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Abstract: A low-resource emotional speech synthesis system for empathetic speech synthesis based
on modelling prosody features is presented here. Secondary emotions, identified to be needed for
empathetic speech, are modelled and synthesised in this investigation. As secondary emotions are
subtle in nature, they are difficult to model compared to primary emotions. This study is one of the
few to model secondary emotions in speech as they have not been extensively studied so far. Current
speech synthesis research uses large databases and deep learning techniques to develop emotion
models. There are many secondary emotions, and hence, developing large databases for each of the
secondary emotions is expensive. Hence, this research presents a proof of concept using handcrafted
feature extraction and modelling of these features using a low-resource-intensive machine learning
approach, thus creating synthetic speech with secondary emotions. Here, a quantitative-model-based
transformation is used to shape the emotional speech’s fundamental frequency contour. Speech
rate and mean intensity are modelled via rule-based approaches. Using these models, an emotional
text-to-speech synthesis system to synthesise five secondary emotions-anxious, apologetic, confident,
enthusiastic and worried-is developed. A perception test to evaluate the synthesised emotional
speech is also conducted. The participants could identify the correct emotion in a forced response
test with a hit rate greater than 65%.

Keywords: secondary emotions; emotional speech synthesis; fundamental frequency contour;
Fujisaki model; low resource; empathetic speech

1. Introduction

Text-to-speech (TTS) synthesis is used extensively for human-computer interaction.
In human-computer interaction, the synthetic speech produced by computer systems (such
as conversation agents and robots) is modelled to be humanlike. This humanness in the
voice makes the technology more acceptable to users [1–3]. In this context, synthesising
emotions as produced by humans in social situations is essential. Emotions are broadly
classified into primary and secondary emotions. Primary emotions are innate to support
fast and reactive response, e.g., angry, happy and sad. Six basic emotions were defined by Ek-
man [4] based on cross-cultural studies, and the basic emotions were found to be expressed
similarly across cultures. The terms ‘primary’ and ‘basic’ emotions are used in the literature
with no clear distinction defined between them. For this study, the definition of primary
emotions as defined above was used to be in alignment with studies in emotional speech
synthesis [5]. Secondary emotions are assumed to arise from higher cognitive processes
based on evaluating preferences over outcomes and expectations, e.g., relief and hope [6].
This distinction between the two emotion classes is based on neurobiological research by
Damasio [7]. There has been extensive research on primary emotions and methods to
synthesise them (a detailed review of past research is provided in Section 2). The studies
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reported in [2,3] show that for the voice of a robot to be perceived as empathetic, not only
primary emotions but secondary emotions are also essential. However, one can expect that
modelling secondary emotion is harder compared to modelling primary emotions. This is
because secondary emotions are subtle compared to primary emotions. Moreover, lexical
information needs to be supported by the appropriate prosodic component to enable people
to correctly perceive secondary emotions [8], i.e., the sentence for which emotional speech
is synthesised has to be correctly modelled at the accent and phrase levels in alignment
with what is being said.

Although there are many secondary emotions, the focus of this study was only on
secondary emotions that are needed for human-computer interaction, especially the ones
that have been identified to be needed for an empathetic voice. This choice was based
on studies on healthcare robots [2,3]. These studies analysed dialogues spoken by the
healthcare robot during various scenarios such as greeting the user, providing medicine
reminders and guiding the user in tasks. This analysis was followed by a perception test,
which suggested that human users perceived empathy in the voice that had secondary
emotions. The secondary emotions identified based on the analysis and perception tests
in the previously mentioned studies were: anxious, apologetic, confident, enthusiastic and
worried. The same secondary emotions were modelled in this study. Studies on these
specific secondary emotions are limited, and so are the number of databases available to
analyse them. Therefore, rather than relying on large databases and deep-learning models
built based on them, we focused on understanding the impact of the secondary emotions on
prosody features-specifically, the fundamental frequency ( f0) contour. Handcrafted-feature
extraction was used to extract f0 contour features. The features were then modelled to
produce f0 contours of secondary emotions. Two other prosody features, namely, speech
rate and mean intensity, were modelled by rule-based methods. Modelling the secondary
emotions by handcrafted feature extraction on a relatively small database, as described in
this paper, leads to developing a low-resource emotional speech synthesis system.

2. Past Studies on Emotional Speech Synthesis

A survey of studies focusing on emotional speech synthesis using various techniques
from the 1990s is summarised in Table 1. Only the most cited papers that provided a good
understanding of the emotional speech synthesis techniques used during these years were
reviewed here. The most cited paper before the 2000s [9] had more than 200 citations.
Between 2000 to 2010, the most cited paper [10] also had more than 200 citations. Finally,
the most cited paper [11] after 2010 also had more than 200 citations, indicating an increased
interest in emotional speech synthesis in recent years. This section will help the readers
understand the change in requirements for databases and resources over the years for
emotional speech synthesis. In the review that follows, a comparison of the size of the
speech database needed for each of the approaches is described. The comparison of the
database size was made with the databases used in the latest studies (after 2010) as the
reference. Studies after 2010 used databases with more than 100 h of recordings [11,12],
and these were considered “large” databases. The databases that only had recordings of all
diphones of a language [13] were considered relatively small databases, and others that
contained a larger number of recordings were considered medium-sized databases.

Studies in the 1990s used rule-based emotional speech synthesis [9,13] on a base voice
that was developed using formant/diphone synthesis. (A “base” speech synthesis system
refers to the synthesis system that is built initially, which has no emotional modelling.
The emotion-based modelling is built on this “base’‘ speech synthesis system.) Diphone
synthesis required recordings of all diphones in a language. Formant synthesis modelled
the human acoustic system without requiring a large database. Prosody features such
as fundamental frequency ( f0), duration and intensity were modelled by rule-based ap-
proaches. The emotion-based rules were derived by extracting these features from a small
database for each emotion. The feature extraction used handcrafted approaches, and the
changes in features could be explained in terms of the change in emotions.
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Table 1. Selected emotional speech synthesis techniques from the 1990s.

Speech Synthesis
Method

Emotional Speech
Synthesis Method

Features
Modelled Resources Needed Naturalness Emotions Modelled

1993 [13] Diphone
synthesis Rule-based Duration and f0

All possible diphones in a
language have to be

recorded for neutral TTS 1,
e.g., 2431 diphones in

British English.
An emotional speech

database (312 sentences) to
frame rules is needed

Average 2
Neutral, joy, boredom,

anger, sadness, fear
and indignation

1995 [9] Formant
synthesis Rule-based

Prosody features
such as pitch,

duration, voice
quality features

DECtalk synthesiser was
used containing

approximately 160,000
lines of C code. Emotion
rules framed from past

research

Average
Anger, happiness,

sadness, fear, disgust
and grief

2004 [14] Parametric
speech synthesis

Style control vector
associated with the

target style
transforms the mean
vectors of the neutral

HMM models

f0, mel cepstrum

504 phonetically balanced
sentences for average

voice, and at least
10 sentences of each of

the styles

Good Three styles: rough,
joyful and sad

2006 [10] Recorded
neutral speech used as it

is

Rule-based using
GMM 3 and CART 4 f0, duration Corpus with

1500 sentences Average Neutral, happiness,
sadness, fear and anger

2006 [15] Parametric
speech synthesis

Corpus-based using
decision trees

f0 contours,
timing

11 h (excluding silence) of
neutral sentences + 1 h

emotional speech
Good 5 Conveying bad news,

yes-no questions

2007 [16] Parametric
speech synthesis

Model adaptation on
average voice

Mel cepstrum,
log f0

503 phonetically balanced
sentences for average

voice, and at least
10 sentences of a
particular style

Good
Speaking styles of

speakers in the
database

2010 [17] Neutral voice
not created

HMM-based
parametric speech

synthesis

Spectral
envelope, f0,

duration

Spanish expressive voices
corpus-100 min per

emotion
Good

Happiness, sadness,
anger, surprise, fear

and disgust

2017 [12] Parametric
speech synthesis using

recurrent neural
networks with long

short-term memory units

Emotion-dependent
modelling and

unified modelling
with emotion codes

Spectrogram

5.5 h emotional speech
data +

speaker-independent
model from 100 h

speech data

Reported to be
better than

HMM-based
synthesis

Neutral, happiness,
anger and sadness

2018 [11] Tacotron-based
end-to-end synthesis
using DNN 6 (Deep

neural network-Tacotron
model learning a latent

embedding space)

Prosody transfer Spectrogram
English dataset of

audiobook
recordings-147 h

Reported to be
better than

HMM-based
synthesis

Speaking styles of
speakers in the

database

2019 [18] Deep
Convolutional TTS

Emotion adaptation
from neutral TTS to

emotional TTS
Spectrogram

Large dataset (24 h) of
neutral speech + 7000

emotional speech
sentences (5 emotions)

Reported to be
better than

HMM-based
synthesis

Anger, happiness,
sadness and neutral

1 Text-to-speech. 2 Average and good are used here compared to the methods that were developed in the following
years. Average and good do not have any physical significance and are not measurable; rather, they are in
comparison to the other methods. 3 Gaussian mixed model. 4 Classification and regression tree. 5 Reduced due to
oversmoothing of spectral and excitation parameters by HMM models. 6 Tones and break index.

In the early 2000s, the trend shifted to parametric speech synthesis, with hidden
Markov model (HMM)-based synthesis being the most popular (see rows three to eight of
Table 1). Parametric speech synthesis increased the need for good quality databases (the
term good quality here refers to recordings in recording studio environments that have
controlled noise levels) with adequate phonetic coverage (between 500 [15,16] to 1500 [10]
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sentences and larger corpora with 11 h of neutral speech recording [15]). (Neutral this context
refers to speech without any emotions.) Emotions were imparted to the synthesised speech
using rules [10], where the rules were derived from a small corpus of each emotion. Corpus-
based modelling [15] was also performed, where an emotional speech corpus (one-hour
recording for each emotion) was used to derive models for each emotion’s prosody features.
Another approach modelled emotional prosody phonology using tones and break index
(ToBI)-based f0 contour modelling [15]. A one-hour recording for each emotion and 11 h of
neutral speech recording were used. Another approach was style adaptation using HMM-
based synthesis. Style control vectors [14] and the adaptation of acoustic features such as
the mel cepstrum and log f0 were used. These adaptation methods needed a relatively
large database (approximately 500 phonetically balanced sentences [14,16]) to produce an
average voice and a smaller database-approximately 10 sentences for each emotion/style-to
be adapted [14,16]). All these approaches used the HMM-based synthesis to produce a
neutral voice and some form of emotion modelling to incorporate emotions onto the neutral
voice. This required a medium-sized (medium in comparison to the databases needed for
the deep-learning approaches explained in the next paragraph) database of neutral speech,
and a small database of emotional speech to learn from. The features modelled using these
approaches were interpretable. However, the naturalness of these synthesised voices was
reported to be inferior due to the inherent disadvantage of HMM-based synthesis, that
it oversmoothens the spectral and excitation parameters [19]. If a large database for each
emotion (100 min of recording per emotion) is available, an HMM-based synthesis can be
achieved by training the models based on each of the emotional databases [17] without the
need for a neutral voice. Such modelling of individual emotions often produces emotional
speech with a good naturalness. However, developing large databases for each emotion
includes too much overhead, such as the additional requirement to produce recordings for
each emotion separately.

After 2015, the trend in speech synthesis shifted towards incorporating neural net-
works in parametric speech synthesis (see Table 1, rows 9–11). Earlier approaches focused
on using recurrent neural networks with long short-term memory units [12]. Then, emotion-
dependent modelling was done by inputting emotion code vectors to all model layers based
on an emotional speech database. The neutral voice was trained using a large database of
100 h of speech, and the emotional speech data were 5.5 h long. The speech produced by
such deep neural networks was more natural than with the HMM-based approach, as the
oversmoothing of spectral and excitation parameters was avoided. With the improvements
in neural networks, the availability of large databases and increased processing power,
there has been a lot of focus on developing end-to-end emotional text-to-speech synthe-
sis systems. The Tacotron-based end-to-end speech synthesis system is one of the latest
speech synthesis techniques. The study reported in [11] used Tacotron and implemented
prosody transfer for emotional speech synthesis. Another research study [18] used a deep
convolutional neural network TTS and performed emotion adaptation via transfer learning.
Both these neural-network-based approaches required large databases (147 h [11], 24 h
neutral speech + 7000 emotional speech sentences [18]). The interpretation of the features
learned by the neural network was not directly possible. Rather, the learning was based on
spectrograms and image-related features, and these features could not be easily associated
with the acoustic correlates of speech production.

The last column of Table 1 lists the emotions that have been synthesised by these
aforementioned approaches. Most of the emotions synthesised are primary emotions
such as angry, sad, happy, fear (in studies [10,17,18,20]) and others focusing on speaking
styles (such as studies in [11,14,16]). Only a few studies [13] have synthesised some
secondary emotions.

Emotional Speech Corpus

The JLCorpus https://www.kaggle.com/tli725/jl-corpus, (accessed on 1 January
2022) [21] contains a total of 2400 emotional speech sentences from 10 emotions (5 primary
emotions-angry, excited, happy, neutral and sad; and 5 secondary emotions-anxious, apologetic,

https://www.kaggle.com/tli725/jl-corpus
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confident, enthusiastic and worried) spoken by two male (male1 and male2) and two female
(female1 and female2) speakers of New Zealand English. The emotions in the JLCorpus
are represented on a valence-arousal plane is shown in Figure 1. The valence indicates
the pleasantness of the voice ranging from unpleasant (e.g., sad, fear) to pleasant (e.g.,
happy, hopeful). The arousal specifies the reaction level to stimuli ranging from inactive (e.g.,
sleepy, sad) to active (e.g., anger, surprise). Russel developed this model in a psychology
study where Canadian participants categorised English stimulus words portraying moods,
feelings, affect or emotions. Later, 80 more emotion words were superimposed on Russel’s
model based on studies in German [22]. Russel’s circumplex model diagram, as used in
this study and shown in Figure 1, was adapted from [23], which was adapted from Russel
and Scherer’s work, but the positive valence was depicted by the right side of the x-axis (in
contrast to Scherer’s study where it was on the left side.). A two-dimensional model was
used (and not higher-dimension models) as representing the emotions on a plane facilitates
their visualisation. The JLCorpus is used for this study.

Figure 1. Emotions in the JLCorpus (blue * are the secondary emotions, and green + are the primary
emotions) positions on the valence-arousal plane.

With the motivation to synthesise secondary emotions using a low-resource approach
and handcrafted features, the research questions in this investigation were:

Research question 1: Can prosody features be used to model secondary emotions?
Research question 2: How can a low-resource emotional text-to-speech synthesis system be
developed for secondary emotions?
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3. Emotional Speech Corpus Analysis

Even though the JLCorpus contains both primary and secondary emotions, the focus of
this research was only on secondary emotions. The primary emotions sad and excited were
added in the plots to represent the extremities in the valence-arousal levels, and a neutral
emotion was added as a baseline for comparison. This will help the reader understand
the relative behaviour of the secondary emotions compared to the primary emotions.
Many features were used to represent speech and audio signals. Examples of features
included mel frequency cepstral coefficients (MFCCs); spectral features such as jitter and
shimmer [24,25]; glottal features such as the open quotient and closed quotient; and
prosody features such as the fundamental frequency ( f0), speech rate and mean intensity.
The analysis presented focused on three prosody features: the fundamental frequency
( f0), speech rate and mean intensity. These three features were considered as they have
been extensively used in past research (examples can be found in Table 1) for emotional
speech synthesis. Only the results of male2 and female2 speakers are discussed as they
had the highest perception accuracy among all four speakers from the perception test for
evaluating the JLCorpus [21]. Averaging the results across all the speakers would cause
these feature values to not have distinct emotion-dependent regions. Therefore, speaker-
based results averaged across the sentences per speaker per emotion are presented here.
There were 60 sentences per speaker for every emotion; in total, the results corresponded to
960 sentences. When the valence-arousal levels are described to relate to change in prosody
features, the two-dimensional space shown in Figure 1 was used as the reference.

3.1. Prosody Feature Analysis

The f0 track was extracted from the JLCorpus using the wrassp wrapper [26], an ad-
vanced speech signal processor library in R computing software [27]. The ksvF0 funda-
mental frequency estimation function was used with its default settings. The f0 track was
averaged at the sentence level to obtain the mean f0. The minimum, maximum and range
of f0 were calculated for every sentence. These were then averaged across all sentences
to obtain the f0 statistics for sad, excited and neutral and five secondary emotions, and this
result is shown in Figure 2. The dot represents the mean f0, and the upper and lower
bounds indicate the maximum and minimum values, respectively. The bold black number
at the bottom of the graph is the f0 range. The plotting was done using R’s ggplot [28].
Even though the frequency range for female2 and male2 speakers were different, the effect
of emotions on f0 had common trends. Among the secondary emotions, enthusiastic and
anxious had the highest mean f0 (high arousal emotions), with enthusiastic having the largest
range (averaged across male2 and female2 speakers). Apologetic (low arousal emotion) had
the lowest mean f0 and range. Confident and worried fell in between the other three emo-
tions that had more extreme values. Even though emotions such as apologetic, confident and
worried had similar mean f0 values, the f0 range differentiated them. Confident in the fourth
quadrant of the valence-arousal plane had a mean f0 similar to neutral and worried; however,
its range was higher than that of worried, which may have been an effect of its slightly
higher arousal level or positive valence level. Interestingly, the primary emotion sad did
not have the lowest mean f0 value despite having the lowest valence level. A more detailed
analysis of the fundamental frequency contour of secondary emotions was conducted by
the authors and is reported in [29].

The mean intensity in decibels (dB) was measured using the wrassp wrapper using
the rmsana short-term root-mean-square amplitude analysis function with default settings.
The intensity was averaged at the sentence level. Figure 3 shows boxplots for the intensity
across sad, excited and neutral, and 5 secondary emotions plotted using R’s ggplot. Each
point on the plot represents the mean intensity of a sentence. The dashed line is the mean
intensity for neutral. It can be seen that emotions influenced the intensity very strongly.
Distinct regions, often with little or no overlap, can be seen in the boxplots. In contrast to the
f0 values, the mean intensity values for the primary emotions excited and sad were clearly
at the extremities. Among the secondary emotions, enthusiastic and anxious (high arousal)
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had the highest intensity, and worried and apologetic (low arousal) had the lowest. All high-
arousal emotions (anxious, enthusiastic) were much above the neutral line and low-arousal
emotions (apologetic, worried) were near or below it. Confident with arousal levels near
neutral had intensity values slightly higher than neutral. This could be due to the positive
valence of confident, and this claim needs to be investigated further. Moreover, confident
had a slightly higher arousal than worried, resulting in higher mean intensity values.

Figure 2. Fundamental frequency statistics of 5 secondary emotions, and sad, excited and neutral from
the JLCorpus for speakers female2 and male2. The dot on each line represents the mean f0, and the
upper and lower bounds indicate the maximum and minimum values, respectively. The bold black
number at the bottom is the f0 range. The dash lines represent the results for neutral.
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Figure 3. Mean intensity boxplots of 5 secondary emotions, and sad, excited and neutral from the
JLCorpus for speakers female2 and male2.

Finally, the speech rate in syllables per second was calculated by counting the number
of syllables per sentence, and it was divided by the sentence duration [30]. The speech rate
variations were not as pronounced as those of f0 and the intensity due to the short duration
of the sentences in the JLCorpus (as noted in [21]). An additional statistical analysis was
conducted to understand the effect of emotions on speech rate. Figure 4 shows the statistical
analysis results (from R) for eight emotions, with the value in the box representing the
average speech rate for each emotion, where significantly different emotion pairs obtained
from a pairwise t-test are marked by arrows. The emotion with the lowest average speech
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rate was the primary emotion sad (low arousal), and it was significantly different from
all other emotions except apologetic, perhaps expectedly due to their similar valence and
arousal levels. The primary emotion excited (high arousal) had the highest average speech
rate, followed by anxious and enthusiastic. Confident showed a significant difference in
speech rate from all other emotions. This could be a result of its unique position in the
fourth quadrant (see Figure 1). Overall, the results suggested that with reducing levels of
arousal from enthusiastic to apologetic, the speech rate reduced.

Figure 4. Speech rate statistics of 5 secondary emotions, and sad, excited and neutral from the JLCorpus
for speakers female2 and male2.

To summarise, for high arousal emotions (such as anxious, enthusiastic and confident),
the feature values for f0 and the mean intensity were high. For low arousal emotions (such
as apologetic, sad and worried), the feature values were low. For the speech rate, all emotions
followed an increasing trend of feature values as the arousal level of the emotions increased.
Thus, all three prosody features were arousal-differentiating. It was found that confident
behaved similarly to worried for the arousal-differentiating features. The results of this
analysis suggested that the three prosody features were impacted by secondary emotions.
Hence, modelling these three prosody features could be effective in synthesising these
secondary emotions.

3.2. f0 Contour Analysis

Figure 5 shows the time-normalised f0 contour for five secondary emotions and neutral
extracted for the same sentence. Comparing neutral and secondary emotions, there were
clear differences in the mean and range of f0 (also noted in the statistical analysis reported
in Section 3.1); most importantly, the f0 contour shapes showed considerable differences.
For example, in Figure 5, consider the sample points between 10 to 20. One can see that the
shape of the contour for apologetic is visually different from that of enthusiastic, and it is not
just a difference in the mean and range values alone; it is in the timing of the peak of the
contour. This indicated that even though a qualitative model based on the f0 statistics could
provide emotion separation for primary emotions [5], such a model may be insufficient to
capture the f0 contour variations of secondary emotions.

Contour-based modelling conveys concurrent linguistic information (e.g., sentence
modality, word prominence) and paralinguistic information such as emotions [29]. The Fu-
jisaki model is one of the classic f0 contour models [31]. Fujisaki’s model approximates the
natural f0 contour and interpolates through unvoiced sounds. The model is event-based,
i.e., every command is related to the onset of a new phrase, accented syllable or boundary
tone. This model quantifies the f0 contour with a few parameters from which the f0 contour
can be constructed. Studies reported in [32–35] used the Fujisaki model for various speech
signal applications.
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Figure 5. f0 contour of 5 secondary emotions and neutral (dark blue bold line).

The Fujisaki model [35] parameterises the f0 contour superimposing (see Figure 6)
(1) the base frequency Fb (indicated by the horizontal line at the floor of the f0 pattern),
(2) the phrase component-declining phrasal contours accompanying each prosodic phrase-
and (3) the accent component-reflecting fast f0 movements on accented syllables and
boundary tones. These components are specified by the following parameters:

1. Phrase command onset time (T0): Onset time of the phrasal contour, typically before
the segmental onset of the phrase of the ensuing prosodic phrase. Phrase command
duration Dur_phr = End of phrase time-T0.

2. Phrase command amplitude (Ap): magnitude of the phrase command that precedes each
new prosodic phrase, quantifying the reset of the declining phrase component.

3. Accent command amplitude (Aa): amplitude of the accent command associated with
every pitch accent.

4. Accent command onset time (T1) and offset time (T2): The timing of the accent command
can be related to the timing of the underlying segments. Accent command duration
Dur_acc = T2 − T1.

Figure 6. Fujisaki parameters for “Sound the horn if you need more” (SAMPA symbols). T0, T1 and T2

marked for the first phrase and accent commands only.

Using the parameters, the f0 contour can be obtained as:

ln( f0(t)) = ln(Fb) +
I

∑
i=1

ApiGpi(t− T0i)+

J

∑
j=1

Aaj(Gaj(t− T1j)− Gaj(t− T2j))

(1)
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where

Gpi(t) =

{
α2

i texp(−αit), ∀t ≥ 0.
0, otherwise.

(2)

Gaj(t) =

{
min[γj, 1− (1 + β jt)exp(−β jt)], ∀t ≥ 0.
0, otherwise.

(3)

Fb-Bias level upon which all the phrase and accent components are superposed to form an
f0 contour.
β j-Natural angular frequency of the jth accent command.
αj-Natural angular frequency of the jth phrase command.
I-Number of phrase commands.
J-Number of accent commands.
Api-Magnitude of the ith phrase command.
Aaj-Magnitude of the jth accent command.
T0i-Instant of occurrence of the ith phrase command.
T1j-Onset of the jth accent command.
T2j-Offset of the jth accent command.
γj-Ceiling level of the accent component for the jth accent command.

Aa, Ap, T0, T1, T2, Fb, α, β and γ are referred to as the Fujisaki parameters. In this
study, α and β were kept constant, and the other six parameters were modelled for the
different emotions.

3.2.1. Fujisaki Parameterisation of f0 Contour

The f0 contour was extracted with the Praat standard method [36] for every 0.01 s. Then,
the Fujisaki model parameters were estimated from the natural f0 contour using an automatic
algorithm called the AutoFuji extractor [37]. In the analysis of reading-style speech, typically,
every content word is characterised by at least one accent command associated with the primary
pitch accent, and the base frequency Fb is kept constant for each speaker [38]. In the context
of emotional speech, however, in principle, every syllable can exhibit an accent command,
especially when the emotion entails a strong arousal. Sometimes even a single syllable that
is strongly emphasised can contain two accent commands as seen in the syllable “m_o:” of
Figure 6 (see between time 1.5 to 2 s). The Fujisaki model parameters for each utterance were
checked to ensure that potential errors in f0 tracking did not tamper the parameter, leading
to additional accent commands in unvoiced segments. This hand- checking was done by
the first and fourth authors of this paper, with the first author checking all the files once and
correcting them, followed by the fourth author rechecking them. In most cases, the Fb set
for the automatic algorithm was used as is. However, for certain speakers, the Fb had to be
adjusted (±10 Hz) as a function of the emotion portrayed to make the Fujisaki estimated
contour better fit the original f0 contour. This process could not be conducted automatically
because errors in f0 tracking could cause wrong Fujisaki parameter estimations.

There were 2400 short utterances in the JLCorpus, out of which 1200 were analysed.
(Both male and female speakers’ sentences were used for the initial analysis. However, only
the male speaker sentences were used for the emotion-based f0 contour model developed
because it was that male speaker’s voice that was synthesised). Only a subset of the corpus
was analysed because the Fujisaki parameterisation required hand-correction. Moreover,
by taking a subset, two renderings of each sentence in the JLCorpus (out of four available)
for each emotion for each speaker were analysed. As we aimed to synthesise these f0
contours, getting an accurate parameterisation of the contour for a given sentence was
important. Hence, two renderings of the same sentence were used to capture the f0 contour
accurately. The impact of adding more renderings of the same sentence on the model will
need to be tested in the future when more data get hand-corrected.

Finally, an automatic time alignment of the Fujisaki parameters with each of the
syllables in the corpus was performed, i.e., accent commands were associated with the
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syllables in which they began and ended, and phrase commands with the initial syllables
of phrases that they preceded. The results were collated, and it contained the Fujisaki
model parameters (Aa, Ap, Fb, T0, T1, T2) for each of the syllables. The analysis of the effect
of emotions on the Fujisaki parameters (detailed report in [29]) showed that they were
affected by the emotions, with accent command parameters (smaller units-Aa and accent
command duration T2 − T1) and Fb having the most significant effect.

The analysis in Section 3.1 showed that the secondary emotions could be differentiated
using the mean intensity. Hence, a rule-based approach was used to model the mean
intensity of the secondary emotions during synthesis. The intensity contour modelling
was not attempted here, as past research has not determined a well-established intensity
contour model at the accent and phrase level. Hence, developing a new intensity contour
model is reserved for future investigation.

A rule-based approach was used to model the speech rate. Modelling the f0 contour
by the Fujisaki model and mean intensity and speech rate using rules addressed research
question 1.

4. Emotional TTS Synthesis System Development

Here, we address research question 2. The overall system diagram for the TTS synthesis
system is shown in Figure 7. The inputs to the system were the text to be converted to
speech and the emotion tag to which the conversion had to be done. Synthesised speech
was produced from the input text using a text-to-speech module. This produced synthesised
speech that had no emotions. The f0 contour’s Fujisaki parameters of the nonemotional
speech were extracted via the automatic Fujisaki extractor module. The nonemotional f0
contour’s Fujisaki parameters were transformed into emotional f0 contour parameters. Using
these emotional f0 contour parameters, the f0 contour corresponding to the emotion tag was
reconstructed. The intensity and speech rate decisions were made using the emotion tag.
Finally, using the reconstructed f0 contour, the intensity and speech rate values, emotional
speech was resynthesised. Details about each module are given in the following sections.

Figure 7. Emotional text-to-speech synthesis system with f0 contour transformation.

4.1. Text-to-Speech Module

Previous work [39,40] has led to the development of a TTS synthesis system in New
Zealand English based on MaryTTS [41] (with approximately 1000 sentences spoken by a male
New Zealand English speaker). Synthesised speech for New Zealand English is currently
without any emotion and is called nonemotional speech here. The input text was passed through
the New Zealand English MaryTTS system, and the output nonemotional speech was obtained.

4.2. Automatic Fujisaki Extractor

The f0 contour was extracted from the nonemotional speech (by the Praat Auto Correla-
tion Function method [42]). Label files were obtained from the input text and nonemotional
speech using the New Zealand English option of the Munich Automatic Web Segmentation
System [43]. The pitch and label files were provided to the AutoFuji extractor [37] to obtain
the five derived Fujisaki model parameters of nonemotional speech-ApN , AaN , Dur_phrN ,
Dur_accN , FbN , where N represents “nonemotional". The parameters were then time-
aligned to the text at the phonetic level. These Fujisaki parameters were obtained via an
automatic process and were not hand-corrected. The Fujisaki parameters were transformed
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into corresponding emotional speech parameters. Hence, hand-correction of these nonemo-
tional f0 contour parameters was not necessary. Avoiding hand-correction also made
real-time synthesis possible, which is suited for human-computer interaction applications.

4.3. Transformation to Emotional Speech Parameters

This module transformed the Fujisaki model parameters of the nonemotional speech’s
f0 contour to that of emotional speech. For conducting this transformation, a regression
model was developed, as described here.

4.3.1. Features for the Regression Model

The only inputs available for an emotional TTS synthesis system are the text to be
converted to speech and the emotion to which the speech has to be transformed. For a real-
time implementation, all the features used for transforming the f0 contour parameters
here were based on these two inputs only. A list of all features, along with their extraction
methods, is given in Table 2. In total, 109 features were extracted.

Table 2. Features used for f0 contour transformation.

Feature Description Extraction Method

Linguistic context features
Count = 102, e.g.,

accented/unaccented,
vowel/consonant

Text analysis at the phonetic level
using MaryTTS.

Nonemotional f0 contour Fujisaki
model parameters

Five Fujisaki parameters-ApN ,
AaN , Dur_phrN , Dur_accN , FbN

Passing nonemotional speech to
AutoFuji extractor.

Emotion tag Five primary and five secondary
emotions

Each emotion tag is assigned to
the sentence

Speaker tag Two male speakers Speaker tag is assigned

Linguistic context features refer to a set of features that describe the phonetic environment
of the target phoneme. In this investigation, the linguistic features used in MaryTTS [41]
were used for the f0 contour prediction. This choice was further motivated by the fact that
MaryTTS was our front-end synthesiser (more details in Section 4.3.2). Examples of context
features are the forward/backward position of a phoneme in a syllable, the number of
accented/stressed syllables before/after the current syllable, ToBI end-tone marking, etc.
This feature extraction process is represented by the text analysis module in Figure 7.

The nonemotional f0 contour Fujisaki parameters were used as features for the transfor-
mation. The extraction of these features is represented by the automatic Fujisaki extractor
module in Figure 7 as described above in Section 4.2.

Another feature used was the emotion tag representing the emotion to which the trans-
formation had to be done. The database for training the transformation model contained
two male speakers. Hence, a speaker tag was also used as a feature for the transformation
model development.

4.3.2. f0 Contour Transformation Model

The set of hand-corrected Fujisaki parameters (the extraction and hand correction de-
scribed in Section 3.2.1) obtained from the natural emotional speech in the JLCorpus was the
target value to be predicted by the model. There were 7413 phoneme tokens from two male
speakers of the JLCorpus. These phoneme tokens and corresponding Fujisaki model param-
eters formed the database for the f0 contour transformation model development. In total,
80% of the database was used for training, and 20% was used for testing using random
selection. It was ensured that parts of the same sentences were not split into the training and
test set. This was done by choosing three sentences used for testing (which accounted for
approximately 20% of the total tokens) and the remaining 12 sentences used for training. (In
total, there were 15 different sentences in the JLCorpus, for each emotion, each speaker and
each repetition.) As seen in Figure 7, the input to the f0 contour transformation model was the
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nonemotional f0 contour features, emotion tag and context features. These were the features
based on which the f0 contour transformation model was trained. A less resource-intensive
machine-learning-based regression model was developed using the handcrafted features
extracted here. The transformation predicted Fujisaki model parameters for every phoneme
in an input sentence based on the emotion tag to which the conversion needed to be done.

The f0 contour transformation model training was as follows.
Here, we chose two ensemble regressors-random forest [44] and Adaboost [45]-as a

proof of concept to implement ensemble-learning-based regression. Both random forest and
Adaboost were allowed to run independently, and the outputs obtained from the two regres-
sors were aggregated in the end without giving any preference to either of the algorithms
by taking the mean of the predictions from both algorithms. The implementation was done
in Python using the scikit-learn machine learning library RandomForestClassifier and Ad-
aBoostRegressor packages [46]. Based on 109 features corresponding to each phoneme
in the training set, the two regression algorithms were individually trained to learn the
patterns of emotional speech’s f0 contour parameters. The use of ensemble methods has the
important advantages of an increase in accuracy and robustness when compared to the use
of a single model [47]. This makes ensemble methods suited for applications where small
improvements in the predictions have an important impact. This is relevant here, as the
requirement is to predict the Fujisaki model parameters accurately, which are numbers,
and small variations in them can cause the parameters to change to that of another emotion.
The hyperparameters (for random forest, the number of trees, the maximum number of
features considered for node splitting, the maximum number of levels in each decision tree,
the minimum number of data points placed in a node before the node is split, the minimum
number of data points allowed in a leaf node, the method of sampling data points; and for
Adaboost, the number of estimators, learning rate and number of splits) of these supervised
learning methods were tuned via a grid-search cross-validation, and the best parameter set
was used for the training. The mean of the predictions from the two algorithms was taken
as the final prediction. Such ensemble-learning-based regression models were developed
for each emotion. These emotion-dependent models were combined to form the emotion
transformation model for the f0 contour parameters.

4.3.3. Using the Transformation Model

Let each nonemotional speech’s f0 contour parameter be called PN , N stands for
“nonemotional”. Then, the developed transformation model (T(PN) = PE) was applied
to this nonemotional speech’s f0 contour parameter based on the features. PE denotes
emotional speech parameters. The transformed parameters were then used to produce the
f0 contour of the emotional speech. This step is represented by the transform to emotional
speech f0 contour parameter module in Figure 7.

4.4. Speech Rate and Mean Intensity Modelling

Table 3 lists the mean speech rate and mean intensity for each of the five secondary
emotions estimated by analysing the JLCorpus (as described in Section 3.1). Based on these
intensity and speech rate values, rules were identified for each emotion. These rules were
then applied to the speech signal after the f0 contour transformation was performed.

Table 3. Mean speech rate value for five secondary emotions.

Secondary Emotion Mean Speech Rate (Syllables/s) Mean Intensity (dB)

anxious 3.25 58.24

apologetic 2.93 55.14

confident 3.20 59.50

enthusiastic 3.24 63.91

worried 2.99 56.34
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4.5. Resynthesis

The Fujisaki parameters predicted for each phoneme in a sentence were time-aligned
to the sentence’s phonemes. Accent and phrase commands were placed based on this
time alignment, and the Fb was assigned to the sentence. If the model predicted that
the accent/phrase command positions needed to be changed compared to nonemotional
speech, then accent/phrase commands were added/deleted/shifted accordingly. The
Fujisaki parameters were then used to reconstruct the f0 contour by superimposing the
Fb, accent commands and phrase commands. Once the f0 contour was reconstructed,
emotional speech was resynthesised by pitch-synchronous overlap-and-add using Praat.

5. Performance Analysis and Results

Resynthesised emotional speech was evaluated by a subjective test with 29 participants
out of which 14 participants had English (all variants of English included) as their first lan-
guage (called L1 speakers). In total, 24 participants were from the age group 16–35, and the
remaining were distributed over 36–65. All the participants had average, above-average or
excellent (self-reported) hearing. Twenty-three participants used headphones, five used
loudspeakers, and the remaining one used a laptop speaker. The survey was designed on
Qualtrics, a web-based survey platform. The average time taken by the participants to
complete the test was 40 min. The perception test was divided into five tasks to evaluate
the various aspects of the synthesised emotional speech. The participants did the entire
test in one sitting. The survey automatically proceeded to the next task when one task was
completed. The tasks were presented to the participants in the same order as described
here. We also interpreted the applicability of these results for a healthcare robot for which
this TTS system was developed.

Different aspects of the synthesised emotional speech were evaluated. These included
evaluating if participants could identify the emotion in the synthesised speech from a set
of emotion names provided, evaluating if participants could identify the emotion in the
synthesised speech if no emotion names were provided, evaluating the naturalness of the
synthesised speech and the comfort level of listening to the synthesised speech.

5.1. Task I-Pairwise Forced-Response Test for Five Secondary Emotions

This task aimed to evaluate if the participants could differentiate five secondary
emotions when two of them were presented. Participants listened to 100 sentences and
grouped them into the two emotion names provided. These sentences were divided into
blocks of 10. Most of the sentences were from the JLCorpus [21]. All five secondary
emotions were perceptually evaluated in this pairwise test. This was a forced-response test,
as the participants could only choose from the emotion list given to them. The 100 sentences
were evaluated by the 29 participants, giving 2900 evaluations. The training was provided
to the participants to acquaint them with the type of utterances to expect and give them
practice in doing the task.

The results of the test are summarised as a collection of confusion matrices, one
for each emotion pair shown in Table 4. The horizontal rows indicate the perceived
emotions of the participants, and the vertical columns indicate the actual emotions. Each
confusion matrix shows the perception accuracy in percentage (calculated by the number of
correct choices of the emotion divided by the total number of sentences of that emotion
as a percentage) for each of the emotion pairs. The highlighted percentage value in the
table represents the cases where the participants perceived the actual emotion correctly.
The Kappa statistics, κ = 0.816 (95% confidence interval, 0.813 to 0.818, p < 0.0001),
showed strong inter-rater agreement, which means that there was consistency among the
participants in differentiating the emotion pairs. Looking at the results, one can deduce
that the most confusing emotion pairs were enthusiastic vs. anxious, confident vs. enthusiastic
and apologetic vs. worried (which might be due to their closeness in the valence and arousal
levels). Each participant evaluated each emotion pair 10 times, ensuring that each emotion
pair was evaluated 290 times. Thus, it was reasonable to assume that the perception
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accuracy was much higher than chance. Overall, the average perception accuracy across
all emotions was 87%. Comparing these results with past studies that modelled the f0
contour for emotional speech synthesis such as [48] (reported 50% perception accuracy for
expressions good news, bad news and question), [49,50] (reported 75% perception accuracy
for happy, angry and neutral) and [51] (reported 65% perception accuracy for joy, sadness,
anger and fear), the results obtained here were comparable to past studies. However, past
studies did not report f0 contour modelling for these secondary emotions. Hence, a direct
comparison was not possible.

In the natural speech subjective test conducted previously by the authors [21], the emo-
tions that were difficult to differentiate were enthusiastic vs. anxious, confident vs. enthusiastic
and worried vs. apologetic. From the confusion matrices shown in Table 4, it can be seen
that the emotions pairs that were most difficult to differentiate were worried vs. apologetic
and confident vs. enthusiastic, as these pairs had the lowest correct hit rates (i.e., the dia-
logue elements of the confusion matrix). The emotions that were most easy to differentiate
were apologetic vs. anxious and apologetic vs. enthusiastic. These observations indicate that
synthesising emotions such as apologetic and worried may require modelling other acoustic
features than the ones considered in this study. From this analysis, it was found that some
emotion pairs were easier to differentiate compared to others, and this could be related to
the valence-arousal levels of the emotions in the pair. Among the most difficult emotions
to differentiate, apologetic vs. worried and enthusiastic vs. confident may not be problematic
for users of a healthcare robot. This is because, for example, if the healthcare robot is
speaking enthusiastically but it is wrongly perceived as confident by the user, it will not
negatively impact the user’s perception and reaction to the robot. However, the confusion
between enthusiastic vs. anxious will cause difficulty for the users, as a healthcare robot (or
any human-computer interaction application) that speaks enthusiastically but is perceived
as anxious by the user would baffle the user. Future work on modelling these emotions
will have to concentrate on these two emotion pairs in detail. Moreover, the words in
the sentences spoken with these emotions can also help differentiate between enthusiastic
and anxious.

Table 4. Hit rates from forced-response test (ANX: anxious, APO: apologetic, CONF: confident,
ENTH: enthusiastic, WOR: worried).

APO ANX APO ENTH

APO 97.9 % 2.1% APO 100% 0%

ANX 0% 100% ENTH 1.4% 98.6%

CONF ANX APO WOR

CONF 88.3% 11.7% APO 64.3% 35.7%

ANX 12.4% 87.6% WOR 32.4% 67.6%

ENTH ANX CONF ENTH

ENTH 78.6% 21.4% CONF 69% 31%

ANX 24.8% 75.2% ENTH 30.3% 69.7%

WOR ANX CONF WOR

WOR 97.9% 2.1% CONF 95.2% 4.8%

ANX 4.1% 95.9% WOR 22.8% 77.2%

APO CONF WOR ENTH

APO 94.5% 5.5% WOR 97.9% 2.1%

CONF 9.7% 90.3% ENTH 0.7% 99.3%
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5.2. Task II-Free-Response Test for Five Secondary Emotions

In this task, the participants listened to one sentence at a time and wrote down any
number of emotions they perceived. This was a free-response test, and the participants
were not given any emotion options to choose from. The sentences they heard were a subset
of the collection of sentences used for the forced-response tests, and they were different for
each emotion. Two sentences corresponding to emotions were evaluated, making a total of
10 sentences evaluated by 29 participants, giving 290 evaluations.

The emotion words written by the participants for each of the five secondary emotions,
along with the number of times each word was written, is given in Table 5. It can be
seen that the free responses entered by the participants were almost in alignment with
the intended emotion. A major confusion was for actual emotion enthusiastic, which was
reported as confident by many participants (24 times). The emotion word enthusiastic was
also used 21 times for this. Both enthusiastic and confident have similar valence levels (from
Figure 1), which could be the cause of confusion. Moreover, this confusion between confident
and enthusiastic may not be detrimental to the experience of the users of a healthcare robot
speaking with these emotions.

Table 5. Perceived emotion words in free-response test (times used).

Actual
Emotions Emotion Words by Participants (Count of Times Used)

Anxious Anxious (41), enthusiastic (9), neutral (4), confident (3), energetic (1)

Apologetic Apologetic (35), worried (22), worried/sad (1)

Confident Confident (34), enthusiastic (9), worried (8), neutral (5), authoritative (1), demanding (1)

Enthusiastic Confident (24), enthusiastic (21), neutral (4), apologetic (3), worried (5), encouraging (1)

Worried Worried (38), apologetic (12), anxious (5), condescending (1), confident (1), neutral (1)

The free-response test was conducted after the forced-response test. The effect of this
prior knowledge of emotions’ names was evident in the responses they provided. It could
be expected that the participants may have given more common emotion words such as
happy, angry or sad if the free-response test had been conducted before the forced-response
test. However, this ordering was deliberately done to familiarise the participants with the
names of the secondary emotions.

5.3. Task III-Naturalness Rating on Five-Point Scale

The overarching extension of this research aims to synthesise emotional voices for
healthcare robots. Emotional speech synthesis aims to create emotional voices that are
similar to how humans portray emotions. The naturalness of the emotional voice developed
here was evaluated subjectively. In this task, the participants listened to a synthesised
emotional sentence and rated the perceived level of naturalness. The question asked to the
participants was “Rate the naturalness of this voice (by naturalness, we mean how close
this voice is to the human voice) with five being the most natural” on a discrete scale of
one to five. The five levels were based on the levels of naturalness defined in [52], which
were very unnatural, unnatural, neutral, natural and very natural. The sentences used were
a subset of the sentences used for the forced-response test in Task I. For each secondary
emotion, two sentences were evaluated by 29 participants, giving a total of 290 evaluations.

Figure 8 shows the mean opinion score of naturalness. The average score across all five
emotions is also included. The perception of enthusiastic was found to be the least natural.
However, all emotions’ naturalness rating was greater than 2.5, which indicated that
the voice was not perceived as unnatural (based on the five naturalness levels described
in [52]). The fact that even though the emotions were modelled on synthesised speech,
the participants still felt that the emotional sentences were close to having a natural quality
is a positive result.



Sensors 2023, 23, 2999 18 of 22

Figure 8. Naturalness rating boxplots for synthesised secondary emotional speech in percentage.

5.4. Task IV-Comfort Level Rating on Five-Point Scale

As the emotional speech developed here is for healthcare robots, the people listening
to the speech from the robots have to find it comfortable to listen to. In this task, the partici-
pants listened to a synthesised emotional sentence and rated their perceived comfort level.
The question asked to the participants was “Rate your comfort level in listening to this voice
for a long time (By comfort level, we mean if you can listen to this voice for a long time-more
than 1 min) with five being most comfortable”. The comfort level was the ease of listening,
defined by [52] as the ease of listening to the voice for long periods of time. The participants
had to rate the voice on a five-point discrete scale, with five being the most comfortable. These
five levels were based on the levels defined by [52] as very difficult, difficult, neutral, easy
and very easy, with discrete levels varying from one to five. For each secondary emotion, one
sentence was evaluated by 29 participants, giving a total of 145 evaluations. The sentences
used for this section were a subset of the collection of sentences used in Task I.

Figure 9 shows the mean opinion score of the comfort level perception. The average
score across all five emotions is also included. All the emotions had a mean opinion score
above two on the comfort level five-point scale, which indicated it was neutral, easy or very
easy to listen to [52]. The perception of anxious was found to have the least comfort rating
among all five emotions evaluated. For the emotional text-to-speech synthesis developed
here, the voice synthesised here was expected to be suitable as, on average, participants
found it comfortable to listen to (mean opinion score of 2.97).

Figure 9. Comfort level rating boxplots for synthesised secondary emotional speech in percentage.
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6. Discussion

In this paper, the focus was on developing a low-resource approach for emotional
speech synthesis of five secondary emotions by modelling prosody features. The three
prosody features have been well-studied and used for the synthesis of primary emotions
and speaking styles [10,13,15,20]. Here, we analysed the impact of secondary emotions on
these three prosody features. The acoustic analysis results showed that these three prosody
features were impacted by secondary emotions. This was the motivation to develop a
proof-of-concept emotional TTS synthesis system that synthesised secondary emotions by
modelling the three prosody features only. Subjective tests provided a strong indication that
the approach of modelling these prosody features was promising for secondary emotions
synthesis, at least for the five secondary emotions considered here. This justifies future work
in which we will pursue a deeper investigation of incorporating other acoustic features for
synthesis. Such an investigation is essential for the emotion pairs that were found to be the
most confusing in the perception tests such as apologetic-worried.

Instead of using the qualitative statistics of f0, we focused on the f0 contour modelling.
Contour-level modelling of f0 was used for emotional speech synthesis in a study [15]
based on the ToBI model (a qualitative model). We expected the subtleties in the f0
contour could be picked up by quantitative modelling rather than a qualitative approach.
Moreover, by using the ToBI model, one can only get tags for the various tones and breaks,
and then the f0 values would have to be calculated by other approaches. The Fujisaki
model, on the other hand, provides an equation for the f0 contour, thereby facilitating
resynthesis. Moreover, this approach seemed to be picking up the subtle changes in the f0
contour introduced by the secondary emotions (as seen in the results in Section 3.2). Hence,
in this investigation, we utilised the traditional handcrafted feature extraction approach
and married it with modern machine learning to effectively synthesise secondary emotions.
There was an emphasis on how the f0 contour data were prepared for the modelling. This
involved parameterising the f0 contour using the Fujisaki model and hand-correction-a
task requiring phonetic knowledge about accents and phrases.

Most emotional synthesisers use quantitative models such as mean or range variations
on prosody features to synthesise emotional speech [13,20], or they rely on spectrogram-
based features and use deep learning models to learn patterns for speech synthesis [11,18].
The former statistical-features-based model can miss the subtleties introduced in the f0
contour by the secondary emotions and the latter relies on a large database, which is
not easy to develop for all emotions and all languages. The approach presented in this
study utilised the strength of speech signal processing models to develop a low-resource
emotional speech synthesiser. This approach can be easily trained for other emotions as
well, even if a small database of the emotion is available.

The secondary emotions studied here are novel to emotional speech synthesis research,
even though they are commonly used in human conversations. It was found that all three
prosody features were arousal-differentiating features. However, valence-differentiating
features may be particularly crucial for secondary emotions, as the arousal level differences
for these nuanced emotions were not as dominant as the primary emotions. For example, for
secondary emotions, the arousal difference between worried, confident and enthusiastic was
not much, and to differentiate them, valence-level features may also be needed. This will be
a focus of future research. The subjective test results showed that at least three out of the five
emotions could be adequately modelled by this approach. This can be seen in the confusion
matrix in Table 4 and in Table 5, where the emotions anxious, enthusiastic and confident could
be perceived well by the participants. However, the emotions apologetic and worried seemed
to be confused with one another and were not very well recognised in the free-response test
either. These emotions will have to be studied in detail to model them better.

The parametric modelling of the f0 contour was a crucial addition. This contributed
to a low-resource approach to emotional speech synthesis. This can be further expanded
by collecting small databases for other secondary emotions and creating models for them.
Newer studies have used sequence-to-sequence modelling [51] for predicting the f0 contour.
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Rather than a direct prediction of the contour, a prediction of the f0 contour’s Fujisaki
model parameters using a sequence-to-sequence framework may be a better approach
that facilities resynthesis. However, such a neural-network-based approach may require
a larger database, and further experimentation needs to be done on the feasibility of the
approach. Speech research initially tried to model the human speech production system.
With emerging trends to employ deep learning in speech technology research, all the
features are extracted by automatic processes and fed into a “black box”, thus often lacking
an understanding of the acoustic features impacted by emotions. This research, on the
other hand, attempted to understand three prosody features and their impact on secondary
emotions, which were used to synthesise five secondary emotions.

7. Conclusions

This paper addressed two research questions - can prosody features model secondary
emotions, and how to create a low-resource emotional text to speech synthesis system for
secondary these emotions. It was found that the f0 contour, speech rate and mean intensity
were impacted by the five secondary emotions. Based on a statistical analysis, the f0 contour
was modelled using a quantitative model called the Fujisaki model, and the other two features
were modelled by rules. To answer the second research question, a TTS synthesis system for
secondary emotions was developed. A transformation model was then developed to transform
the f0 contour’s Fujisaki parameters to those of emotional speech. The features used for the
transformation were the input text and the emotions tag. After the transformation, the speech
signal was resynthesised to produce the intended emotion. Moreover, a detailed subjective test
was conducted to evaluate the performance of the emotional speech synthesis system.

What makes this study different from past studies is the attempt to synthesise less-
explored secondary emotions. Modelling the f0 contour quantitatively instead of only
using qualitative measures could capture the subtle changes in the f0 contour due to
the secondary emotions, and also facilitate direct resynthesis, while for modelling the
stronger primary emotions, the mean and range features may be sufficient. However,
for the secondary emotions, changes in the accent and phrase levels have to be captured.

The development of larger databases with variations such as emotions, speakers
and linguistic contexts can produce a more robust emotion transformation model. Such
a database may be expensive and difficult to obtain. The focus on understanding the
properties of the speech signal and what features differentiate one emotion from another is
the approach followed here. This will be beneficial in cases similar to this study, where the
database is not large enough to perform advanced machine-learning-based modelling. Only
three prosody features were modelled here. This modelling produced above-chance results
in correctly identifying the secondary emotions. Further research can look at how other
acoustic features, such as spectral and glottal features, can be modelled and incorporated
into an emotional speech synthesis system for secondary emotions. In the future, an
emotion-based linguistic analysis of the input text will be advantageous for more accurate
predictions of accent and phrase commands.
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