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Abstract: Farming is a fundamental factor driving economic development in most regions of the
world. As in agricultural activity, labor has always been hazardous and can result in injury or even
death. This perception encourages farmers to use proper tools, receive training, and work in a safe
environment. With the wearable device as an Internet of Things (IoT) subsystem, the device can read
sensor data as well as compute and send information. We investigated the validation and simulation
dataset to determine whether accidents occurred with farmers by applying the Hierarchical Temporal
Memory (HTM) classifier with each dataset input from the quaternion feature that represents 3D
rotation. The performance metrics analysis showed a significant 88.00% accuracy, precision of 0.99,
recall of 0.04, F_Score of 0.09, average Mean Square Error (MSE) of 5.10, Mean Absolute Error
(MAE) of 0.19, and a Root Mean Squared Error (RMSE) of 1.51 for the validation dataset, 54.00%
accuracy, precision of 0.97, recall of 0.50, F_Score of 0.66, MSE = 0.06, MAE = 3.24, and = 1.51 for
the Farming-Pack motion capture (mocap) dataset. The computational framework with wearable
device technology connected to ubiquitous systems, as well as statistical results, demonstrate that
our proposed method is feasible and effective in solving the problem’s constraints in a time series
dataset that is acceptable and usable in a real rural farming environment for optimal solutions.

Keywords: time series dataset; quaternion; hierarchical temporal memory; cascade classifier; probability
prediction; farming activity monitoring; smart farming

1. Introduction

Within the past two decades, the Internet of Things (IoT) concept has evolved. IoT-
connected devices can exchange information, commands, and decisions independently
through intelligent networks within their ecosystem. The rapid development of IoT is open-
ing up exceptional opportunities for various implementation sectors, including agriculture,
healthcare, and manufacturing [1]. Implementing IoT infrastructure is expected to improve
efficiency, reduce costs, and save energy, as well as prevent loss and accidents and open up
new business opportunities.

Agriculture sectors frequently disregarded business cases for IoT implementation as it
requires adapting to well-known farming activity [2–4]. Nevertheless, due to the remote-
ness of farming operations, IoT implementation proposes the possibility of transforming
farmers’ practices. Even though this concept has yet to gain widespread acceptance, it is
one of the IoT-based applications that must be acknowledged. Smart farming will become a
significant application field in agriculturally-based countries [5–7]. Smart farming involves
applying data and information technology in a complex farming system to be maximized.
Data, information, and communication technologies are implemented to utilize machin-
ery, equipment, and installation of sensors used in agricultural production systems. By
leveraging the above-mentioned technologies, IoT [8] and cloud computing can strengthen
the effectiveness and efficiency even further, one with innumerable sophisticated sensors,
including the implementation of artificial intelligence into agriculture [9–12].
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Work involving the management of livestock, tractors, and heavy agricultural equip-
ment, exposure to toxic chemicals, or laboring in open fields under the sun’s heat or in
a closed chamber, all have significant risks [13–15]. Employment in agriculture requires
farm workers to work at elevations to finish their jobs. Falls from these elevations are the
most expected agricultural casualties. Falling from a certain altitude can cause fractures,
brain damage, and additional severe injuries. Falls, as the leading causes of unintentional
injuries worldwide, with 37.3 million cases of falls each year, require medical attention [16].

Wearable technology appliances that use accelerometers and gyroscopes datasets
have developed ecosystems and consumers [12,17–20]. Advanced technology gadgets
that are linked to specific devices have become ubiquitous in our daily lives, ushering
in a new trend in the mobile industry. These devices enable data generation, enabling
the collection of massive quantities of data and information. Three angles can represent
the 3D rotation [21,22] in studies using the Euler angle, which decomposes the rotation
within three separate angles. Although using Euler angles is a natural step in the process of
representing 3D rotations [23,24], it can cause difficulties in performing calculations, such
as rounding errors in the conversion results, which can lead to distortion. More importantly,
the Euler angle representation needs to be more linear. Farmers are recognizing the benefits
of advancements in wearable technology, which have promising applications in healthcare
products, monitoring, and personal health. Wearable technology can also be utilized
in agriculture [25–27] and is expected to prepare preventative measurements for diverse
categories of casualties in agriculture.

Deep learning can take advantage of IoT technology implementation. IoT sensors that
can provide the input data of farmers’ positions and heart rates can be analyzed utilizing
intelligent algorithms, combining data collected with previous data and training models to
identify patterns and make predictions about the safety conditions of farmers in working
environments, as depicted in Figure 1.

To overcome this problem, we proposed a quaternion to represent 3D rotation [28] as
an input feature. While most of the current literature studies use three-dimensional data
from accelerometer data and gyroscope data for activity prediction, we exploited quaternion
as four-dimensional data (as a feed input for the Hierarchical Temporal Memory (HTM)
classifier). We evaluated the approaches of large-scale egocentric datasets and farming
pack mocap datasets; our proposed method is practical for computational efficiency and
results. As a result, the primary goal of this study was to evaluate extracted quaternion
features for hierarchical temporal memory input for accurate activity prediction.

Figure 1. The Proposed farmer safety system in a smart farming environment.

The general framework for farmer safety systems in the smart farming environment is
proposed in Figure 1. The farmer’s use of wearable sensor devices as an IoT subsystem has
the potential to improve data readability in today’s medical systems, which can provide
substantial sensor tracking of multiple physiological functions within the body, as well
as cost-effective and high-efficiency services in a wide range of fields. These wearable
devices generally use the battery as their power source and implement various power
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management strategies to extend battery life [29]. Most wearable devices can connect to
the internet via Wi-Fi, and some even have their own cellular services. Accelerometer
data and gyroscope data are collected on the device for local processing and transferred
to the cloud by using the long-range (LoRa) network for decisions. This type of network
has a distance range that can cover rural areas from the farm itself. The output of this
computational process is then sent to the paramedics at the hospital. With these details, the
caregiver can determine the proper action for preventing and following medical treatment
measures [30–32] on what actions to take next; for example, sending an ambulance to the
farmer, sending information to the farmer’s family about what happened to the farmer,
and applying medical procedures at the hospital.

The goal is to exploit quaternion as four-dimensional data as the feed input for the
classifier and compare the proposed algorithm to the other algorithm based on their
strengths and vulnerabilities. In accordance with the findings from this study, the proposed
framework significantly outperformed the others. The contributions of the proposed work
are as follows:

1. We utilized a quaternion as an input feature to represent 3D rotation.
2. We evaluated the approaches on both large-scale egocentric datasets and farming pack

mocap datasets, and demonstrate that our proposed method is practical regarding
computational efficiency and result.

3. Using the proposed algorithm, we determined the optimal solutions for the pro-
posed system.

4. With the same train test data, the proposed algorithm, HTM classifier, and (k-Nearest
Neighbor) kNN classifier were compared.

5. The performances of the two algorithms were compared using different perfor-
mance metrics.

The rest of this paper is structured as follows: as this study is an IoT and deep learning-
based farmer safety system, the related research on the farming activity monitoring method
and the smart farming application include work on human motion classification and hierar-
chical classification algorithms, as introduced in Section 2. Section 3 presents the problem
definition and clarifies the challenges behind the hierarchical temporal classification prob-
lem and its specificity. In Section 4, the material is proposed, i.e., in Section 4.1. Section 4.2,
the proposed method and our proposed framework are formulated. The experimental
results are presented in Section 5. Section 6 presents the discussion, and several studies that
were compared to the existing ones are reported with numerical computations. Section 7
discusses future research directions and draws several conclusions.

2. Related Works

Health is a crucial priority [33], despite being the top revenue earner for numerous
countries. Each country is exploring innovative practices to deliver quality healthcare [34,35].
The use of technology, particularly the internet, is essential to manage solutions effectively
and efficiently. One such technology is machine learning algorithms combined with wear-
able healthcare devices [36]. Data and medical records can be collected to form a model
that could be earlier by applying a machine learning algorithm [37,38].

Xiao Guo et al. [39] researched human motion prediction. The applied Skeleton Network
(SkelNet) for local structure representation on different body components was used as input.
The Skeleton Temporal Network (Skel-TNet) and Recurrent Neural Network (RNN) were used
o apply the learning spatial and temporal dependencies. The final result was with the Residual
Recurrent Neural Network (RRNN) and Convolutional Sequence to Sequence (CSS). Regardless,
the analysis primarily focused on predicting short-term human motion.

The study by Judith Bütepage et al. [40] focuses on the use of the Deep Learning (DL)
framework architecture to analyze human motion capture data. The study comprehends a
generic representation and generalizes the motion capture data from generative models
of 3D human motion. These feature representations of human motion are extracted via
an encoding–decoding network that quantifies learned features from the current history,
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representing various output layers for action classification. Three proposed methods, i.e.,
the Symmetric Temporal Encoder (S-TE), Convolutional Temporal Encoder (C-TE), and
Hierarchical Temporal Encoder(H-TE) were compared with data point feature classifica-
tion and Principal Component Analysis (PCA). The study covered long-term predictions,
which are more accurate with sliding windows. However, it needs further investigation
concerning the parameter number and each network structure.

Pham The Hai et al. [41] developed a Human Action Recognition System (HARS) in
both indoor and outdoor environments. Their approach involves observation sequences to
train the Hidden Markov Model (HMM) and differentiate between seven activities. They
extracted preferred features from a separate sequence of a human skeletal joint mapping,
which involved Baum–Welch and the forward–backward algorithm to discover the optimal
parameter of the individual HMM model. An automatic database update is needed to
execute the system based on infrared light and time-of-flight technology from Kinect V2.

In different applications and domains, linear combination approaches across multiple
levels of the hierarchy are suggested by Evangelos Spiliotis et al. [42]. Their strategy enables a
more general non-linear combination of the reference prediction, which combines the accuracy
and coherence of continued-to-optimize post-sample evidence-based forecasting, combined in a
straightforward and appropriate model, without the need for comprehensive information for
each series and level of the reconciled forecast, and using accuracy and bias as an evaluation
method. The study was evaluated with Mean Absolute Scaled Error (MASE), Root Mean
Squared Scaled Error (RMSSE), and Absolute Mean Scaled Error (AMSE). Correspondingly, the
study enclosed several alternative paths (by focusing on cross-sectional hierarchical structures
cases), did not generalize optimization objectives to each aggregation level, and did not maintain
forecast uncertainty or computational complexity.

Alaa Sagheer et al. [43] developed the Deep Long Short-Term Memory (DLSTM) model in
autoencoder. They applied transfer learning to mitigate the need to update each Long Short-
Term Memory (LSTM) cell’s weight vector in hierarchical architectures and involve transfer
learning methods to reduce the time-consuming and substantial quantity of data from various
dimensions. The learned features are redistributed to the higher levels of the hierarchy for
concurrent training to obtain more detailed conclusions and produce better forecasting models.
The DLSTM was applied to publicly available datasets for Brazilian electrical power generation
and Australian domestic tourism traveler nights. However, the study evaluated two criteria:
forecasting accuracy and producing a coherent forecast but did not ensure forecast coherency at
all hierarchy levels on a cross-temporal framework. The author also focused on the tourism and
energy domains as examples.

Eduardo P. Costa et al. [44] is a machine learning technique used to address hierarchical
classification problems in molecular biology related to proteins (organized hierarchically).
They experimented with four hierarchical classification variant models (i.e., flat classifica-
tion based on leaves, flat classification for all levels, top-down classification, and big-bang
models) by using the G-protein-CouPled Receptor (GCPR) and enzyme protein families to
predict protein functions by utilizing signature-generated protein sequences. The system re-
quires a considerable level of detail for performance evaluation at the deepest classification
level for each assessment, which is a system-automated procedure.

Yuliang Xiu et al. [45] developed a pose-tracking system for multi-person articulated
poses by building associations between cross-frame and form poses. The system uses pose
flows and non-maximum suppression to reduce redundant pose flows and re-link temporal
disjoint. Nevertheless, the authors analyzed the proposed pose tracker’s short-term action
recognition and scene understanding.

Hao-Shu Fang et al. [46] identified a subtle error in localization and recognition in
the single-person pose estimator. By proposing a regional multi-person pose estimation
framework, inaccurate human bounding boxes can be reduced. It has three-segment
approaches and can deal with incorrect bounding boxes and redundant detections. Their
research focused on human bounding box poses rather than the human detector and had
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difficulty distinguishing between overlapped people and similar objects when using human
detection, resulting in undetected human poses.

Wojke et al. [47] proposed an approach to multi-object tracking. Their method in-
tegrates the appearance of simple online and real-time tracking. They applied offline
pre-training and online application techniques to establish measurements to track associa-
tions using nearest neighbor queries in visual appearance spaces, which could track objects
through more prolonged periods of occlusion. The study does not observe track jumping,
which frequently occurs between false alarms.

Martinez et al. [48] proposed a method for predicting 3D positions from a 2D joint
location. This system employs a simple deep feed-forward network to demonstrate the
large portion of errors in a modern deep 3D pose estimation based on a visual analysis
similar to a multi-layer perceptron. The approach needs more direct connections to visual
evidence, which would also result in lower performance.

Hierarchical temporal memory has been linked to a Long Short-Term Memory (LSTM)
network and cascade classifier [49–51]. There are principal distinctions, which is why LSTM
’gating’ is not proper because of the neuron model complexity of the HTM model, enforcing
straightforward Hebbian learning rules locally and unsupervised, without utilizing back-
propagation. Procedures in HTM are based on the activation and connectivity between
neurons, utilizing binary units and weights.

Several HTM use cases in the research studies [52–69] and practices that have already
been commercially tested include server anomaly detection using Grok [70], stock volume
anomalies [71], rogue human behavior [72], natural language prediction [73], and geospatial
tracking [74].

3. Problem Definition

This section clarifies some of the fundamental challenges behind hierarchical classi-
fication, including the motivations for evaluating significance or merit. It also explains
the formal definition of classification, temporal classification, and hierarchical temporal
classification to better comprehend this study. Furthermore, these detailed aspects make
up the complete structure of an HTM network (as shown in Figure 2).

Figure 2. Hierarchical Temporal Memory (HTM) algorithm flowchart.

3.1. Classification

Classification challenges have already traditionally been considered as core com-
ponents of deep learning, which would include supervised and semi-supervised learn-
ing problems.

A fundamental classification problem can be defined as producing an estimated label
y from the K-dimensional of the input vector x, where:

x ∈ X ⊆ RK (1)

For most of the common machine learning algorithms, the specific input variables
must be of real value with the following:

y ∈ Y =
{

C1, C2, ..., Cq
}

(2)
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This task employs the following classification rule or function:

g : X → Y (3)

to predict new pattern labels [75,76].

3.2. Temporal Classification

For temporal classification terminology [77–79], there are several terms defined: chan-
nel, stream, and frame.

The channel formally can be defined as a function c, which maps from a set of times-
tamps T to a set of values, V, denoted as:

c : T → V (4)

where T can be the set of times at which the value of channel c is defined, assume that:

T = [0, 1, · · · , tmax] (5)

The stream involves all of the values of the channels at once (collectively). A stream as
a channel s sequence, for the same domain in each channel, is expressed as follows:

s = [c1, c2, · · · , cn] s.t. domain(c1) = domain(c2) = · · · = domain(cn) (6)

where the number of channels in stream s can be noted as n.
The frame can be referred to as the values of all channels at a specific given point of

time; formally, a frame can be defined as a function on an s stream and a t time. For a given
stream, s = [c1, c2, · · · , cn], function f r is denoted as:

f r : domain(c1)→ range(c1)× range(c2)× · · · × range(cn) (7)

f r(s, t) = [c1(T), c2(T), · · · , cn(T)] (8)

For the temporal classification, let S be a training example set from a fixed distribution
Dx×z, input space X = (Rm)∗ as a set of all sequences in m dimensional real-valued vectors,
and the target space x = l∗ involves all sequences over the alphabet L of labels.

Each example in s consists of a pair of sequences (x, z). The target sequence
y = (Y1, Y2, · · · , Yu) is, at most, as long as the input sequence of x = (X1, x2, · · · , xT),
so U ≤ T. The aim is to use s to train a temporal classifier g : X → Y [80].

3.3. Hierarchical Temporal Classification

As an example of the biologically inspired theories of machine intelligence, the Hier-
archical Temporal Memory (HTM) theory was developed in 2008 by Jeff Hawkins [81,82].
The HTM Cortical Learning Algorithm (CLA), or simply, the HTM learning algorithm, is a
type of HTM learning algorithm.

In [83,84], the authors look at the neocortex theory and its principles. HTM simulates
the architecture and processes of the neocortex in the biological components of the brain.
Comprehensive presentation of information about the main components of CLA, includ-
ing the encoder, Spatial Pooler (SP) algorithm, and Temporal Memory (TM), which are
classification and prediction algorithms, are listed below.

The hierarchical temporal classification task can be simplified as classifying a stream
of data into a class hierarchy.

Stream classification can be formalized as learning instances from a stream s appearing
incrementally as sequences of examples labeled as

{
xt, yt} for t = 1, 2, · · · , t, where x is a

vector of attribute values and y is a class label y ∈ {K1, · · · , Kl}). The result in example xt

is classified by classifier C, which predicts its class label [85,86].
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A hierarchical classification task can be formulated as input X : s, where s can be
denoted as the input stream. The category tree is denoted as T with the hierarchical layer
as L. Categories as classes to be predicted are denoted by Y.

4. Materials and Methods
4.1. Materials

When conducting this research, the proposed framework for prediction probability
was evaluated by considering two datasets. The dataset includes both a live validation
experiment dataset and a farmer mocap dataset for practical evaluability assessment. The
dataset analyzed is described as follows.

4.1.1. Validation Dataset

Using accelerometer and gyroscope datasets obtained from [87], a large-scale egocen-
tric vision dataset was created. The dataset consists of 20 daily activities with the following
details: it is egocentric, non-scripted, uses a native environment, has 11.5 M frames, with
432 sequences, 39.596 action segments, 149 action classes, 454.255 object bounding boxes,
323 object classes, created by 32 participants, with 32 environments [88].

We utilized this dataset to calibrate and validate the gyroscope and accelerometer data,
which were then implemented into quaternion calculations. The dataset representations
are visualized in Figure 3.

Figure 3a shows the plot record for the accelerometer dataset. The blue color indicates the
accelerometer coordinate for the X-axis. The green color indicates the accelerometer coordinate
for the Z-axis, and the orange color indicates the accelerometer coordinate for Y-axis.

Figure 3b shows the plot record for the gyroscope dataset; the blue color indicates the
gyroscope coordinate for the X-axis, the green color indicates the gyroscope coordinate for
the Z-axis, and the orange color indicates the gyroscope coordinate for the Y-axis.

(a) (b)

Figure 3. Example of the accelerometer and gyroscope data visualization for the validation dataset.
AcclX, AcclY, and AcclZ denote the x−, y−, and z−axis of the 3D accelerometer, respectively.
Correspondingly, GyroX, GyroY, and GyroZ denote the x−, y−, and z−axis of the 3D-gyroscope
sensor, respectively. (a) Accelerometer dataset. (b) Gyroscope dataset.

4.1.2. Farming-Pack Mocap Dataset

This dataset [89] is the Farming-Pack mocap animation, as shown in Figure 4. It
contains in total 24 mocap datasets with related farming activity source for Figure 4, e.g.,
working with a wheelbarrow (5 mocap datasets), picking fruit (3 mocap dataset), milking
a cow (1 mocap dataset), watering a plant (1 mocap dataset), holding activity (4 mocap
datasets), planting (1 mocap dataset), planting a tree (1 mocap dataset), pull out (2 mocap
datasets), digging and plant seeds (1 mocap dataset), kneeling (1 mocap dataset), and
working with a box (4 mocap datasets). Based on [90–95] for the sensor attachment, we
evaluated the extracted rotation dataset for the rotation position.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Figure 4. Farming-Pack mocap dataset [89]. (a) Wheelbarrow walk. (b) Wheelbarrow dump. (c) Picking
fruit. (d) Milking cow. (e) Watering Plant. (f) Planting. (g) Pull plant. (h) Box walk. (i) Plant seeds. (j) Dig.

4.2. Method

Classification is one of the tasks performed by machine learning. It is defined as the
process of making predictions about the class or category of observed values or relevant
data provided. In this investigation, information was collected from wearable devices that
could read motion data and afterward perform a classification process depicted in Figure 5.
Another tracking sensor developed by Sony, “mocopi [96]” uses a small light sensor that
allows anyone to easily conduct full-body tracking in 3D. Vive [97] created another tracking
sensor for full-body tracking.

Then, as a comparison, additional classification was performed to see how the outcome
performances were compared to the mocap dataset.

Figure 5. How to train the classifier.

Regarding local processing in a wearable device, we proposed several stages of the
classification process, as shown in Figure 6.
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Figure 6. Proposed framework for prediction probability.

4.2.1. Feature Extraction

This section differentiates the visible components of the accelerometer and gyroscope
to simplify the computation of input data interpretation. Two types of data received, i.e.,
the accelerometer and gyroscope dataset, were previously pre-processed by extracting
quaternion [21,98–100] data from each dataset. Quaternion is a comprehensive way of
describing a complex number; it was discovered by William Rowan Hamilton in the mid-
19th century in 1843 [101]. The quaternion is a parameter representation of spatial rotation
in three dimensions, extended to four dimensions. The representation of the quaternion
calculation is described in Figure 7 [102], representing a wearable device in a smartwatch
to read the accelerometer and gyroscope data.

Figure 7. Quaternion visualization between axes (X, Y, Z) on a smartwatch-embedded gyroscope
sensor and accelerometer sensor.

The quaternion formula is denoted as follows [103]:

q = qw + qxi + qy j + qzk (9)

i2 = j2 = k2 = ijk = −1, ij = −ji = k, ki = −ik = j, jk = −kj = i (10)

It is applied to x, y, z as follows, with θ being the rotation angle with vector e = (ex, ey, ez).

q =


qw
qx
qy
qz

 =


cos θ/2

ex sin θ/2
ey sin θ/2
ez sin θ/2

 (11)

where w is denoted as the angle of rotation, and x, y, z are vectors representing the axes of rotation.
Quaternions are good choices for representing internal object rotations due to their

efficiency in interpolation and single-orientation representation. However, the user interface
presentation of quaternions is less intuitive compared to Euler angles, which are more
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familiar, intuitive, and predictable. Euler angles suffer from singularity and code-level
issues, such as sequential rotation order storage, performance, and permutation support.

The matrix rotation contains nine elements with three rotational degrees of freedom,
making this rotation matrix redundant. This matrix can illustrate the orientation of the reference
frame, which is a more compact and intuitive way to define an orientation. Furthermore, the
most convenient performance for reliable interpolation is represented by a quaternion.

4.2.2. Encoding Data

Using a sparse pattern for input data on Hierarchical Temporal Memory (HTM),
called Sparse Distributed Representation (SDR) [104], we used two types of encoders, i.e.,
CategoryEncoder and RandomDistributedScalarEncoder. CategoryEncoder is used to convert
activity category values, as follows: [’P04’, ’P35’, ’P30’, ’P25’, ’P26’, ’P12’, ’P23’, ’P28’, ’P22’,
’P36’, ’P03’, ’P06’, ’P33’, ’P09’, ’P11’, ’P07’, ’P01’, ’P37’, ’P02’, ’P27’] for the first datasets
(EPIC-KITCHEN-100 dataset). “P]]” (e.g., “P01”) is a participant or activity for each person.
For the numbering of category data, we do not sort the data, but still use the category based
on the dataset from [87,88]. For the Farming-Pack mocap dataset, CategoryEncoder is as
follows: [M01, M02, M03, M04, M05, M06, M07, M08, M09, M10, M11], as shown in Table 1.

Table 1. CategoryEncoder for the Farming-Pack mocap dataset.

CategoryEncoder Activity

M01 Working with a wheelbarrow
M02 picking fruit
M03 milking cow
M04 watering plant
M05 holding activity
M06 planting a plant
M07 planting a tree
M08 pull-out a plant
M09 digging and planting seeds
M10 kneeling
M11 working with a box

Moreover, for other data, for example, quaternions, we used the encoder, namely
RandomDistributedScalarEncoder to encode numeric values in the form of floating-point
values into an array of bits (in this case, sparse patterns).

4.2.3. Spatial Pooling

The second step for the classifier is spatial pooling. In this step, we run the spatial
pooler, which handles the column in a region and the input bit relation. The spatial pooler
process returns a list of activeColumns columns.

4.2.4. Temporal Memory

The next step for the classifier is sequence memory, temporal pooler, or temporal
memory. In this step, we perform one step of the temporal memory algorithm for learning
purposes, based on the computation of temporal memory to obtain the next time step
prediction by identifying patterns that transition over time and recognizing spatial patterns
across temporal sequences.

4.2.5. Sparse Distributed Representation (SDR) Classifier

The classification algorithm used for the classification and prediction tasks in this
experiment uses the SDR classifier. SDR is a data structure whose elements are binary, 1,
or 0, representing the brain activity and, in the context of HTM, is a biologically-realistic
model of neurons. The classifier receives input from the temporal memory algorithm’s SDR
output, also known as the activation pattern. Furthermore, additional encoder information
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describes the target’s actual input. The SDR classifier performs this classification task
similar to implementing a single-layered feedforward neural network.

There are three detailed stages in the SDR classification model: initialization, inference,
and learning. All classes are initialized with zero values to equalize the probability values
before learning in the initialization stage. In the next stage of inference, they calculate
the probability distribution by applying the activation function at the activation level by
performing calculations in the form of class prediction probabilities for each received input
pattern. The final step of this classification is learning, which proportionally adjusts the
weight to the gradient, calculates the error value for each output unit, and adds it to the
appropriate element weight matrix.

4.2.6. Performance Metrics Evaluation

The quaternion dataset as input data in this paper is a continuous value. In order to
achieve reliability and validate the prediction of our suggested methodology, we applied
related performance metrics. We used the following metrics to assess our prediction
error rates and model the performance metrics: accuracy, precision, recall, F-score, Mean
Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).

In classification problems, accuracy is used to calculate the percentage of correct
predictions made by a model. In machine learning, the accuracy score is an evaluation
metric that compares the number of correct predictions made by a model to the total
number of predictions made. We calculate it by dividing the total number of predictions by
the number of correct predictions.

Accuracy =
TP + TN

TP + FP + TN + FN
(12)

Precision is calculated as the percentage of correct predictions for a specific class out
of all predictions made for that class.

Precision =
TP

TP + FP
(13)

In the case of binary classification, where we have an imbalanced classification prob-
lem, recall is calculated using the following equation:

Recall =
TP

TP + FN
(14)

where True Positives (TP) are positive classes that are correctly predicted to be positive.
False Positives (FP) are negative classes that are incorrectly predicted to be positive. True
Negatives (TN) are negative classes that are predicted to be negative. False Negatives (FN)
are positive classes that are incorrectly predicted to be negative.

The F -score (also referred to as the F1 score or F-measure) is a performance metric for
machine learning models. It is a single score that combines precision and recall.

F− score = 2× (precision× recall)
(precision + recall)

(15)

MAE represents the difference between the initial input data and predicted results
extracted by averaging the absolute difference over the dataset.

MAE =
1
N

N

∑
i=1
|yi − ŷ| (16)

MSE represents the difference between the initial input data and predicted results
extracted by squaring the average difference over the dataset, which can evaluate the
degree of change in the data.
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MSE =
1
N

N

∑
i−1

(yi − ŷ)2 (17)

The error rate multiplied by the square root of the MSE, or the average size of the error,
is denoted by RMSE. It is the square root of the average squared difference between the
predicted and observed values.

RMSE =
√

MSE =

√√√√ 1
N

N

∑
i−1

(yi − ŷ)2 (18)

where yi is the observed value, ŷ is the predicted value of yi, y is the average of the observed
value of yi, and N is the number of samples.

5. Results

Data from the validation dataset and the Farming-Pack mocap dataset are time-series-
based because they are sequential (temporal) or continuous data.

The first step of our framework is feature extraction. We extracted the accelerometer
and gyroscope data from the validation dataset and convert it to quaternions based on
these values. We also applied the same process to the Farming-Pack mocap dataset, where
we extracted the position of the bones from the included (.bvh) file. The (.bvh) file is a text
file that contains motion data. We converted the resulting positions to quaternions.

The quaternion results from the two datasets were then processed into the classifier in the
following stages: data encoding, spatial pooling, temporal memory, and then classified using
the Hierarchical Temporal Memory (HTM) classifier, and k-Nearest Neighbor (kNN) classifier.

At first, the HTM classifier did not learn the data patterns, resulting in poor per-
formance. When learning runs, the classifier learns data patterns and makes reasonably
accurate predictions. After learning for a while, the classifier can adapt to new patterns
and make better predictions.

After running the experiment and achieving the results for specific data, we evaluated
performance evaluation metrics in machine learning and statistics for this experiment. The
evaluation performances of the HTM classifier with accuracy, precision, recall, F_Score,
MSE, MAE, and RMSE are shown in Table 2. The rate of the performance metric is
proportional to the percentage of the correct classification patterns applied to the dataset.
We focused on solving hierarchical classification problems rather than specific algorithm
problems due to the limited options for performance comparisons. We used the kNN
algorithm in correlation with our validation and Farming-Pack mocap datasets.

The HTM can predict the data value in the next step based on previously stored
patterns based on the structure of the HTM classifier system. When new data arrives and is
processed, HTM compares it to the predicted value and calculates the difference.

Considering HTM as a continuous learning theory, there is no training, validation, or
test set against the input data [105]. Data are learned and predicted continuously across all
of the datasets.

Table 2. Performance metrics evaluation for the validation dataset and Farming-Pack mocap dataset.

HTM 1 kNN 2

Metrics Validation Dataset Farming-Pack Mocap Dataset Validation Dataset Farming-Pack Mocap Dataset

Accuracy (%) 88.00 54.00 13.00 40.00
Precision 0.99 0.97 0.14 0.16

Recall 0.04 0.50 0.13 0.40
F_Score 0.09 0.66 0.12 0.23

MSE 3 (%) 5.10 0.06 30.00 25.00
MAE 4 (%) 0.19 3.24 13.00 3.39
RMSE 5 (%) 0.38 1.51 5.47 5.00

1 Hierarchical Temporal Memory (HTM); 2 k-Nearest Neighbor (kNN); 3 Mean Squared Error (MSE); 4 Mean
Absolute Error (MAE); 5 Root Mean Squared Error (RMSE)
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6. Discussion

From our experiment, HTM can achieve 88.00% accuracy, precision of 0.99, recall
of 0.04, and a F_Score of 0.09 for the validation dataset; it can achieve 54.00% accuracy,
precision of 0.97, recall of 0.50, and a F_Score of 0.66 for the Farming-Pack mocap dataset.

Moreover, for the lower value of the average, we achieve an MSE = 5.10, MAE = 0.19,
and RMSE = 0.38 for the validation dataset, and MSE = 0.06, MAE = 3.24, and RMSE = 1.51
for the Farming-Pack mocap dataset, which implies the higher performance of the predic-
tion model.

When compared with other methods proposed in Tables 3 and 4, our method achieves
the following results: on the Human3.6M dataset, the RRNN method achieves an average
of 0.97 and 0.23 for standard deviation, while CSS results in an average of 0.77 and 0.21 for
standard deviation. The SkelNeT method achieves an average of 0.76 and 0.21 for standard
deviation and our Skel-TNet method achieves an average of 0.73 and 0.21 for standard
deviation. With the CMU mocap dataset, the CSS method results in an average of 0.61 and
standard deviation of 0.18, the SkelNet method achieves an average of 0.60, and a standard
deviation of 0.21, and our Skel-TNet method results in an average of 0.55 and standard
deviation of 0.21.

Table 3. The evaluation results of our proposed method compared with those of similar methods
applied to the Mocap databases.

By Dataset Method Results

[39] Human3.6M Average/standard deviation
RRNN 0.97/0.23

CSS 0.77/0.21
SkelNeT 0.76/0.21

Skel-TNet 0.73/0.21
CMU mocap dataset Average/standard deviation

CSS 0.61/0.18
SkelNeT 0.60/0.21

Skel-TNet 0.55/0.21

[40] CMU mocap dataset Classification rate
Data Point 0.76

PCA 0.73
DSAE 0.72
S-TE 0.78
C-TE 0.78
H-TE 0.77

[41] Training Database Accuracy
HMM Stand = 88.67

Walk = 86.20
Run = 82.70

Jump = 76.30
Fall = 72.03
Lie = 86.23
Sit = 92.70

The Carnegie Mellon University (CMU) mocap dataset was also evaluated by [40], who
achieved classification rate results using various methods, i.e., data point = 0.76, PCA = 0.73,
Deep Sparse Autoencoder (DSAE) = 0.72, S-TE = 0.78, C-TE = 0.78, and H-TE = 0.77.
Another study by [41] used the HMM method with a training database and achieved
accuracy results for activities such as stand = 88.67, walk = 86.20, run = 82.70, jump = 76.30,
fall = 72.03, lie = 86.23, and sit = 92.70.

In the time-series dataset, [42] applied the xGBoost method on a tourism dataset and
achieved MASE = 0.92, RMSSE = 1.16, and AMSE = 0.49. They also applied the random
forest method and achieved MASE = 0.45, RMSSE = 0.67, and AMSE = 0.30. [43] applied the
DLSTM method to the Brazilian electrical power generation dataset and achieved RMSE
levels of 0 = 0.60, 1 = 1.02, and 2 = 2.91. They also applied the method to the Australian
visitor nights or domestic tourism dataset and achieved RMSE levels of 0 = 2.27, 1 = 5.26,
2 = 6.34, and 3 = 8.07.
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Table 4. Comparison evaluation results with a similar method applied on the time series and
enzyme dataset.

By Dataset Method Results

[42] Tourism Metrics
xGBoost MASE = 0.92

RMSSE = 1.16
AMSE = 0.49

Sales Metrics
Random Forest MASE = 0.45

RMSSE = 0.67
AMSE = 0.30

[43] Brazilian electrical DLSTM Metrics: RMSE
power generation level 0 = 0.60

level 1 = 1.02
level 2 = 2.91

Australian visitor nights DLSTM Metrics: RMSE
of domestic tourism level 0 = 2.27

level 1 = 5.26
level 2 = 6.34
level 3 = 8.07

[44] Tourism Metrics:accuracy
Flat (Leaves) 61.33

Flat (all levels) 87.80
Top-Down 87.80
Big-Bang 91.13

Enzyme protein families Metrics:accuracy
Flat (leaves) 82.73

Flat (all levels) 89.78
Top-Down 89.78
Big-Bang 96.36

The study by [44] used hierarchical classification on two datasets. For the tourism
dataset, they achieved the following accuracies: flat (leaves) = 61.33, flat (all levels) = 87.80,
top-down = 87.80, and big-bang = 91.13. For the enzyme protein families dataset, they achieved
the following accuracies: flat (leaves) = 62.73, flat (all levels) = 89.78, top-down = 89.78, and
big-bang = 96.36.

Overall, this research represents the most dependable implementation with the op-
timum results. Wearable devices are used as IoT subsystem technology to collect motion
sensor data, which are then processed locally and transferred to the cloud via the long-range
(LoRa) network for decision-making.

Our statistical results confirm that our proposed method is both feasible and effective
in addressing the constraints of time series datasets, and it is suitable for implementation
in real rural farming environments for optimal solutions.

7. Conclusions

With the demand for farming activity monitoring in rural farming environments,
this paper presents a classification prediction method for hierarchical temporal memory
using the quaternion feature for farming safety activity monitoring. The obtained results
support the proposed method’s ability to classify multiple activity classes. With 88.00%
accuracy, precision of 0.99, recall of 0.04, F_Score of 0.09, MSE = 5.10, MAE = 0.19, and
RMSE = 0.38 for the validation dataset, and 54.00% accuracy, precision of 0.97, recall of 0.50,
F_Score of 0.66, MSE = 0.06, MAE = 3.24, and RMSE = 1.51 for the Farming-Pack mocap
dataset, which implies the higher performance of a prediction model. Nevertheless, it
would be exciting to look into the possibility of combining, extending, and evaluating other
datasets and machine learning methods, which could be an interesting research direction.
Examining computational complexity will be another future direction to maximize the
proposed method further.
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