, about 4000 images
were annotated. This dataset was expanded using the RoboFlow augmentation tool from
4000 images to around 9000 annotated images. Of these 9000 images, 7550 were used



Sensors 2023, 23, 3002 6 of 17

for training, 725 for validation, and 725 for model testing. As for the task of training the
models for instance segmentation, about 1000 images were annotated. This dataset was
also augmented with the help of RoboFlow tool, which resulted in the total number of
1660 images. For the training, this dataset was split into 1300 images for training, 180 for
validation, and 180 for model testing. The augmentation process for both datasets assumed
extending datasets by relying on operations of rotation, brightness change (from −15% to
+15%), saturation (from−10% to +10%), and crop (maximum 10%). We should note that the
annotation process for instance segmentation is much more labor intensive as it requires
drawing polygons over each instance of chicken as opposed to just drawing a rectangle for
the dataset used for training detection models. The use of CVAT tool for the annotation is
depicted in Figure 3.

(a)

(b)

Figure 3. Annotation of the datasets using CVAT tool: (a) object detection labeling with rectangles (b)
instance segmentation labeling using polygons.

3.2. Tools Selection and Setup

Software Components. The main software tools that are used for this research for model
development is the Python programming language and Detectron2 package that includes
various variants of deep neural networks [8]. Detectron2 package was developed by the
company Facebook and it is based on the PyTorch package, which has an undisputed role in



Sensors 2023, 23, 3002 7 of 17

the implementation of neural networks. As mentioned in the related work, the selection of
Detectron2 was encouraged by the research in [18,19,23], and the initial experimenting with
Detectron2 gave good starting results with respect to the accuracy, required memory sizes,
and prediction times. Detectron2 library provides Faster R-CNN network architectures for
object detection and Mask R-CNN for instance segmentation [8,11]. Interesting discussions
on comparison of Detectron2 and YOLO are given in [29,30]. Detectron2 is simple to install
on Edge AI, in our case, the NVIDIA Jetson Nano. Detectron2 contains already trained
models as shown in [31], but further training and improvement of prediction models is
needed for real-life applications. The simulation scripts for the study were implemented in
Python, the Pandas package is used for the tabular analysis of the results, and matplotlib
was used for visualization. Initial computing was performed using Google’s Colab platform,
but the main experimental part of the study was executed on HPC computing nodes.

HPC Access. HPC systems consist of clusters of computers that usually have better
performance than the typical computers we use in everyday life. They provide better
processing power, with a large number of cores, and typically have powerful RAM. Com-
puters in these clusters (computing nodes) generally contain advanced graphics cards with
graphical processing units (GPUs). This is important because GPUs have been shown to be
more powerful than CPUs for training huge deep learning models with a large dataset [32].
The HPC system used for this research uses System Linux Utility for Resource Management
(SLURM) whose main task is to manage HPC system resources [33]. With this system, there
is usually one login node and several computing nodes. The system used for this research
has two groups of computing nodes on which the experiments are performed. These nodes
are CPU nodes and GPU nodes. There were 14 CPU nodes (node01 to node14), each of
which was equipped with 2 Intel Xeon E5-2690v4 processors having 28 cores. Every node
also has 512 gigabytes (GB) of fast DDR4 RAM. The GPU partition consists of 8 nodes
(gpu01 to gpu08). In addition to everything a CPU node has, each GPU node in our system
was equipped with 4 NVIDIA Tesla M60 GPU cards. A Tesla M60 card is made out of two
physical NVIDIA Maxwell GPUs with a combined 16 GB of memory. Many applications
perceive the card as two separate GPUs, appearing as total of 8 GPUs per node [34]. The
training of the models in this study was executed on GPU nodes using different numbers
of GPUs (1, 2, 4, or 8).

Edge AI Platform. Devices running predictive models belong to the class of edge AI
internet of things (IoT) devices. More specifically, a Jetson Nano device with the following
configuration was used: NVIDIA Maxwell GPU, Quad Core ARM Cortex-A57 processor,
4GB LPDDR4 memory, SD card 32 GB, and external USB with 64 GB. This device is
connected to the Dahua Technology Smart H.265 IR Bullet network camera, which initially
served to collect images in the field. Collected images were used to create the datasets and
train the models. The configuration of the Jetson Nano device is quite limited in terms
of hardware performance. Due to this fact, it is necessary to focus on the time duration
of the prediction model, and not only on its precision. Another important parameter is
the memory size of the model, but in our case there were no large oscillations in the size
of the models, and the main parameters we focused on were the average precision and
prediction times.

3.3. Experiment Execution

This study involved several computations to train the prediction models for object
detection and instance segmentation using the datasets with images of chickens collected
in poultry farms. The simulations focused on evaluating different deep neural network
architectures based on faster R-CNN and mask R-CNN. Each network we tried was evalu-
ated with different hyperparameter settings, batch sizes, and number of GPUs involved
in computation. Around a total of 2000 network training computations were run for ob-
ject detection and 2000 for instance segmentation. The key input parameters that were
varied after selecting the number of graphics cards for training and the architecture of
the neural network are: gamma, steps, max_iters, and ims_per_batch. The gamma and



Sensors 2023, 23, 3002 8 of 17

steps parameters are used to update the learning rate parameter starting from value
base_learning_rate. Parameter max_iters represents the number of training epochs, while
ims_per_batch represents a parameter known as batch size. Parameter steps indicate when
the learning rate should be updated. In addition, parameter lr_policy was used for defin-
ing the update strategy of learning rate with value ”steps_with_decay” by the formula:
learing_rate = base_learning_rate× gammastep_index where step_index is a specific index in
steps array. The rest of the settings were fixed for all experiments and their effects were not
considered [4]. These runs were used to evaluate and select the specific architectures that
would later be used to fine tune hyperparameters using AutoML.

The prediction models were evaluated by measuring average precision (AP), AP50,
and AP75. Detectron2 uses the COCO evaluation metric [35] for AP which are averaged
over multiple intersection over union (IoU) values, which itself is calculated by the formula:
IoU = Area_o f _overlap/Area_o f _union [36]. In addition to the mentioned parameters,
we also monitored the training time and prediction time. We monitored the training
time parameter in order to compare the training duration of the deep learning model
with different HPC system configurations. We used the PTime parameter to select the
architecture of the neural network that should be used for model predictions. With the
prediction time parameter, it was measured how much time it takes for 1 test image to be
analyzed on the HPC system. Apart from the prediction time parameter, the AP parameter
is also very important because this parameter indicates the overall model prediction quality.
The best relationship between these two parameters led us to select the network architecture
and then focus on its optimization.

The range in which the input parameters changed was selected by the brute-force
principle. The gamma parameter takes values of 0.2, 0.5, 0.8, and 1. For the value of the
gamma parameter 0, the learning rate has a fixed value. In rare situations, when gamma
is 0, the best values of the AP parameter were obtained. The number of epochs varied
from 500 to 1000. Various values for ims_per_batch were also tested to determine how this
affects training time and prediction accuracy. For experiments on one GPU, the values of
this parameter are taken as the powers of two (from the 20 to 28). For two GPUs, we used
powers of two from 21 to 28, for four GPUs from 22 to 28, and finally, for eight graphics
cards, from 23 to 28. It is important to emphasize that the parameter ims_per_batch cannot
be less than the number of GPUs with which the experiment is carried out. In addition,
the value of this parameter must be divisible by the number selected by the number of
graphics for training models.

4. Results and Discussion

The simulation experiments were executed with several types of neural networks
from Detectron2 based on faster R-CNN and mask R-CNN deep neural networks for object
detection and instance segmentation, respectively. We then used the best value for the ratio
between the accuracy AP and prediction time to select specific network architectures to be
further refined using AutoML hyperparameter optimization.

4.1. Detection of Objects

For the detection of objects, faster R-CNN deep neural network architectures available
in Detectron2 were used. Six different types of network architectures were evaluated for
different values of input parameters while keeping values of the parameter gamma = 0.5
and the total number of steps = 1000. The results of this first simulation step are shown
in Table 1. A large number of experiments were run for each architecture on a differ-
ent number of GPUs, and the table shows only rows selected based on the highest AP
achieved. In order to choose one network architecture, we considered both the AP and
prediction time as we were focused on the prediction models that can be later ported
to edge AI systems, i.e., NVIDIA Jetson Nano. This approach led to the selection of
the faster_rcnn_R_101_FPN_3x network architecture, which offered the best initial ratio
between the AP and prediction time.



Sensors 2023, 23, 3002 9 of 17

Algorithm 1 provides step-by-step instructions in the form of pseudocode for creating
the object detection prediction model using HPC and AI. The first part of the the algorithm
deals with finding the neural network architecture with the best ratio between average
precision (AP) and prediction time. Then, in the second part of the algorithm, for the
selected neural network, a grid search is performed to determine the hyperparameters that
are used to fine-tune the creation of the prediction model. At the end, the prediction model
is saved for later use and porting on the edge AI platform.

Algorithm 1 Object detection: implementation steps needed to select the network architec-
ture and create the prediction model

dataset← load(object_detection_dataset)
optimal_batch← 0
selected_nn_arch← ””
ratio ← 0
gamma← 0.5
steps← 1000
base_lr ← 0.001
while num_gpus ∈ [1, 2, 4, 8] do

while curr_nn_arch ∈ f aster_r_cnn[r_101_c4_3x, r_101_ f pn_3x, r_50_c4_1x,
r_cnn_r_50_c4_3x, r_50_FPN_1x, x_101_32x8d_ f pn_3x] do

while batch_size ∈ [20, 21, 22, 23, 24, 25, 26, 27, 28] do
train(num_gpus, curr_nn_arch, gamma, base_lr, batch_size, data, steps)
if ratio < average_precision/prediction_time then

ratio ← average_precision/prediction_time
optimal_batch_size← batch_size
selected_nn_arch← curr_nn_arch

end if
end while

end while
end while

detection_prediction_model ← none
best_average_precision← 0
while num_gpus ∈ [1, 2, 4, 8] do

while batch_size ∈ [20, 21, 22, 23, 24, 25, 26, 27, 28] do
while gamma ∈ [0.2, 0.5, 0.8, 1] do

train(num_gpus, selected_nn_arch, gamma, base_lr, batch_size, data, steps)
if best_average_precision < average_precision then

best_average_precision← average_precision
update(detection_prediction_model)

end if
end while

end while
end while
save(detection_prediction_model)

Further refinement of the model was performed running computation on different
configurations (number of GPUs) and by varying the parameters gamma (0.2, 0.5, 0.8, and
1) and batch size, all powers of 2 from 1 to 256 (Table 2). The number of steps was preset at
1000, since the AP did not significantly change for higher values. The accuracy achieved
was AP = 84.62%, AP50 = 97.88%, and AP75 = 95.68%, which is comparable to the results
reported in similar studies [13,16], and better than results reported in [20].

The training times and potential benefits of using multiple GPUs can be observed in
Figure 4. A faster training time was achieved with 2 and 4 GPUs, while a slower training
time took place when using 8 GPUs, in comparison to 1 GPU. The explanation for this



Sensors 2023, 23, 3002 10 of 17

could be found in the communication between several GPUs, gradient synchronization,
and the size of the dataset [37].

Table 1. Object detection: evaluation of different Faster R-CNN network architectures in Detectron2,
gamma = 0.5, steps = 1000.

Number
of GPUs

Neural Network
Arhitecture

Training Time
[min]

Batch
Size

Validation
Loss AP AP50 AP75 Prediction

Time [s]

1

faster_r_cnn_R_101_C4_3x 50:50 128 0.27 83.92 97.79 94.31 0.6
faster_r_cnn_R_101_FPN_3x 22:44 256 0.31 82.96 97.8 94.3 0.2

faster_r_cnn_R_50_C4_1x 44:44 64 0.34 81.74 97.68 93.1 0.6
faster_r_cnn_R_50_C4_3x 44:41 32 0.31 82.78 97.76 94.32 0.6

faster_r_cnn_R_50_FPN_1x 16:43 8 0.36 80.75 97.7 93.2 0.2
faster_r_cnn_X_101_32x8d_FPN_3x 42:05 8 0.31 83.39 97.81 94.42 0.4

2

faster_r_cnn_R_101_C4_3x 34:16 2 0.27 84.1 97.81 94.43 0.6
faster_r_cnn_R_101_FPN_3x 15:58 4 0.3 82.9 97.82 94.4 0.2

faster_r_cnn_R_50_C4_1x 30:03 4 0.34 82.22 97.73 93.9 0.6
faster_r_cnn_R_50_C4_3x 30:0 256 0.31 82.73 97.78 94.2 0.6

faster_r_cnn_R_50_FPN_1x 12:10 4 0.35 81.18 97.74 93.22 0.2
faster_r_cnn_X_101_32x8d_FPN_3x 31:00 16 0.3 83.34 97.86 94.51 0.4

4

faster_r_cnn_R_101_C4_3x 32:19 256 0.26 84.1 97.8 94.3 0.6
faster_r_cnn_R_101_FPN_3x 17:56 4 0.29 83.14 97.81 94.44 0.2

faster_r_cnn_R_50_C4_1x 28:36 256 0.33 82.43 97.72 93.13 0.6
faster_r_cnn_R_50_C4_3x 28:30 256 0.3 82.58 97.8 94.3 0.6

faster_r_cnn_R_50_FPN_1x 14:25 128 0.33 81.34 97.74 93.22 0.2
faster_r_cnn_X_101_32x8d_FPN_3x 31:17 64 0.31 83.47 97.82 94.56 0.4

8

faster_r_cnn_R_101_C4_3x 36:10 256 0.25 83.8 97.81 94.3 0.6
faster_r_cnn_R_101_FPN_3x 13:57 16 0.28 83.24 97.81 94.43 0.2

faster_r_cnn_R_50_C4_1x 32:28 256 0.32 82.43 97.72 93.21 0.6
faster_r_cnn_R_50_C4_3x 32:31 256 0.29 82.83 97.8 94.3 0.6

faster_r_cnn_R_50_FPN_1x 20:57 8 0.32 81.61 97.76 94.15 0.2
faster_r_cnn_X_101_32x8d_FPN_3x 37:36 32 0.32 83.59 97.85 94.56 0.4

Table 2. Object detection: hyperparameter optimization results for faster_rcnn_R_101_FPN_3x, 1000
epochs, for different values of gamma and batch sizes.

Number of
GPUs

Training Time
[min] Gamma Batch

Size
Validation

Loss AP AP50 AP75

1 22:20 0.8 1 0.31 83.7 97.86 94.62
2 15:45 0.8 128 0.3 84.11 97.85 95.43
4 17:53 1 256 0.27 84.56 97.88 95.59
8 24:25 1 8 0.26 84.62 97.88 95.68

Figure 4. Training times for faster_rcnn_R_101_FPN_3x with 1000 epochs with different batch size.

4.2. Instance Segmentation Results

For creating the instance segmentation prediction model, we ran computation using
seven variants of mask R-CNN using different values of input parameters while keeping
values of the parameter gamma = 0.5 and the total number of steps = 1000 (please see
Algorithm 2). The results of this step are shown in Table 3. Similarly as for the detec-



Sensors 2023, 23, 3002 11 of 17

tion, a large number of experiments was run for each architecture on different number of
GPUs, and the table shows only rows selected based on the highest AP achieved. Again,
we considered both the AP and prediction time as the aim was to find the prediction
model that can be ported to NVIDIA Jetson Nano systems. This led to selection of the
mask_rcnn_R_101_FPN_3x network architecture, which offered the best initial ratio be-
tween the AP and prediction time.

Algorithm 2 Instance segmentation: implementation steps needed to select the network
architecture and create the prediction model

dataset← load(instance_segmentation_dataset)
optimal_batch← 0
selected_nn_arch← ””
ratio ← 0
gamma← 0.5
steps← 1000
base_lr ← 0.001
while num_gpus ∈ [1, 2, 4, 8] do

while curr_nn_arch ∈ mask_r_cnn[r_50_ f pn_3x, r_101_c4_3x, r_101_ f pn_3x,
r_50_c4_1x, r_cnn_r_50_c4_3x, r_50_FPN_1x, x_101_32x8d_ f pn_3x] do

while batch_size ∈ [20, 21, 22, 23, 24, 25, 26, 27, 28] do
train(num_gpus, curr_nn_arch, gamma, base_lr, batch_size, data, steps)
if ratio < average_precision/prediction_time then

ratio ← average_precision/prediction_time
optimal_batch_size← batch_size
selected_nn_arch← curr_nn_arch

end if
end while

end while
end while

segmentation_prediction_model ← none
best_average_precision← 0
while num_gpus ∈ [1, 2, 4, 8] do

while batch_size ∈ [20, 21, 22, 23, 24, 25, 26, 27, 28] do
while gamma ∈ [0.2, 0.5, 0.8, 1] do

train(num_gpus, selected_nn_arch, gamma, base_lr, batch_size, data, steps)
if best_average_precision < average_precision then

best_average_precision← average_precision
update(segmentation_prediction_model)

end if
end while

end while
end while
save(segmentation_prediction_model)

Again, using the same approach as for detection, AutoML refinement of the model
was performed running computation on different configurations (number of GPUs) and by
varying the parameters gamma (0.2, 0.5, 0.8, and 1) and batch size, all powers of 2 from
1 to 256, results shown in Table 4. The number of steps was fixed at 1000. The final model
achieved accuracy of AP = 89.73%, AP50 = 98.35%, and AP75 = 96.23%. We have not
identified a research to directly compare, but the results are comparable with a similar
research on instance segmentation in geese images [26]. The authors were developing
their own model and compared it to different instance segmentation networks and in this
process reporter values around 81%, 96%, 90% for AP, AP50 and AP75, respectively. For
their mode QueryPNet model they reported AP50 = 96.3%.



Sensors 2023, 23, 3002 12 of 17

Figure 5 shows that running the computations on multiple GPUs in this case did
not result in faster training times. This was not unexpected because the training dataset
contained less annotated data available to train the model [37].

Table 3. Instance segmentation evaluation of different Mask R-CNN network architectures in Detec-
tron2, gamma = 0.5 and steps = 1000.

Number
of GPUs Neural Network Arhitecture Training Time

[min]
Batch
Size

Validation
Loss AP AP50 AP75 Prediction

Time [s]

1

mask_rcnn_R_50_FPN_3x 11:50 8 0.48 87.5 97.45 95.19 0.2
mask_rcnn_R_101_C4_3x 31:39 32 0.37 85.7 98.29 95.93 0.7

mask_rcnn_R_101_FPN_3x 15:24 8 0.43 88.3 98.3 96.15 0.3
mask_rcnn_R_50_C4_1x 28:10 128 0.46 84.4 97.21 94.96 0.6
mask_rcnn_R_50_C4_3x 28:11 0.8 0.41 84.8 97.26 95.13 0.6

mask_rcnn_R_50_FPN_1x 11:58 8 0.51 86.7 97.33 95.01 0.2
mask_rcnn_X_101_32x8d_FPN_3x 28:47 64 0.42 88.5 98.28 96.50 0.6

2

mask_rcnn_R_50_FPN_3x 12:21 2 0.47 87.4 97.44 95.99 0.2
mask_rcnn_R_101_C4_3x 28:47 128 0.37 85.69 98.31 96.07 0.7

mask_rcnn_R_101_FPN_3x 15:35 8 0.43 88.57 98.34 96.19 0.3
mask_rcnn_R_50_C4_1x 25:31 256 0.46 84.48 97.21 94.96 0.6
mask_rcnn_R_50_C4_3x 25:27 128 0.43 85.00 97.28 95.12 0.6

mask_rcnn_R_50_FPN_1x 12:23 8 0.5 86.94 97.32 95.05 0.2
mask_rcnn_X_101_32x8d_FPN_3x 27:55 2 0.42 88.33 97.43 96.1 0.7

4

mask_rcnn_R_50_FPN_3x 15:51 8 0.41 87.6 98.23 96.02 0.2
mask_rcnn_R_101_C4_3x 31:43 16 0.34 85.8 98.26 96.08 0.7

mask_rcnn_R_101_FPN_3x 19.06 64 0.38 88.67 98.36 96.19 0.3
mask_rcnn_R_50_C4_1x 28:07 32 0.4 84.51 97.22 94.97 0.6
mask_rcnn_R_50_C4_3x 28:11 4 0.38 84.8 97.31 95.07 0.6

mask_rcnn_R_50_FPN_1x 15:51 32 0.44 86.7 97.35 95.01 0.2
mask_rcnn_X_101_32x8d_FPN_3x 31:59 4 0.38 88.3 97.38 96.05 0.7

8

mask_rcnn_R_50_FPN_3x 24:22 64 0.41 87.67 98.24 96.08 0.2
mask_rcnn_R_101_C4_3x 37:58 64 0.35 85.66 98.27 96.07 0.7

mask_rcnn_R_101_FPN_3x 27:38 32 0.41 88.29 97.5 96.11 0.3
mask_rcnn_R_50_C4_1x 34:14 16 0.42 84.47 97.23 94.89 0.7
mask_rcnn_R_50_C4_3x 34:16 8 0.38 84.88 97.29 95.06 0.7

mask_rcnn_R_50_FPN_1x 24:23 128 0.44 86.74 97.37 95.08 0.2
mask_rcnn_X_101_32x8d_FPN_3x 40:14 8 0.37 88.45 97.46 96.13 0.7

Table 4. Instance segmentation, hyperparameter optimization results for mask_rcnn_R_101_FPN_3x,
1000 epochs, for different values of gamma and batch sizes.

Number of
GPUs

Training Time
[min] Gamma Batch

Size
Validation

Loss AP AP50 AP75

1 15:17 0.8 2 0.44 89.13 97.41 94.09
2 15:38 1 4 0.43 89.3 98.3 96.16
4 19:09 1 4 0.36 89.73 98.35 96.23
8 27:37 1 256 0.35 89.49 97.47 96.16

Figure 5. Training times for mask_rcnn_R_101_FPN_3x with 1000 epochs with different batch size.



Sensors 2023, 23, 3002 13 of 17

4.3. Initial Field Evaluation and Validation

It is worth mentioning that the creation and validation of the prediction models was
not limited to simulation experiments only. The prediction models were successfully ported
onto the edge AI devices, in this case NVIDIA Jetson Nano systems equipped with camera
sensors. The camera would take video clips every 15 min. From each video clip, one or
more image frames could be extracted depending on the desired settings. Finally, execution
of prediction models for each frame would take up to 15 s, which is satisfactory for real-life
applications in IoT systems. The field verification and validation of prediction models is
illustrated in Figure 6.

(a)

(b)

Figure 6. Field verification and validation using the models on the edge AI device at the end user
site: (a) object detection (b) instance segmentation.



Sensors 2023, 23, 3002 14 of 17

The resulting images and extracted information can then be sent to the IoT plat-
form [38]. During this experimental study, we successfully connected the edge AI nodes
with the actual digital farming solution as illustrated in Figure 7. In this case, for the exper-
iment, we were sending both the images and extracted knowledge using the prediction
models. However, the future uses will be configured to only send the extracted results in
order to reduce the data throughput. Otherwise, the use of edge AI would not be fully
justified as the prediction models could reside in the cloud with the platform.

Figure 7. Integration with an existing digital farming platform.

In addition, it is important to note that the information coming from these sensor
nodes with cameras and AI models should be seen as an input data for new and improved
decision support modules, developed within the digital poultry farm management system,
that may be focusing on determining the number of chickens, detecting of dead chickens,
assessing their weight, or detecting issues in uneven growth. Most of these functions aim
for early detection of health issues and prevention of disease spreading. However, these
decision support functions are beyond the scope of this paper.

5. Conclusions

The paper provides a real-life use case for AI/ML, HPC, and edge AI in smart agri-
culture, namely to develop computer vision software modules that can be integrated into
smart agriculture solutions for poultry farms. The research study focused on the models
for object detection and object instance segmentation, where the objects are chickens in an
image taken in poultry farms using edge devices equipped with camera sensors. Detailed
step-by-step instructions in the form of pseudocode are provided to explain how to im-
plement the process of computing the prediction models. These models are envisioned to
become a part of a sensor edge AI kit that can be connected with smart IoT based farming
platforms in order to improve the health assessment of chickens, disease detection, and
prevention of disease spreading. Further research will be performed to not only expand the
datasets and improve the accuracy of the models by testing different network architectures
and libraries, but also to explore creation of new decision support tools based on the out-
put from the models. In addition, the future work will include exploring model pruning
techniques to optimize the models, especially for the edge side of the solution.



Sensors 2023, 23, 3002 15 of 17

The main contributions are summarized below:

• Conceptual approach and methodology how to combine offline computing using HPC
and AI to develop and refine prediction models, and online processing of the data
using these models ported onto the edge AI devices. This includes the preparation of
the data set and selection of software tools that enabled creation of the models that
have necessary accuracy with a possibility to be ported and used on the edge AI IoT
nodes, and integrated with an existing IoT based digital platform for poultry farms.
The experimenting is performed using Python and Detectron 2 library.

• For object detection, the Faster R-CNN deep convolutional network was used. HPC
was used to compute and test six different architectures offered by Detectron2. After
testing with different parameters, the faster_rccn_R_101_FPN_3x network architecture
was selected as one offering a good balance between accuracy and prediction time.
Further experimenting with the hyperparameter optimization resulted in a prediction
model with AP = 84.62%, AP50 = 97.88%, and AP75 = 95.68%.

• The mask R-CNN network was selected for the instance segmentation problem. HPC
was used to test seven different architectures and mask_rcnn_R_101_FPN_3x was
selected based on the accuracy and prediction time. With further refining of the
hyperparameters, we obtained a model with AP = 89.73%, AP50 = 98.35%, and
AP75 = 96.23%.

• For the initial field evaluation, these prediction models were ported onto NVIDIA
Jetson Nano devices equipped with cameras. These sensor prototypes were inte-
grated with an actual IoT based platform installed in a real-life farm. The setup is
configured so that it can be also used to collect new images to enhance the dataset for
future research.

Author Contributions: Conceptualization, S.K. and T.P.; methodology, T.P. and D.N.; software, S.C.
and D.N.; validation, S.C., D.B. and I.J.; writing—original draft preparation, S.C. and T.P.; writing—
review and editing, All. All authors have read and agreed to the published version of the manuscript.

Funding: The experiment “AIMHiGH -AI/ML Computer Vision for the Next Generation Poultry
Farms” has received funding from the European High-Performance Computing Joint Undertaking
(JU) through the FF4EuroHPC project under grant agreement No 951745. The JU receives support
from the European Union’s Horizon 2020 research and innovation programme and Germany, Italy,
Slovenia, France, Spain.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors want to thank to all the AIMHiGH team members for all the help
and support, especially with respect to the dataset and annotations, and later with the field installation
and evaluations. Many thanks to people from Meso-promet Franca and Radinovic company for their
domain knowledge and providing access to the farms.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AP Average Precision
AutoML Automated Machine Learning
CNN Convolutional Neural Network
CVAT Computer Vision Annotation Tool
COCO Common Object in Context



Sensors 2023, 23, 3002 16 of 17

CPU Central Processing Unit
HPC High-Performance Computing
HPO Hyperparameter Optimization
GPU Graphics Processing Unit
IoT Internet of Things
JSON JavaScript Object Notation
ML Machine Learning
RAM Random Access Memory
SSD Single Shoot Detector
USB Universal Serial Bus
YOLO You Only Look Once

References
1. FAO. The Future of Food and Agriculture: Alternative Pathways to 2050; Food and Agriculture Organization of the United Nations:

Rome, Italy, 2018; p. 228.
2. USDA. Livestock and Poultry: World Markets and Trade; United States Department of Agriculture, Foreign Agriculture Service:

Washington, DC, USA, 2022. Available online: https://www.fas.usda.gov/data/livestock-and-poultry-world-markets-and-trade
(accessed on 20 January 2023).

3. ETP4HPC. Strategic Research Agenda for High-Performance Computing in Europe: European HPC Research Priorities 2022–2027;
European Technology Platform for High Performance Computing, NS Oegstgeest: Leiden, The Netherlands, 2022.

4. Cakic, S.; Popovic, T.; Krco, S.; Nedic, D. Babic, Developing Object Detection Models for Camera Applications in Smart Poultry
Farms. In Proceedings of the 2022 IEEE International Conference on Omni-layer Intelligent Systems (COINS), Barcelona, Spain,
1–3 August 2022; pp. 1–5. [CrossRef]

5. FF4EuroHPC. HPC Innovation for European SMEs. Available online: https://cordis.europa.eu/project/id/951745 (accessed on
20 January 2023).

6. Raghu, M.; Unterthiner, T.; Kornblith, S.; Zhang, C.; Dosovitskiy, A. Do Vision Transformers See Like Convolutional Neural
Networks? Adv. Neural Inf. Process. Syst. 2021, 34, 12116–12128.

7. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of the
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.
[CrossRef]

8. Ren, S.; He, K; Girshick, R.; Sun, J. Faster R-CNN: towards real-time object detection with region proposal networks. In
Proceedings of the 28th International Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7–12
December 2015; Volume 1, pp. 91–99. [CrossRef]

9. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.E.; Fu, C.-Y.; Berg, A.C. SSD: Single Shot MultiBox Detector. ECCV 2016,
9905, 21–37. [CrossRef]

10. Kim, J.; Sung, J; Park, S. Comparison of Faster-RCNN, YOLO, and SSD for Real-Time Vehicle Type Recognition. In Proceedings of
the 2020 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Seoul, Republic of Korea, 1–3 November
2020; pp. 1–4. [CrossRef]

11. He, K.; Gkioxari, G.; Dollár, P.; Girshick, R. Mask R-CNN. In Proceedings of the 2017 IEEE International Conference on Computer
Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 2980–2988. [CrossRef]

12. Hafiz, A.M.; Bhat, G.M. A survey on instance segmentation: State of the art. Int. J. Multimed. Inf. Retr. 2020, 9, 171–189. [CrossRef]
13. Cao, L.; Xiao, Z.; Liao, X.; Yao, Y.; Wu, K.; Mu, J.; Li, J.; Pu, H. Automated Chicken Counting in Surveillance Camera Environments

Based on the Point Supervision Algorithm: LC-DenseFCN. Agriculture 2021, 11, 493. [CrossRef]
14. Laradji, I.H.; Rostamzadeh, N.; Pinheiro, P.O.; Vazquez, D.; Schmidt, M. Where Are the Blobs: Counting by Localization with

Point Supervision. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September
2018; Springer, Cham, Switzerland, 2018; Volume 11206. [CrossRef]

15. Tan, M.; Pang, R.; Le, Q.V. EfficientDet: Scalable and Efficient Object Detection. In Proceedings of the 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020; pp. 10778–10787. [CrossRef]

16. Yang, X.; Chai, L.; Bist, R.B.; Subedi, S.; Wu, Z. A Deep Learning Model for Detecting Cage-Free Hens on the Litter Floor. Animals
2022, 12, 1983. [CrossRef] [PubMed]

17. Nguyen, N.; Do, T.; Ngo, T.; Le, D. An Evaluation of Deep Learning Methods for Small Object Detection. Electr. Comput. Eng.
2020, 2020, 3189691. [CrossRef]

18. Cowton, J.; Kyriazakis, I.; Bacardit, J. Automated Individual Pig Localisation, Tracking and Behaviour Metric Extraction Using
Deep Learning. IEEE Access 2019, 7, 108049–108060. [CrossRef]

19. Lin, C.-Y.; Hsieh, K.-W.; Tsai, Y.-C.; Kuo, Y.-F. Automatic Monitoring of Chicken Movement and Drinking Time Using Convolu-
tional Neural Networks. Trans. ASABE 2020, 63, 2029–2038. [CrossRef]

20. Neethirajan, S. ChickTrack—A quantitative tracking tool for measuring chicken activity. Measurement 2022, 191, 110819. [CrossRef]

https://www.fas.usda.gov/data/livestock-and-poultry-world-markets-and-trade
http://doi.org/10.1109/COINS54846.2022.9854975
https://cordis.europa.eu/project/id/951745
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.48550/arXiv.1506.01497
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://dx.doi.org/10.1109/ICCE-Asia49877.2020.9277040
http://dx.doi.org/10.1109/ICCV.2017.322
http://dx.doi.org/10.1007/s13735-020-00195-x
http://dx.doi.org/10.3390/agriculture11060493
http://dx.doi.org/10.1007/978-3-030-01216-8_34
http://dx.doi.org/10.1109/CVPR42600.2020.01079
http://dx.doi.org/10.3390/ani12151983
http://www.ncbi.nlm.nih.gov/pubmed/35953972
http://dx.doi.org/10.1155/2020/3189691
http://dx.doi.org/10.1109/ACCESS.2019.2933060
http://dx.doi.org/10.13031/trans.13607
http://dx.doi.org/10.1016/j.measurement.2022.110819


Sensors 2023, 23, 3002 17 of 17

21. Tian, M.; Guo, H.; Chen, H.; Wang, Q.; Long, Q.; Ma, Y. Automated pig counting using deep learning. Comput. Electron. Agric.
2019, 163, 104840. [CrossRef]

22. Oñoro-Rubio, D.; López-Sastre, R.J. Towards Perspective-Free Object Counting with Deep Learning. In Proceedings of the
Computer Vision—ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016. [CrossRef]

23. Xu, B.; Wang, W.; Falzon, G.; Kwan, P.; Guo, L.; Chen, G.; Tait, A.; Schneider, D. Automated cattle counting using mask R-CNN in
Quadcopter Vision System. Comput. Electron. Agric. 2020, 171, 105300. [CrossRef]

24. Liu, H.-W.; Chen, C.-H.; Tsai, Y.-C.; Hsieh, K.-W.; Lin, H.-T. Identifying Images of Dead Chickens with a Chicken Removal System
Integrated with a Deep Learning Algorithm. Sensors 2021, 21, 3579. [CrossRef] [PubMed]

25. Yao, Y.; Yu, H.; Mu, J.; Li, J.; Pu, H. Estimation of the Gender Ratio of Chickens Based on Computer Vision: Dataset and
Exploration. Entropy 2020, 22, 719. [CrossRef] [PubMed]

26. Li, J.; Su, H.; Zheng, X.; Liu, Y.; Zhou, R.; Xu, L.; Liu, Q.; Liu, D.; Wang, Z.; Duan, X. Study of a QueryPNet Model for Accurate
Detection and Segmentation of Goose Body Edge Contours. Animals 2022, 12, 2653. [CrossRef] [PubMed]

27. Ren, Z.; Liu, Y.; Shi, T.; Xie, L.; Zhou, Y.; Zhai, J.; Zhang, Y.; Zhang, Y.; Wenguang, C. AIPerf: Automated Machine Learning as an
AI-HPC Benchmark. Big Data Min. Anal. 2021, 4, 208–220. [CrossRef]

28. Lin, T.-Y.; Maire, M.; Belongie, S.; Bourdev, L.; Girshick, R.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L.; Dollár, P. Microsoft
COCO: Common Objects in Context. In Proceedings of the in Computer Vision—ECCV 2014: 13th European Conference, Zurich,
Switzerland, 6–12 September 2014. [CrossRef]

29. Detectron2 vs. Yolov5. Which One Suits Your Use Case Better? Available online: https://medium.com/ireadrx/detectron2-vs-
yolov5-which-one-suits-your-use-case-better-d959a3d4bdf (accessed on 20 January 2023).

30. Object Detection: Speed and Accuracy Comparison (Faster R-CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3). Available
online: https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-
5425656ae359 (accessed on 20 January 2023).

31. Detectron2 Package. Available online: https://github.com/facebookresearch/detectron2 (accessed on 20 January 2023).
32. Buber, E.; Diri, B. Performance Analysis and CPU vs. GPU Comparison for Deep Learning. In Proceedings of the 2018 6th

International Conference on Control Engineering & Information Technology (CEIT), Istanbul, Turkey, 25–27 October 2018; pp. 1–6.
[CrossRef]

33. Yoo, A.; Jette, M.; Grondona, M. SLURM: Simple Linux Utility for Resource Management. In Proceedings of the 9th International
Workshop, JSSPP 2003, Seattle, WA, USA, 24 June 2003; Springer: Berlin/Heidelberg, Germany, 2003; Volume 2862. [CrossRef]

34. Yotta Advanced Computing Provider. Available online: https://www.yac.hr/ (accessed on 20 January 2023).
35. Coco Dataset Metrics. Available online: https://cocodataset.org/#detection-eval (accessed on 20 January 2023).
36. Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.; Savarese, S. Generalized Intersection over Union: A Metric and A Loss

for Bounding Box Regression. arXiv 2019, arXiv:2019.00075.
37. Why Parallelized Training Might Not Be Working for You. Available online: https://towardsdatascience.com/why-parallelized-

training-might-not-be-working-for-you-4c01f606ef2c (accessed on 20 January 2023).
38. agroNET—Digital Farming Management. Available online: https://digitalfarming.eu/ (accessed on 20 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.compag.2019.05.049
http://dx.doi.org/10.1007/978-3-319-46478-7_38
http://dx.doi.org/10.1016/j.compag.2020.105300
http://dx.doi.org/10.3390/s21113579
http://www.ncbi.nlm.nih.gov/pubmed/34063974
http://dx.doi.org/10.3390/e22070719
http://www.ncbi.nlm.nih.gov/pubmed/33286491
http://dx.doi.org/10.3390/ani12192653
http://www.ncbi.nlm.nih.gov/pubmed/36230394
http://dx.doi.org/10.26599/BDMA.2021.9020004
http://dx.doi.org/10.1007/978-3-319-10602-1_48
https://medium.com/ireadrx/detectron2-vs-yolov5-which-one-suits-your-use-case-better-d959a3d4bdf
https://medium.com/ireadrx/detectron2-vs-yolov5-which-one-suits-your-use-case-better-d959a3d4bdf
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://jonathan-hui.medium.com/object-detection-speed-and-accuracy-comparison-faster-r-cnn-r-fcn-ssd-and-yolo-5425656ae359
https://github.com/facebookresearch/detectron2
http://dx.doi.org/10.1109/CEIT.2018.8751930
http://dx.doi.org/10.1007/10968987_3
https://www.yac.hr/
https://cocodataset.org/#detection-eval
https://towardsdatascience.com/why-parallelized-training-might-not-be-working-for-you-4c01f606ef2c
https://towardsdatascience.com/why-parallelized-training-might-not-be-working-for-you-4c01f606ef2c
https://digitalfarming.eu/

	Introduction
	Related Work
	Materials and Methods
	Datasets
	Tools Selection and Setup
	Experiment Execution

	Results and Discussion
	Detection of Objects
	Instance Segmentation Results
	Initial Field Evaluation and Validation

	Conclusions
	References

