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Abstract: Driving safely is crucial to avoid death, injuries, or financial losses that can be sustained
in an accident. Thus, a driver’s physical state should be monitored to prevent accidents, rather
than vehicle-based or behavioral measurements, and provide reliable information in this regard.
Electrocardiography (ECG), electroencephalography (EEG), electrooculography (EOG), and surface
electromyography (sEMG) signals are used to monitor a driver’s physical state during a drive. The
purpose of this study was to detect driver hypovigilance (drowsiness, fatigue, as well as visual and
cognitive inattention) using signals collected from 10 drivers while they were driving. EOG signals
from the driver were preprocessed to remove noise, and 17 features were extracted. ANOVA (analysis
of variance) was used to select statistically significant features that were then loaded into a machine
learning algorithm. We then reduced the features by using principal component analysis (PCA) and
trained three classifiers: support vector machine (SVM), k-nearest neighbor (KNN), and ensemble.
A maximum accuracy of 98.7% was obtained for the classification of normal and cognitive classes
under the category of two-class detection. Upon considering hypovigilance states as five-class, a
maximum accuracy of 90.9% was achieved. In this case, the number of detection classes increased,
resulting in a reduction in the accuracy of detecting more driver states. However, with the possibility
of incorrect identification and the presence of issues, the ensemble classifier’s performance produced
an enhanced accuracy when compared to others.

Keywords: drowsiness; visual inattention; machine learning; drowsiness detection; signals

1. Introduction

Drivers at the wheel work for long hours without adequate sleep, leading to poor
health and inattentive driving due to chatting on mobile phones, and fatigue are factors
that contribute to road accidents. Fatigue is brought on by illness or physical activity, and
drowsiness is a prelude to sleep [1]. Inattention is a state of becoming distracted from a
current physical activity and occurs in two ways: visual (distracted by sight) and cognitive
(distracted by thinking). Road accidents are fatal or result in crippling injuries. According
to the road traffic injury and prevention [2] report, nearly 1.25 million people die this
way each year, with an average of 3287 deaths a day. A report from the Ministry of Road
Transport and Highways indicates that India’s total number of road accidents increased on
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average by 13.6 percent in 2021 compared to 2020, and the number of fatalities increased
by 16.9 percent while the number of injuries increased by 10.4 percent [3]. The driver’s
physical state requires careful scrutiny through the continuous monitoring of behavior and
body signals in order to bring down the fatality rate and prevent road accidents, ensuring
driver safety and well-being [4]. An alternative control method for the lateral motion
problem, based on a bounded equivalent function, the vehicle kinematic model, and the
Taylor series expansion, has been developed, which ensures both robustness and control
accuracy [5]. The author ensured the consistent segmentation of sequential points within
behavior actions and provides better accuracy [6]. Kinematics and dynamics models make
up the vehicle physics model, which can ensure the precision of short-term prediction [7].
With the likelihood of no system ensuring that manual tabs are kept on the driver, there is
a need for the design and incorporation of a hypovigilance detection of components and
their incorporation in vehicles.

Hypovigilance is the phenomenon when a driver’s vigilance level lowers over time.
Hypovigilance is a state of reduced alertness that impacts concentration while driving [8].
Driver hypovigilance depends on the time of the day controlled by the circadian rhythm,
time since sleep, time on task, inadequate sleep, and accumulated lack of sleep [9]. It may
be due to either the driver’s drowsiness, inattention, fatigue, or the fact that the driver
is hypovigilant. It may be caused by prolonged sleepiness or short-term inattention to
impair alertness. It can be detected through behavioral measures that continuously monitor
the driver while driving. Physiological signals, which capture electrical activity from the
human body, include electroencephalography (EEG), electromyography (EMG), electroocu-
lography (EOG), and electrocardiography (ECG), all of which assist in the detection of
driver hypovigilance. Each has its own merits and demerits in terms of real-time use [10].
Compared to behavioral measures, EOG signals are more likely to offer high time resolu-
tion, a high recognition rate, and a large variety of features [11]. Researchers have used
electrooculography (EOG) in place of video analysis for eye blink detection [12]. Location
recommendation models have served the personalized location-based social networks
(LBSNs) application referred to as a spatiotemporal individual mobility graph encoding
network with group mobility assistance (SIGMA) [13]. A driving situation graph cluster
was created by using the formal language of driving cognition based on the software and
hardware architecture of an intelligent vehicle by processing information from sensors and
driving maps, which was then output to a decision-making module. The decision-making
module outputs the output result in the form of cognitive arrow clusters. The detection
of eye blinks through a video analysis is fraught with problems due to the driver being
constantly on the move, and the eyes are, therefore, invariably in motion. Additionally, the
EOG velocity feature detects the closing and opening slopes of the eyes [14]. EEG signals
are collected by means of electrodes placed on the scalp and are likely to be noisy and
difficult to gather [15]. The uses of blockchain for big data applications in different vertical
domains such as smart cities, smart healthcare, smart transportation, and smart grid were
reviewed in [16]. In [17], the camera was not only used for the identification of the driver’s
face recognition but also to prevent the vehicles from theft.

EOG signals are based on the electrical potential difference between the cornea and
the retina during eye movement [18]. Electrooculography (EOG) is a good indicator of
driver drowsiness and helps evaluate visual signs of drowsiness [19]. Horizontal and
vertical eye movements can be clearly differentiated, as blinks occur only during vertical
eyelid movements [20]. Eye movements decrease while the blink rate increases as a person
become fatigued [21]. EOG signals comprise two rhythms, namely, slow eye movement
(SEM) and rapid eye movement (REM) [22]. REM occurs when one is awake, and SEM
when one is drowsy [23]. A longer blink duration and SEM measured using EOG signals
are features indicative of drowsiness. Most researchers have combined EEG and EOG
for the detection of driver drowsiness [24]. The EEG signal collected from the prefrontal
brain region was used in detecting driver’s fatigue with an average accuracy of 0.85 on
mixing the accuracy of electrodes FP1 and FP2, which was higher compared to the single



Sensors 2023, 23, 2944 3 of 15

electrodes performance [25]. In [26], the final result does not display 100% specificity but
rather achieves around 95% accuracy. In electrooculography (EOG), a normal blink is an
upward signal change that is followed almost immediately by a downward signal change,
which is known as reopening after reaching the peak [27]. EOG features such as blink
duration and PERCLOS are ranked higher than any EEG feature [28]. SEM-related EOG
features, saccades, blinks, and the energy collected from 22 subjects provide the highest
average correlation on a combination of multiple features and vigilance. Detecting a
driver’s sleepiness using EEG, EOG, and the contextual information of 30 drivers achieved
79% accuracy for multiclass and 93% for binary classifications [29]. Electrooculography,
which chiefly features SEM, detects the driver’s vigilance level while a monotonous task
was being carried out [30]. The drawback in recording EOG signals when the driver is at
the wheel lies in the difficulty involved in placing electrodes close to the eyes, which is
intrusive and hampers movement [31]. A Google glass-based drowsiness detection system
was used to monitor eye blink frequency. Drowsiness is detected with rising eye blink
frequency, longer braking response times, and increasing lane deviation, all of which serve
to alert the driver [32]. The blink detection technique, which was used in videos to detect
eye movements has problems with different lighting conditions. The difficulty is detected
through the use of an infrared (IR) camera that produces an easily detectable reflection in
the eyes [33]. However, the parameters extracted from the video do not correlate with the
homologs extracted from electrooculography [34]. The eye blink feature extracted from
EOG signals provides the same accuracy as that from a high-frame video. Drowsiness
detection using eye blink features extracted from EOG signals, based on the fuzzy method
offers an 81.7% correct detection rate and a 13.1% false alarm rate [35]. Researchers have
used the EEG cap for the collection of EOG signals [9,13,26]. A forehead EOG device
was found to be far more suitable and convenient than a traditional one, from a practical
standpoint, for the detection of driving fatigue [26,36]. EOG signals can be measured
in a non-invasive and nonintrusive manner [37]. The camera-based driver monitoring
system measures eye movements to build a multiple regression model and can predict the
driver’s reaction time that it takes for recognition and response to requests in automated
driving. Saccades of different sizes and saccadic velocities are correlated with driver
performance [38]. In [39], HOS features were proposed for the extraction of features that
contain more emotional information when compared to the general statistical features used
widely in emotion research using physiological signals. The ease with which EOG signals
can be collected, their immunity to slight noises, and the success of EOG-based methods in
terms of accuracy have resulted in their use in hypovigilance detection [40].

1.1. Motivation

Road accident avoidance before it happens saves lives and lowers the number of
injuries, financial losses, and fatalities. This study employed a driving simulator to lower
the risk on the road and created an effective detection system utilizing the right approaches
and algorithms. The following procedure was involved in creating an intelligent driver
hypovigilance detection system. A protocol was initially created for a continuous two-hour
driving session with stages of hypovigilance. Three different time periods are evaluated on
ten people. To assess the subjective measure, pre- and post-driving surveys were created.
EOG electrodes are applied to the individuals’ bodies after a thorough explanation of the
protocol.

This physiological measurement can be evaluated using the subject signals. To mea-
sure levels of visual and cognitive inattention, weariness, and drowsiness, the subject is
permitted to operate a motor vehicle continuously for two hours. When the subject nods
off, the session is over. Each session’s signals and video are gathered and pre-processed
using the relevant filtering methods. Following the extraction of EOG features, significant
features are chosen, features are decreased in dimension, and several classifier techniques
are used.
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1.2. Contribution

The objective of this work was to suggest appropriate methods for recording electrical
activity from electro-oculographic (EOG) eye movements to detect driver drowsiness,
fatigue, and inattention (visual and cognitive) in order to alert drivers. The novelty of this
paper lies in bringing out the data collection for EOG signals from different driver states
and the fusion techniques that can be applied in the detection of driver hypovigilance [41].
Very few researchers have used EOG as the physiological measure in driver state detection.
This study examines the driver hypovigilance detection using EOG in comparison to the
other two-class detection. The study contributes the following findings:

â Designing a protocol to induce hypovigilance.
â Acquiring the EOG recordings from 10 subjects driving at three different times of the

day.
â The collected driver physiological information is pre-processed using various filtering

techniques.
â The classification in five classes (normal, visual inattention, cognitive inattention,

fatigue, and drowsy) in which detection performed better with the Ensemble classifier.
â The performance of hypovigilance detection by combining the significant features

obtained a better accuracy of 90.9%.

The outline of this paper is as follows: Section II details the methodology used in
the acquisition of EOG signals. It also provides a description of the system and protocol
design, data collection, signal pre-processing, feature extraction, and reduction, and the
classification of driver hypovigilance states. Section III presents the results of the ANOVA
test and the accuracy obtained, which is based on the performance of driver state classi-
fication using several machine learning algorithms. Section IV discusses the results and
draws conclusions from the driving experiment for the detection of an EOG-based driver
hypovigilance system in real-time.

2. Materials and Methods

A system that detects driver states (drowsiness, fatigue, visual inattention, and cogni-
tive inattention) using physiological measures has been developed. Figure 1 depicts the
methodology of the function involved in the development of a secure system for every
vehicle. Initially, a protocol was designed, and the signals collected from the subjects were
denoised and features to be extracted. They were then classified using machine learning
algorithms based on the driver’s physical state. Finally, the driver was alerted when a
behavioral change was detected.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 15 
 

 

1.2. Contribution 
The objective of this work was to suggest appropriate methods for recording 

electrical activity from electro-oculographic (EOG) eye movements to detect driver 
drowsiness, fatigue, and inattention (visual and cognitive) in order to alert drivers. The 
novelty of this paper lies in bringing out the data collection for EOG signals from different 
driver states and the fusion techniques that can be applied in the detection of driver 
hypovigilance [41]. Very few researchers have used EOG as the physiological measure in 
driver state detection. This study examines the driver hypovigilance detection using EOG 
in comparison to the other two-class detection. The study contributes the following 
findings: 
 Designing a protocol to induce hypovigilance. 
 Acquiring the EOG recordings from 10 subjects driving at three different times of 

the day. 
 The collected driver physiological information is pre-processed using various 

filtering techniques. 
 The classification in five classes (normal, visual inattention, cognitive inattention, 

fatigue, and drowsy) in which detection performed better with the Ensemble 
classifier. 

 The performance of hypovigilance detection by combining the significant features 
obtained a better accuracy of 90.9%. 
The outline of this paper is as follows: Section II details the methodology used in the 

acquisition of EOG signals. It also provides a description of the system and protocol 
design, data collection, signal pre-processing, feature extraction, and reduction, and the 
classification of driver hypovigilance states. Section III presents the results of the ANOVA 
test and the accuracy obtained, which is based on the performance of driver state 
classification using several machine learning algorithms. Section IV discusses the results 
and draws conclusions from the driving experiment for the detection of an EOG-based 
driver hypovigilance system in real-time. 

2. Materials and Methods 
A system that detects driver states (drowsiness, fatigue, visual inattention, and 

cognitive inattention) using physiological measures has been developed. Figure 1 depicts 
the methodology of the function involved in the development of a secure system for every 
vehicle. Initially, a protocol was designed, and the signals collected from the subjects were 
denoised and features to be extracted. They were then classified using machine learning 
algorithms based on the driver’s physical state. Finally, the driver was alerted when a 
behavioral change was detected.  

 
Figure 1. Hypovigilance detection system methodology. Figure 1. Hypovigilance detection system methodology.



Sensors 2023, 23, 2944 5 of 15

2.1. Experimental Design

The driving task was undertaken at the Artificial Intelligence Lab, VISTAS, Chennai.
The lab has a driving simulator with three monitors for game display [42]. The entire
room was draped in black to duplicate a nighttime driving environment. A simulator was
installed with the Speed Dreams 2.2.1v game for monotonous driving at a speed limit of
70 km/h. A 1-mile low banked oval speedway track was chosen with a constant speed
throughout the session, and the driver, feeling fatigued due to the progress made in the
session, eventually became downright drowsy. Physiological measures obtained with the
use of the Virgo SL-40 PSG device (Allengers, Chennai, India) had the following features:
21-EEG, 2-ECG, 2-EOG, 2-EMG, and 2-SpO2 channel systems; heart rate; abdominal and
thoracic body positions; 2 limb movement channels; nasal/oral airflow pressure; and
snoring, with 4 auxiliary and 2 bipolar channels. In this study, EOG signals were used for
the detection of the hypovigilance states of the subjects. The physiological signals were
sampled at 256 Hz. An IR camera in night vision mode captured the driver’s actions for the
entire session. Some experiments were seen as having unimodal problems and multi-model
problems, which required analysis [43]. The video and signals collected were synced with
the time taken. Figure 2 shows the data acquisition system and the experimental testing
setup.
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Figure 2. Experimental setup.

The driving protocol was designed to test drivers and detect each of the following
physical states: normal, visual inattention, cognitive inattention, fatigue, and the gradual
stages of drowsiness. The protocol was designed to collect physiological signals over a 2-h
continuous driving session (Figure 3).
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A total of 30 recordings in all were captured during three different time slots [44] over
a 24-h period when the circadian rhythm was low:

â 12:00–2:00 a.m.;
â 3:00–5:00 a.m.;
â 2:00–4:00 p.m.

Each slot consisted of 15 mins of practice driving and 10 mins of normal data collected
without driving; 15 mins with driving data collected; 5 mins of data taken for visual
inattention (the driver was distracted, via a phone text message requiring a mandatory
reply, 3 times in all while driving); 15 mins of continuous driving; followed by 5 mins of
data for cognitive inattention (the driver was called upon the phone and asked questions
that required thinking through before they were answered and, based on the speed at
which the answers were delivered, the level of difficulty in the questions increased); and the
final 70 mins of data were used to monitor fatigue and variations in stages of drowsiness
(slightly sleepy, moderate sleepy, and extreme sleepy).

2.2. Data Collection

Data were collected from 10 participants (9 males, 1 female) between 20 and 40 on the
basis of the protocol designed, the physiological signals (ECG, EEG, EMG, and EOG), and
behavioral (video) data. The protocol was clearly explained to the drivers, who were then
asked to fill in a form indicating their willingness to participate in the study. The driver’s
personal details and consent form were collected, and an honorarium was paid after the
session. The 2-part form handed to the drivers included a pre-questionnaire (on each
driver’s sleep criteria) and a post-questionnaire (the experience they had during the 2-h
driving session). The forms with the information were collected after the driving session.
EOG electrodes were placed near the eyes, to the left and the right (Figure 4). EOG signals
were collected while driving and split with respect to the video recorded. The signals were
categorized into five classes: normal, drowsy, visual inattention, cognitive inattention, and
fatigue.
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Figure 4. EOG electrode placement.

The placement of EOG electrodes near the left and right eye using conductive gel
(Ag/AgCl) and the medical tape was less adhesive on the human skin. They also provided
the poor contact of the electrodes during facial movements, leading to the misplacement of
non-intrusive electrodes and the occurrence of noises on a larger number in the signal. The
wearing of an EEG cap also provided an explanation for the signal contamination, which
required proper filtering techniques for the removal of noises without any data loss. This
was the real challenge seen in the development of a non-intrusive wearable EOG device for
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the provision of information in a constant flow with reduced data loss and the development
of effective filtering techniques for the removal of artifacts and noise.

2.3. Pre-Processing

The raw EOG signal was contaminated with neuronal sources and artifacts such
as facial muscles and body or head movements while speaking, which required proper
filtering. The electrodes placed near the eyes are subject to more motion artifacts due to
facial expressions, which resulted in baseline wandering and sudden peaks in the signal.
In Figure 5, the first plot shows the raw EOG signal with peaks detected and the second
plot shows the filtered EOG signal after pre-processing.
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Figure 5. Raw and filtered EOG signal.

Given that the EOG signal information was primarily found in low frequencies, the
information was filtered using the Butterworth band pass 6th order filter with a range
between 0.1 and 30 Hz and was applied using the sampling frequency at 256 Hz [37]. The
cutoff frequency range that was chosen provided useful information for the detection of
true internal driver states using EOG. The filtered EOG signal was decomposed using the
8-level Daubechies wavelet (db8). Both EOG signals were taken from the left and right eyes
and were pre-processed. Figure 5 displays the raw and filtered EOG signals.

2.4. Feature Extraction

In this study, statistical, higher-order statistical (HOS), time-domain, and non-linear
features were extracted. Time-frequency domain features, which could not be directly
used by themselves, required reductions in terms of dimensions before being directed to a
classifier [45]. In all, 16 EOG features comprising 10-time domain features (mean, median,
maximum, minimum, root mean square, power, energy, sample entropy, standard deviation,
and variance), a higher order of statistical features (skewness, kurtosis), and 5 non-linear
features (the Hurst exponent and central tendency measure of nanmean, harmonic mean,
mode, and trimmean) were extracted. The EOG features that were extracted, followed by
their equations, are shown in Table 1.



Sensors 2023, 23, 2944 8 of 15

Table 1. EOG features and its equations.

Equations for Features

Mean µx = 1
N ∑N

n=1 xn Median N+1
2

Standard Deviation (σx) =
1

N−1 ∑
n=1

(xn − µx)
2 Root Mean Square xrms =

√
1
n
(

x2
1 + x2

2 + . . . + x2
n
)

Skewness ∑N
n=1(xn−µx)

3

(N−1)σ3
x

Kurtosis ∑N
n=1(xn−µx)

4

(N−1)σ4
x
− 3

Energy ∑N
n=1 x2

n Sample Entropy SampEn(m, r, N) = − ln
[

Bm+1(r)
Bm(r)

]
Variance Var(X) = E

[
(X− µ)2

]
Maximum max(xn)

Minimum min(xn) Hurst E
[

R(n)
S(n)

]
= CH

n as n→ ∞

Power x(t) = 1
N ∑N

i=1 pi Harmonic mean m = n
∑n

i=1
1
xi

3. Results
3.1. Feature Selection

Features with a significant difference (p < 0.05) were selected based on ANOVA.
Table 2 shows the EOG features that were selected for classification. They include the
mean, maximum, minimum, power, energy, Hurst, variance, sample entropy, nanmean,
and mode, all of which were features selected by the ANOVA and fed as inputs into the
machine learning algorithm.

Table 2. EOG feature selection with ANOVA.

Features Right Eye (p < 0.05) Left Eye (p < 0.05)

Mean 0.000 0.000

Median 0.868 0.721

Maximum 0.007 0.025

Minimum 0.013 0.041

Power 0.014 0.180

Energy 0.001 0.005

Hurst 0.000 0.000

Variance 0.019 0.065

RMS 0.182 0.337

SD 0.182 0.337

Sample entropy 0.000 0.000

Harmonic Mean 0.582 0.850

Trimmean 0.615 0.673

Skewness 0.210 0.052

Kurtosis 0.692 0.106

Mode 0.000 0.000

3.2. Classification

The features were extracted and fed to several classifiers for their best performance.
PCA was enabled on the ANOVA-selected features for a reduction in the principal compo-
nent features for enhanced accuracy. Table 3 depicts EOG’s performance on hypovigilance
multi-class detection. It also presents a comparison of the performance obtained by EOG
signals collected from the left and right eyes. Features were selected from the ANOVA



Sensors 2023, 23, 2944 9 of 15

based on significant differences, and the PCA was applied for feature selection. Addition-
ally, PCA provided support in reducing dimensionality (features) to explore the accuracy of
the detection rate. The features chosen for multi-class detection included the mode, Hurst,
sample entropy, and mean, which were given to the SVM, KNN, and ensemble classifiers.
The EOG for the left eye obtained a maximum accuracy of 94.6% for two classes (normal
with visual inattention), 87.9% for three classes (normal, drowsy, and cognitive inattention),
82.7% for four classes (normal, drowsy, visual inattention, cognitive inattention), and 86.6%
for five classes (normal, drowsy, visual inattention, cognitive inattention, and fatigue).
Similarly, the EOG for the right eye obtained a maximum accuracy of 98.7% for two classes
(normal with cognitive inattention), 93.5% for three classes (normal, drowsy, and cognitive
inattention), 91.3% for four classes (normal, drowsy, visual inattention, cognitive inatten-
tion), and 90.9% for five classes (normal, drowsy, visual, inattention, cognitive inattention
and fatigue). Table 3 shows EOG performance in driver hypovigilance detection. Machine
learning algorithms (SVM, KNN, and Ensemble) play a vital role in the classification of
different classes based on the features trained.

Table 3. Performance of EOG showed in hypovigilance state detection.

Hypovigilance Detection
EOG Left Eye EOG Right Eye

SVM KNN Ensemble SVM KNN Ensemble

ND 80.2% 84.4% 90.2% 80.2% 86.8% 94.6%

NV 82.2% 77.5% 94.6% 82.4% 80.2% 96.3%

NC 71.3% 73.5% 89.0% 75.7% 89.0% 98.7%

NF 84.6% 85.7% 89.0% 81.3% 85.7% 90.7%

NDF 73.5% 77.9% 91.0% 77.9% 79.0% 91.3%

NDV 75.7% 84.6% 88.0% 79.0% 83.5% 90.2%

NDC 76.8% 82.4% 87.9% 72.4% 83.5% 93.5%

NDVC 88.0% 66.8% 82.7% 68.0% 72.4% 91.3%

NDVF 66.8% 78.0% 90.2% 71.3% 73.5% 82.4%

NDCF 77.9% 81.3% 83.5% 74.6% 86.8% 85.7%

NDVCF 69.0% 76.8% 86.6% 71.3% 77.9% 90.9%

[N-Normal, D-Drowsy, V-Visual inattention, C-Cognitive inattention, F-Fatigue].

The inference from the results that the EOG accuracy obtained for multi-class detection
was that it was less than that for binary-class detection [46]. Deep learning algorithms
enhance performance, just as PCA-reduced features maximize the accuracy of EOG signals.
The results showed the mode, Hurst, sample entropy, and mean as the best for all the EOG
features. Additionally, the ensemble classifier provided comparatively good performance
and accuracy compared to the other classifiers [47], as it used the bagging strategy. This
improvement in accuracy came with a much longer response time and fewer error [48].
Figure 6 shows the overall comparison between the classification performances on the
fusion of different driver states. Table 2 shows the consolidated maximum accuracy that
was obtained for two-class, three-class, four-class, and five-class. The EOG signals found a
better detection for visual and cognitive inattention than the other driver states.
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Figure 6. Comparison on classification of EOG in hypovigilance detection.

Based on the EOG performance for hypovigilance detection, the maximum accuracy
that was obtained was 90.9% from the ensemble classifier. Other corresponding perfor-
mance metrics such as sensitivity, specificity, precision, and error rate were also calculated
using the confusion matrix Figure 7. False positives and false negatives are some of the
valuable factors which affect the process of making correct decisions in finding specific
problems in the human body [49].
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The related performance metrics calculated from the confusion matrix are given by
the following:

(i) Accuracy
ACC = (TP + TN)/(TP + TN + FP + FN) (1)

(ii) Sensitivity (or) Recall
Recall = TP/(TP + FN) (2)

(iii) Specificity
Specificity = TN/(TN + FP) (3)

(iv) Precision
Precision = TP/(TP + FP) (4)

(v) Error Rate
Error rate = (FP + FN)/(TP + TN + FP + FN) (5)

Figure 8 shows the various performance metrics (sensitivity, specificity, error rate, and
precision) were calculated for the maximum accuracy of 90.9%.
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Figure 8. EOG performance metrics for hypovigilance detection.

Table 4 clearly shows the good performance of EOG in the detection of driver hypovig-
ilance with the application of PCA.

Table 4. Performance of EOG in hypovigilance state detection.

Performance of Hypovigilance Detection on the Fusion of Classes

Classifier Normal Drowsy Fatigue Visual
Inattention

Cognitive
Inattention Average

Before PCA
SVM 69.5 77.5 71.3 81.6 79.2 75.9%
KNN 69.5 89.5 81.3 93.6 95.2 85.4%

Ensemble 83.5 91.5 82.5 92.6 95.3 89.3%

After PCA
SVM 71.5 77.5 73.3 83.6 80.2 76.8%
KNN 83.5 91.3 82.3 92.4 95.1 89.1%

Ensemble 85.5 92.3 83.3 93.4 96.1 90.9%
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The comparative study from the previous work with the proposed indicated actual
performance gain was used. The fusion of five-class detection with the PCA reduced
the features and improved the performance of EOG in hypovigilance detection to 90.9%.
Compared to the accuracy of two-class detection, hypovigilance had a lower accuracy
indicating that the number of detection classes was more. This system used a one-against-
all classification approach for multiclass detection, with the advantage that it could detect
several driver behavior patterns.

4. Discussion
Performance on Hypovigilance Detection

The focus of this research is on the detection of driver drowsiness, fatigue, and inatten-
tion using electrooculography (EOG). This paper, however, combines all three of the states
above with five behavior classes for the detection of driver hypovigilance. Chieh et al., 2005
used digital signal differentiation and simple information fusion techniques for the detec-
tion of drowsiness, with a detection rate of more than 80% [22]. Similarly, [30] applied fuzzy
and supervised learning classification techniques related to the same end producing a good
82% true detection rate and a 13% false alarm rate. This approach obtained a remarkable
86.7% accuracy for driver drowsiness detection (Table 3). For driver fatigue detection, [50]
used regression analysis and obtained a correlation coefficient of 0.88 on average. Likewise,
using the EOG data of 22 subjects, [9] obtained a high correlation coefficient with an aver-
age vigilance reference of up to 0.75 for driver fatigue detection. The indexing technique
takes LBP while taking into account data from nearby pixels and is noise-resistant [51,52].
The methods used in this experiment helped obtain an 86.7% accuracy in driver fatigue
detection using electrooculography (EOG) compared to earlier experiments (Table 2). Very
few researchers have worked on driver cognitive inattention and obtained an overall F1
score of 0.93 [44]. Comparatively speaking, however, the average results obtained from this
study for visual and cognitive inattention was 91.1%, indicating an improvement over the
results obtained from the earlier experiments on EOG in the detection of different states
in which the driver was placed. Table 5 describes the comparison on the performance of
proposed model with the existing works.

Table 5. Comparison of performance with the related works.

Reference Measures Techniques Detection Accuracy

[45] Physiological (EOG)

Neural network-based
sampling with a greater

optimized
cross-sampling

approach

Fatigue and
Drowsiness

Blink, blink duration,
eyelid location,

PERCLOS are detected
with few percent error

[46] Physiological (EEG,
EOG)

Linear trend removal,
power spectral density

(PSD)
Hypovigilance

Mean test error 26–32%
for subjective and

objective labels

[47] EEG, forehead EOG

Double layered neural
network with

subnetwork nodes
(DNNSN)

vigilance RMSE/COR 0.11/0.79,
0.12/0.74, 0.08/0.86

[48] EOG Fuzzy logic Drowsiness

Drowsy state:
mean-74.18,

SD-59.53425, alert state:
mean-57, SD-14.70654

Proposed method Physiological (EOG)
Feature

reduction/fusion
techniques (PCA)

Normal, fatigue, visual
and cognitive

inattention, drowsiness

Hypovigilance
detection–90.9%
accuracy, 79.8%

sensitivity, 93.5%
specificity, 81.6%

precision, 9.1% error
rate



Sensors 2023, 23, 2944 13 of 15

5. Conclusions

This work on driver hypovigilance detection in different states (normal, fatigue, visual
inattention, cognitive inattention, and drowsy) acquired from EOG signals will help in the
prediction of accidents. The performance on two-class detection was 98.7% which indicated
a drastic decrease following an increase in the number of states in which the driver was
placed. The maximum accuracy that was obtained to detect driver hypovigilance was
90.9%, with reduced false detection. Electrooculography (EOG) devices can be made
less intrusive by turning them into comfortable smart wear items for future driver use.
Further research can be taken up with a contribution of electrooculography (EOG) with
electroencephalography (EEG) for the detection of different driver states with a reduction
in the channels for the achievement of superior performance. A prototype with an alert
mechanism could be implemented for the identification of hypovigilance states of the
drivers in a real-time driving environment. In the future, experiments need to be performed
with a greater number of participants from a wide range of age groups to analyze the
results in real-time.
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