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Abstract: With the development of infrared detection technology and the improvement of military
remote sensing needs, infrared object detection networks with low false alarms and high detection
accuracy have been a research focus. However, due to the lack of texture information, the false
detection rate of infrared object detection is high, resulting in reduced object detection accuracy.
To solve these problems, we propose an infrared object detection network named Dual-YOLO, which
integrates visible image features. To ensure the speed of model detection, we choose the You Only
Look Once v7 (YOLOv7) as the basic framework and design the infrared and visible images dual
feature extraction channels. In addition, we develop attention fusion and fusion shuffle modules to
reduce the detection error caused by redundant fusion feature information. Moreover, we introduce
the Inception and SE modules to enhance the complementary characteristics of infrared and visible
images. Furthermore, we design the fusion loss function to make the network converge fast during
training. The experimental results show that the proposed Dual-YOLO network reaches 71.8%
mean Average Precision (mAP) in the DroneVehicle remote sensing dataset and 73.2% mAP in the
KAIST pedestrian dataset. The detection accuracy reaches 84.5% in the FLIR dataset. The proposed
architecture is expected to be applied in the fields of military reconnaissance, unmanned driving, and
public safety.

Keywords: infrared object detection; dual-YOLO; attention fusion; fusion shuffle; fusion loss

1. Introduction

In recent years, infrared detection technology has been widely applied in military,
remote sensing, civil, and other fields, such as infrared reconnaissance and early warning,
infrared space detection, automotive navigation, medical infrared detection, and many
other application scenarios. As a critical technology in the field of infrared early warning
detection, infrared object detection algorithms adapted to different complex scenes have
been widely studied by researchers. Under the situation that the spatial resolution of the
optical system is complex to further improve, it is of great significance to study the infrared
object detection algorithm with a low false alarm rate and strong adaptability, which is
suitable for different scenes.

However, the detection of infrared images also has many challenges. First, the ob-
ject has fewer features available. Secondly, the signal-to-noise ratio of the image is low.
Finally, the real-time performance of infrared image object detection is limited. These
factors indicate that designing an object detection network with high accuracy and good
real-time performance in infrared images is challenging. We can see from the current
research interests that the most popular object detection methods mainly focus on visible
scenes, such as Single Shot Detection (SSD) [1], You Only Look Once (YOLO) series [2,3],
Fully Convolutional One-Stage (FCOS) Object Detection [4], and other single-stage object
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detection networks. Furthermore, two-stage object detection algorithms such as Faster R-
CNN [5] and Task-aligned One-stage Object Detection (TOOD) [6] exist. In addition, there
are also some object detection methods established on anchor-free [7] or transformer [8].
These methods perform well on visible images, but there are always limitations for infrared
image detection.

Although there are challenges for infrared target detection, many methods have been
tried, and these methods have achieved relatively good results. For example, the YOLO-
FIRI [9] algorithm, by improving the YOLOv5 [10] practice, proposed a region-free infrared
image object detection method and reached the advanced level on the KAIST [11] and
FLIR [12] datasets. The work of I-YOLO [13] is aimed explicitly at infrared object detection
on the road. I-YOLO combines DRUNet [14] with YOLOv3 [2] to enhance the infrared
image through DRUNet, and finally uses YOLOv3 for accurate object recognition. This
method not only has excellent advantages in precision and speed. In the scene of infrared
object detection, air-to-ground detection is also a hot issue of single infrared image detection.
In [15], Jiang et al. proposed a UAV object detection framework for infrared images and
video. The feature is extracted from the ground object, and the improved YOLOv5s is used
for object recognition. This infrared recognition method can achieve 88.69% recognition
accuracy and 50 FPS speed. The IARet [16] performs well in single infrared image object
detection, and the Focus module is designed to improve the detection speed. The IARet is
also lightweight, with the entire model measuring just 4.8 MB. For example, many object
detection methods are only for a single infrared image. Although they have achieved good
results, their common problem is that the single infrared image object detection ability is
limited, the feature loss of the object is severe, and the false alarm rate is high.

As we all know, producing visible images requires compensation for external illumi-
nation when the illumination conditions are poor. Infrared cameras can produce infrared
spectral images throughout the day, but infrared spectral images lack details such as texture
and color. Moreover, in infrared images, the critical factor determining the object’s visibility
is the temperature difference between the object and the environment. For example, the car
object is brighter than the background [17,18]. However, when there are some non-object
heat points, it will also lead to the false detection of the object. Therefore, infrared and
visible images have advantages and are complementary in information distribution. Com-
bining the unique benefits of visible images with infrared images can compensate for the
lack of precision reduction caused by infrared image object detection.

According to the above analysis, some researchers began to try to make complemen-
tary detection between infrared and visible images. For example, MFFN [19] proposes
a new multi-modal feature fusion network, which uses morphological features, infrared
radiation, and motion features to compensate for the deficiency of single-modal detection
of small infrared objects. At the same time, MFFN also proposed a characteristic pyramid
structure with layer hopping structure (SCFPN) in morphology. In addition, the network’s
backbone integrates SCFPN and the voided convolutional attention module into Resblock.
This design also gives the network a detection accuracy of 92.01% on the OEDD dataset.
However, not all fusion features are helpful. There are also a lot of research works in
progress for how to solve the problems caused by fusion features, such as TIRNet [20].
To solve the problem of information redundancy in the fusion of infrared and visible
images, RISNet [17] designed a new mutual information minimization module to reduce
redundancy. In addition, the RISNet proposed a classification method of light conditions
based on histogram statistics. This method automatically classifies more detailed lighting
conditions to facilitate the complementary fusion of infrared and RGB images. This design
also makes RISNet better than the state-of-the-art methods for infrared image detection,
especially under conditions of insufficient illumination, complex background, and low
contrast. In addition, the PearlGAN [21] also plays a role in promoting infrared and visible
image fusion detection. PearlGAN designed a top-down guided attention module to make
the corresponding attention loss reach the hierarchical attention distribution, reduce local
semantic ambiguity, and use context information for image coding. Moreover, PearlGAN
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introduces a structured gradient alignment loss. This design has a good performance effect
in the image translation task and provides a new idea for infrared object detection. Like
PearlGAN’s constraint design on the loss function of infrared and visible image fusion
detection, there are many excellent works, such as CMPD [22].

We propose the Dual-YOLO method based on the above observations on visible image
object detection and infrared and visible image fusion detection. This method effectively
solves the problems of low accuracy, feature loss, too many fused redundant features,
and slow detection speed in infrared image object detection. Compared with the general
target detection, our proposed Dual-YOLO is more suitable to solve the problem of target
detection based on RGB UAV imagery. We can also see from [23] that target detection based
on RGB UAV imagery is more challenging than general target detection. For targets with
complex backgrounds, dense distribution, and small size, such as crop quality detection,
the detection method based on RGB UAV imagery can improve the detection accuracy. In
summary, the main contributions of this paper are listed as follows:

(1) Based on the current YOLOv7 [3] network with the highest accuracy in real-time
object detection, we propose the dual-branch that includes an infrared and visible object
detection network named Dual-YOLO. This method alleviates the problem of missing
texture features in object detection of a single infrared image. The detection accuracy is
improved by complementing the infrared and visible image feature information.

(2) We propose the attention fusion module, which added the Inception module and
SE mutual attention module in the infrared and visible feature fusion process. So that
infrared and visible images can achieve the best feature complementarity and fusion effect
without increasing the number of parameters.

(3) We propose the fusion shuffle module, which adds dilated convolution in the
infrared and visible feature fusion process and increases the receptive field for feature
extraction of the fusion module. In addition, we add the channel shuffle module to make
the infrared and visible features more uniform and reduce redundant features. In addition,
we design a feature fusion loss function to accelerate the convergence of Dual-YOLO.

(4) Our method achieves state-of-the-art results on the challenging KAIST multispectral
pedestrian dataset and the DroneVehicle [24] remote sensing dataset. Moreover, experi-
ments on a multispectral object detection dataset FLIR also demonstrate the effectiveness
and versatility of our algorithm.

The rest of this paper is structured as follows: In Section 2, we describe the network
structure and methods in detail. Section 3 gives the details of our work and experimental
results and related comparison to verify the effectiveness of our method. Finally, we
summarize the research content in Section 4.

2. Methods
2.1. Overall Network Architecture

The overall network structure we have designed is shown in Figure 1. For the base
structure, we take reference from the design of YOLOv7. In the backbone of the object
detection network Dual-YOLO, we use P1 to P6 for hierarchical identification. Where the
P1 layer uses the TriConv structure. TriConv consists of a three-layer convolution structure
with the following format as shown in Equation (1). Where FCi ∈ RCin×Hin×Win . FCi are the
input feature maps, Conv3×3 representing a convolution operation with kernel size of 3 × 3
and stride 1, and Conv3×2 representing a convolution operation with kernel size of 3 × 3
and stride 2. The P2 layer uses the ELAN1 structure of YOLOv7, as shown in Figure 2a.
The P3 layer uses a combination of MPConv and ELAN1, which we have identified as
MEConv. MEConv is calculated as shown in Equation (2). Where the composition of
MPConv is shown in Equation (3) and Conv1×1 representing a convolution operation with
kernel size of 1 × 1 and stride 1. The design of the P6 layer is derived from the SPPCSPC
structure of YOLOv7 is shown in Figure 2c.

TriConv(FCi ) = Conv3×3(Conv3×3(Conv3×3(FCi ))) (1)
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MEConv(FCi ) = MPConv(ELAN1(FCi )) (2)

MPConv(FCi ) = Concat(Conv1×1(Maxpool(FCi )), Conv3×2(Conv1×1(FCi ))) (3)

D-Fusion

Concat

Concat

Upsample

Upsample

Upsample

Concat

NOTE:

:

:

:

Detection head

Neck

Output

Backbone

Visible Image

Infrared Image

P3 P4
P5 P6

P3
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P5
P6

Attention-Fusion

Fusion-Shuffle :
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D-Fusion=Attention-Fusion+Fusion-Shuffle
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P1 = TriConv

P2 = ELAN1

P3 = MEConv

P4 = MEConv

P5 = MEConv

P6 = SPPCSPC

Backbone 

UAV

Figure 1. The overall architecture of the proposed Dual-YOLO. The proposed network is mainly
designed to detect weak infrared objects captured by UAVs. However, to compensate for the loss of
features due to variations in light intensity, we add a visible image feature extraction branch to the
network to reduce the probability of missing objects.

Conv(1,1)

Conv(3,1)

(a)

(b) (c)

Maxpool

NOTE:

k=5

k=9

k=13

Concat

ELAN1

ELAN2

SPPCSP

Figure 2. Structures of the feature extraction modules in the backbone and neck. Where (a) is the
structure of ELAN1, (b) is the structure of ELAN2, and (c) is the structure of SPPCSP. These structures
remain consistent with the design in YOLOv7, where ELAN2 has essentially the same essential
components as ELAN1, but ELAN2 has more channels than ELAN1 in the feature aggregation part
to ensure that multi-scale feature information is aggregated in the neck. For the maxpool structure in
SPPCSP, the value of k is the ratio of downsampling.

Thermal infrared images have strong feature contrast properties in environments with
low light levels. However, visible images have a unique texture feature under normal
light conditions. This textural feature can compensate for the lack of recognition of objects
in thermal infrared images. Therefore, we add a visible feature extraction branch to
the backbone design. The structure of the visible feature extraction branch is the same
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as that of the infrared feature extraction branch. In the neck’s design, we elicit feature
map vectors from the backbone’s P3, P4, P5, and P6. The structure of this type of FPN
already covers small, medium, and large objects in the infrared image, thus reducing the
probability of missing detection. We design the novel Dual-Fusion (D-Fusion) module
in the fusion features section, where the structure and characteristics of D-Fusion are
described amply in Section 2.2. The D-Fusion module consists of two parts, Attention-
Fusion and Fusion-Shuffle. Furthermore, the Attention-Fusion module is designed to weigh
the visible features as the attention feature vector under the attention mechanism with the
infrared features. The inspiration for creating the attention fusion module came from our
preliminary experiments, where we found a significant miss-detection rate when training
and detecting visible or infrared images alone.

In the design of the neck section, we refer to the structure of YOLOv7. Three up-
sampling operations are performed in the deck to eliminate the problem of gradual loss
of features due to convolution. At the same time, four detection heads are designed to
preserve the small object features in the convolution, where the detection head can cover
all object sizes.

2.2. Information Fusion Module

The design of this module is derived from several sets of experiments we have con-
ducted on the effectiveness of network detection for a single data source. Before designing
Dual-YOLO, we complete the following groups of experiments, as shown in Figure 3.
For the single visible image data training model, as in Figure 3a(1), the bus class (blue
box) is detected in daylight conditions, and the car class is near the bush. In Figure 3a(2),
however, classes such as cars are missed. Furthermore, compared to Figure 3c(1) and c(2),
after training the model with single visible images at night when there is not enough light,
most objects can be detected, although there are missed detections. However, for infrared
images, there are many missed and faulty objects. For the training of infrared images, as in
Figure 3b(1), the objects in the car category are submerged in the background due to the
faint brightness of the overall image. This phenomenon also leads to a large number of
objects being missed. In contrast, in Figure 3b(2), the object of the car class differs signifi-
cantly from the background features in the thermal infrared image. Therefore, the network
has a strong recognition ability when trained with infrared images. Similarly, objects are
detected in Figure 3d(2) that are not detected in the visible image case in Figure 3d(1). As a
result, the ideal model we want to design is characterized by solid robustness and a meager
leakage rate at different light intensities.

(a1) (a2)

(d1) (d2)

(b1) (b2)

(c1) (c2)

Figure 3. The effect of separate detection of infrared images and visible images. a(1), a(2), c(1),
and c(2) are training and detection results for single visible data. b(1), b(2), d(1), and d(2) are training
and detection results for single infrared data. This is a collection of images taken from a drone.
The images are taken during the day and night. The drone flies at altitudes of 100 m and 200 m.
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2.2.1. Attention Fusion Module

In the feature fusion module, we feed the visible and infrared images into a two-branch
backbone and perform shared learning of features at the FPN layer. This architecture is used
to achieve the fusion of mixed modal features of infrared and visible images. In the fusion
module, we add the batch normalization (BN) operation to the double branch’s features to
improve the network’s generalization ability. In addition, we add the SE attention module
in the independent branches, which multiplies the attention feature vectors obtained from
the two feature calculations with the corresponding branches. Moreover, we use the deep
separable convolution instead of the conventional 3 × 3 convolution to reduce the number
of parameters in the network with less network performance. The structure of the feature
fusion module we designed to incorporate the attention mechanism is shown in Figure 4.

We can understand the attention fusion structure intuitively in Figure 4, where
Figure 4a shows the main structure of the attention fusion module. The Attention fu-
sion module is designed to enhance the information exchange between the infrared and
visible channels as well as the mutual feature enhancement. The Inception module is de-
signed to obtain multi-scale features in both infrared and visible images. It can also reduce
the computational overhead while ensuring the accuracy of the network, thus improving
the efficiency of the feature extraction network. In the structure shown in Figure 4a, we
add the SE attention module to enhance the infrared and visible features. In this case, we
set the squeeze factor of the SE module to s = 4. In particular, we designed the SE module
by weighting the feature vectors of the infrared images with the features extracted from the
visible image, resulting in attention feature maps for the visible image channels. Similarly,
the attention feature maps for the infrared image channel are obtained by weighting the
features with the feature vectors derived from the visible image channels by SE calculations.
The structure of the Inceptive module in Figure 4a is shown in Figure 4b, and we use the In-
ception structure from [25]. The composition of the convolution part in Figure 4b is shown
in Figure 4c. For each convolution operation, we use the Leaky ReLU activation function.
Moreover, in the end, we add the BN operation. Enhanced feature maps, calculated by the
attention fusion module, will be more favorable for later fusion.

Inception

SE

(s=4)

Inception

Conv

(k=1)

Leaky 

ReLU
BN

Conv 1×1

Conv 3×3

Conv 5×5

Maxpool

Conv 1×1

Conv 1×1

Conv 1×1

Conv 1×1 =
Conv

(k=3)

Leaky 

ReLU
BNConv 3×3 =

Conv

(k=5)

Leaky 

ReLU
BNConv 5×5 =

(a)

Input feature Output feature

Infrared feature

Visible feature Enhanced visible feature

Enhanced infrared feature

(b)

Inception

(c)

Convolution

Figure 4. The structure of the Attention fusion module. (a) shows the data flow structure of the
attention fusion. (b) shows the Inception structure in (a), which mainly connects the 4 branches.
(c) shows the detailed description of the convolution structure in (b).

2.2.2. Fusion Shuffle Module

After the infrared features are fused with the visible features, we add the process
of fusion shuffle. The purpose is to allow the network to learn more mixed features of
the infrared and visible images, thus allowing the network to adapt to both modes of
features. So we take the module’s design for feature enhancement from [26] and improve
it. The Fusion shuffle module we designed is shown in Figure 5. As can be seen from
the figure, after obtaining the infrared and visible features in the lower dimension, we
concatenate the two features to create a double effect on the feature channel. We then
add multiple branches of convolution layers with different kernel sizes and followed each
convolution with a dilated convolution with the corresponding dilation rate. Finally, we
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concatenate the output of the four branches and then shuffle these enhanced features to
form the mixed enhancement.

1×1 conv

3×3 conv

5×5 conv

concatenation

3×3 dilated conv 

dilation rate=3

3×3 dilated conv 

dilation rate=5

3×3 dilated conv 

dilation rate=1

concatenated 

feature

shuffle

mixed feature output featureconcatenated 

features

infrared feature

visible feature

1×1 conv

7×7 conv
3×3 dilated conv 

dilation rate=7

Figure 5. The fusion shuffle module structure where the shuffle is performed after fusion.

In Figure 5, we first design a four-branch convolution layer (including 1 × 1 convolu-
tion, 3 × 3 convolution, 5 × 5 convolution, and 7 × 7 convolution). Where 1 × 1 convolution
and 3 × 3 convolution extract small object features in infrared images and visible images,
5 × 5 convolution extracts medium-scale object features, and 7 × 7 convolution aims to
extract large-scale object features. The four-branch convolution structure enhances the
depth features of the infrared and visible images. To further extend the field of perception
for image feature extraction in both modes, we introduce additional dilated convolution in
each branch. The aim of introducing dilated convolution is to generate feature maps with
high resolution and make them more contextual. The intent is also to reduce computational
costs. As the dilation rate setting of the dilated convolution, for the 1 × 1 convolution, we
set the dilation rate of the 3 × 3 dilated convolution to 1. For the 3 × 3 convolution, we set
up a 3 × 3 dilated convolution with a dilation rate of 3. For the 5 × 5 convolution, we set
up a 3 × 3 dilated convolution with a dilation rate of 5. For the 7 × 7 convolution, we set
up a 3 × 3 dilated convolution with a dilation rate of 7. The larger the dilation rate of the
dilation convolution, the larger the perceptual field. Dilated convolutions with different
dilation rates make the branches more focused on enhancing features of a particular size.
After enhancing the features, we cascade four branches of features and performed a shuf-
fle operation. Finally, we use a 1 × 1 convolution operation to reshape the output of the
fused features.

2.3. Loss Function

In the design of the loss function, we divide the loss of Dual-YOLO into four parts.
The first is for the D-fusion module. In the overall structure of the network, we design four
fusion modules for visible and infrared images based on the feature pyramid structure.
Furthermore, the corresponding fusion is carried out according to deep and shallow fea-
tures. Assuming that the feature matrix of the visible image is Zvis and the feature matrix
of the infrared image is Zin f , the feature entropy of the two images Hi(Zvis) and Hi(Zin f )
are calculated as shown in Equations (4) and (5).

Hi(Zin f ) = Ci(Zvis, Zin f )− Di(Zvis ‖ Zin f ) (4)

Hi(Zvis) = Ci(Zin f , Zvis)− Di(Zin f ‖ Zvis) (5)
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where Ci(Zvis, Zin f ) is the cross-entropy of the low-dimensional feature vectors Zvis and
Zin f of the i-th D-fusion module. Di(Zin f ‖ Zvis) is the relative entropy of Zvis and Zin f .
In the loss of the D-fusion module, we add up the losses of the four different scales of the
module and end up with a loss of L f usion the fusion module, as shown in Equation (6).

L f usion =
4

∑
i=1

(Hi(Zin f ) + Hi(Zvis))

=
4

∑
i=1

(Ci(Zvis, Zin f ) + Ci(Zin f , Zvis)− Di(Zvis ‖ Zin f )− Di(Zin f ‖ Zvis))

(6)

The value of L f usion represents the number of pseudo-features in the visible image.
By optimizing L f usion, the parameters of the network for extracting features can be op-
timized. It is also possible to eliminate redundant image features, thus improving the
network’s generalization ability and facilitating rapid convergence. For the coordinate
position error, we choose Complete IoU (CIoU) Loss as the loss function, making the
box-objective regression more stable, as shown in Equation (7).

Lbox = LCIoU = 1− IoU +
ρ2(b, bgt)

c2 + αν (7)

where IoU is the intersection ratio of the prediction bounding box to the Ground True (GT)
bounding box.

IoU = | b ∩ bgt

b ∪ bgt | (8)

ν =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (9)

where b is the predicted box, bgt is the GT box, ρ is the distance between the centroid of the
predicted box and the GT box, c is the diagonal length of the smallest enclosing rectangle
of the predicted box and the GT box, ρ is the similarity of the aspect ratio of the predicted
box and the GT box, and α is the influence factor of ν.

For the object coordinate position error, we choose the Smooth Binary Cross Entropy
(Smooth BCE) loss with logits function to increase numerical stability, which is calculated
as shown in Equation (10).

Lobj = −
1
n

n

∑
i
[yi · log(σ(xi)) + (1 + yi) · log(1− σ(xi))] (10)

σ(xi) =
1

1 + exp(−xi)
(11)

For the loss function of object classification, we choose Focal loss as the loss function,
as shown in Equation (12).

Lcls =
S2

∑
i=1

B

∑
j=1

1obj
i,j ∑

c∈class
[−pi(c) log( p̂i(c))− (1− pi(c)) log(1− p̂i(c))] (12)

where p̂i(c) and pi(c) represent with predicted and true value probabilities, respectively.
The number of input image cells is S2. B is the number of bounding boxes predicted for
each cell. The value of 1obj

i,j is 1 or 0, that is whether there is a detection object in the j-th
bounding box of the i-th cell. We use 1 if it exists, 0 otherwise. For the total loss function
design, we add up the loss function of the head part with the loss of the D-fusion. The total
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loss value of the network is finally obtained, which is calculated as shown in Equation (13).
Where λ is the correction factor of the fusion loss.

Ltotal = λL f usion + Lbox + Lobj + Lcls (13)

3. Experiment and Analysis

To test the performance of the infrared image object detection models Dual-YOLO
proposed in this paper, we use the public DroneVehicle, KAIST, and FLIR infrared pedes-
trian datasets.

3.1. Dataset Introduction
3.1.1. DroneVehicle Dataset

The DroneVehicle dataset [24] is a large UAV aerial vehicle dataset for annotation,
which is used for tasks such as vehicle detection and vehicle counting. The dataset images
are taken in environments ranging from day to night and contain both infrared and visible
images. The entire annotated dataset has 15,532 pairs (31,064 images) and 441,642 annotated
instances. Moreover, it contains realistic environment occlusion and scale variation.

3.1.2. KAIST Dataset

The KAIST dataset [11] is a multispectral detection dataset constructed by Hwang et al.
in 2015 with the primary aim of addressing the lack of pedestrian detection data in nighttime
environments. The dataset is divided into 12 subsets. Where set00∼set05 are training data
(set00∼set02 are daytime scenes; set03∼set05 are nighttime scenes), and set06∼set11 are
test data (set06∼set08 are daytime scenes; set09∼set11 are nighttime scenes). The image
resolution sizes are 640 × 512, containing a total of 95,328 images, each containing both
visible and infrared images. The KAIST dataset captures several regular traffic scenes,
including campus, street, and countryside, during daytime and nighttime, respectively,
and contains 103108 dense annotations.

3.1.3. FLIR Dataset

The FLIR dataset [12] contains more than 10K pairs of 8-bit infrared images and 24-bit
visible images, including people, vehicles, bicycles, and other objects in the daytime and
nighttime scenes. The infrared images’ resolution is 640 × 512, while the corresponding
resolution of visible images varies from 720 × 480 to 2048 × 1536. We resize each visible
image to 640 × 512 in our experiments. The default FLIR training dataset is used as our
training dataset, and 20 color-thermal pairs from the FLIR validation set are randomly
selected as the testing dataset. The dataset information we used for training and testing is
summarized in Table 1.

Table 1. Dataset information we used in this paper.

Hyper-Parameter DroneVehicle Dataset KAIST Dataset FLIR Dataset

Scenario drone pedestrian adas
Modality R + I R + I R + I
#Images 56,878 95,328 14,000

Categories 5 3 4
#Labels 190.6 K 103.1 K 14.5 K

Resolution 840 × 712 640 × 480 1600 × 1800
Year 2021 2015 2018

3.2. Implementation Details

We utilize the YOLOv7 network as the main framework. Each image is randomly
horizontally flipped with a probability of 0.5 to increase the diversity. The whole network
is optimized by stochastic gradient descent (SGD) optimizer for 300 epochs with a learning
rate of 0.005 and a batch size of 16. Weight decay and momentum are set to 0.0001 and
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0.9, respectively. We implement our codes with the PyTorch framework and conduct
experiments on a workstation with two NVIDIA GTX3090 GPUs. We summarize the setting
of experimental environment and parameter as shown in Table 2. The hyper-parameters of
the dataset we used in this article is shown in Table 3. There are equal numbers of infrared
and visible images, while using these datasets for network training and testing, we perform
data cleaning operations.

Table 2. Environment and parameter setting for the experiment setup.

Category Parameter

CPU Intel i9-10920X
GPU RTX 3090 × 2

System Ubuntu 18.04
Python 3.7
PyTorch 1.10

Training Epochs 300
Learning Rate 0.005
Weight Decay 0.0001
Momentum 0.9

Table 3. The hyper-parameters of the dataset we used in this manuscript. test-val means that the test
set used in this article is the same as the validation set.

Hyper-Parameter DroneVehicle Dataset KAIST Dataset FLIR Dataset

Visible Image Size 640 × 512 640 × 512 640 × 512
Infrared Image Size 640 × 512 640 × 512 640 × 512

#Visible Image 10,000 9853 10,228
#Infrared Image 10,000 9853 10,228

#Training set 9000 7601 8862
#Validation set 500 2252 1366

#Testing set 500 2252 (test-val) 1366 (test-val)

3.3. Evaluation Metrics

Precision, Recall, and mean Average Precision (mAP) are used to evaluate the detection
performance of different methods. In the experiments of this paper, we mainly use the
values of precision and recall to measure the network’s performance, which are calculated
as shown in Equations (14) and (15).

precision =
TP

TP + FP
(14)

recall =
TP

TP + FN
(15)

For example, in the FLIR dataset for detecting persons and cars, TP (True Positive)
represents the number of cars (or persons) correctly recognized as cars (or persons). FP
(False Positives) means the number of samples that identified non-car instances (or non-
person instances) as cars (or persons), and FN (False Negatives) indicates the number of
samples that identified cars (or persons) as non-car instances (or non-person instances).

Average Precision (AP) refers to the area value of the P-R curve surrounded by co-
ordinates. The closer the AP value is to 1, the better the detection effect of the algorithm.
The calculation process of AP can be summarized as follows:

AP =
∫

P(R)dR (16)

The mAP indicates each class’s average value of AP, which is used to measure the
performance of multi-class object detection tasks fairly. Therefore, the mAP is also adopted
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to evaluate the detection accuracy in our experiments. The mAP measures the quality of
bounding box predictions in the test set. Following [27], a prediction is considered a true
positive if the IoU between the prediction and its nearest ground-truth annotation is more
extensive than 0.5. The IoU is calculated as shown in Equation (8).

3.4. Analysis of Results
3.4.1. Experiments on the DroneVehicle Remote Sensing Dataset

To verify the detection effectiveness of our proposed Dual-YOLO method on small
infrared objects, we conduct a series of experiments on the DroneVehicle dataset. The ex-
perimental results are shown in Table 4. Based on our observations, the freight car and van
classes are very similar in shape in the DroneVehicle dataset. Therefore, many popular de-
tection methods incorporate these two classes into the other three classes when conducting
experiments on the DroneVehicle dataset to eliminate the error caused by fine classification.
However, we chose the complete the DroneVehicle dataset when experimenting. In ad-
dition, we compare the performance with the current popular object detection methods,
and the performance comparison is shown in Table 4.

In Table 4, we divide the modality of the data into Visible and Infrared. Table 4 shows
that when only visible data is used for training, popular networks such as RetinaNet and
Mask R-CNN can achieve the highest accuracy of 47.9%. The algorithm that achieves the
highest accuracy when training infrared data is YOLOv7. Therefore, we choose YOLOv7
as the basic framework for Dual-YOLO. The highest accuracy YOLOv7 can achieve is
66.7%. The Dual-YOLO algorithm proposed in this paper can reach 71.8% accuracy on
the DroneVehicle dataset. It is worth noting that when we test the Dual-YOLO algorithm,
the test set is the infrared image test set. Our proposed model also has the highest detection
accuracy of 52.9% and 46.6% for the two categories of freight car and van that are difficult
to detect. This result also shows that the Dual-YOLO design is very robust. Moreover,
the detection of small objects also has strong performance.

Table 4. Evaluation results on the DroneVehicle dataset. All values are in %.The top results are
marked in green.

Method Modality Car Freight Car Truck Bus Van mAP

RetinaNet(OBB) [28] Visible 67.5 13.7 28.2 62.1 19.3 38.2
Faster R-CNN(OBB) [29] Visible 67.9 26.3 38.6 67.0 23.2 44.6

Faster R-CNN(Dpool) [28] Visible 68.2 26.4 38.7 69.1 26.4 45.8
Mask R-CNN [30] Visible 68.5 26.8 39.8 66.8 25.4 45.5

Cascade Mask R-CNN [31] Visible 68.0 27.3 44.7 69.3 29.8 47.8
RoITransformer [27] Visible 68.1 29.1 44.2 70.6 27.6 47.9

YOLOv7 [3] Visible 98.2 41.4 70.5 97.8 44.7 68.5
RetinaNet(OBB) [32] Infrared 79.9 28.1 32.8 67.3 16.4 44.9

Faster R-CNN(OBB) [29] Infrared 88.6 35.2 42.5 77.9 28.5 54.6
Faster R-CNN(Dpool) [28] Infrared 88.9 36.8 47.9 78.3 32.8 56.9

Mask R-CNN [30] Infrared 88.8 36.6 48.9 78.4 32.2 57.0
Cascade Mask R-CNN [31] Infrared 81.0 39.0 47.2 79.3 33.0 55.9

RoITransformer [27] Infrared 88.9 41.5 51.5 79.5 34.4 59.2
YOLOv7 [3] Infrared 98.0 31.9 65.0 95.8 43.0 66.7

UA-CMDet [24] Visible + Infrared 87.5 46.8 60.7 87.1 38.0 64.0
Dual-YOLO (Ours) Visible + Infrared 98.1 52.9 65.7 95.8 46.6 71.8

3.4.2. Experiments on the KAIST Pedestrian Dataset

To further verify the effectiveness and robustness of our proposed Dual-YOLO, we
conduct experiments on the challenging KAIST dataset. After comparing with some
popular methods, our experimental results are shown in Table 5. Here, we mainly compare
with PearlGAN. PearlGAN’s design idea is similar to ours, which uses infrared and visible
image fusion information. However, unlike the Dual-YOLO we proposed, PearlGAN does
not integrate infrared and visible features in this design. Instead, the two information
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sources are constrained by the loss function. Therefore, we can also be seen from Table 5
that the method that we choose to use features for fusion before detection and add loss
constraint has a better performance on the KAIST dataset.

Table 5. Pedestrian detection results of the synthesized images obtained by different translation
methods on the KAIST dataset computed at a single IoU of 0.5. All values are in %. The top results
are marked in green.

Method Precision Recall mAP

CycleGAN [33] 4.7 2.8 1.1
UNIT [34] 26.7 14.5 11.0

MUNIT [35] 2.1 1.6 0.3
ToDayGAN [36] 11.4 14.9 5.0

UGATIT [37] 13.3 7.6 3.2
DRIT++ [38] 7.9 4.1 1.2

ForkGAN [39] 33.9 4.6 4.9
PearlGAN [21] 21.0 39.8 25.8

Dual-YOLO (Ours) 75.1 66.7 73.2

From Table 5, we can see that the accuracy of the other methods is low compared to the
accuracy of our proposed network on the KAIST dataset. According to our analysis, this is
due to the presence of many cluttered labels in the KAIST dataset, which leads to lower
accuracy of other methods. However, we perform data cleaning on the dataset to remove
pseudo-labels as well as incorrect labels before training the network. It can also be seen
from the final results that our method also performs effectively in small infrared objects.
Figure 6 shows the results of our tests and visualization of some data from the KAIST
dataset. As can be seen from the figure, our network is highly robust to both changes in
scale and changes in image brightness.

Figure 6. Visualization of Dual-YOLO detection results on the KAIST pedestrian dataset.

3.4.3. Experiments on the FLIR Dataset

We also conduct a series of experiments on the FLIR dataset to prove the effectiveness
of the proposed method. Furthermore, we compare the performance with some popular
methods, such as SSD, RetinaNet, YOLOv5s, and YOLOF. The final experimental results
are shown in Table 6.
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Table 6 shows that our proposed method has the highest mAP value compared with
other methods. The structure of Dual-YOLO we used is shuffled before fusion, which is
also explained in detail in Section 3.5. From Table 6, we can also see that for small objects
such as bicycles most methods have limited detection accuracy on such objects, such as
SSD and RetinaNet. The Dual-YOLO we proposed has a strong detection effect for small
and medium-sized objects such as persons. According to the data, the detection accuracy of
our Dual-YOLO is 20.3% higher than that of YOLOv5s in the person category. We believe
this improvement is not only due to the advancement of the YOLOv7 architecture. It shows
that our idea of infrared and visible image fusion detection is reasonable. It is worth noting
that the detection accuracy of the proposed network is up to 93.0% on the car class. Such
detection accuracy is 13.0% higher than YOLOv5s and 7.5% higher than TermalNet in
Table 6. According to our analysis, the visible image channel is added in our proposed
Dual-YOLO so that the network can better recognize texture features. The enhancement of
texture features makes the overall detection effect more optimized. It is worth mentioning
that our proposed Dual-YOLO method increases by 4.5% compared with the YOLO-FIR on
the overall mAP. YOLO-FIR is also designed based on the fusion of infrared and visible
images. However, we design the attention fusion module and fusion shuffle module in the
fusion process, which also increases our detection accuracy.

Table 6. Object detection results of the synthesized images obtained by different translation methods
on FLIR dataset, were computed at a single IoU of 0.5. All values are in %. The top results are marked
in green.

Method Person Bicycle Car mAP

Faster R-CNN [40] 39.6 54.7 67.6 53.9
SSD [1] 40.9 43.6 61.6 48.7

RetinaNet [32] 52.3 61.3 71.5 61.7
FCOS [4] 69.7 67.4 79.7 72.3

MMTOD-UNIT [40] 49.4 64.4 70.7 61.5
MMTOD-CG [40] 50.3 63.3 70.6 61.4

RefineDet [41] 77.2 57.2 84.5 72.9
TermalDet [42] 78.2 60.0 85.5 74.6
YOLO-FIR [9] 85.2 70.7 84.3 80.1

YOLOv3-tiny [16] 67.1 50.3 81.2 66.2
IARet [16] 77.2 48.7 85.8 70.7
CMPD [22] 69.6 59.8 78.1 69.3

PearlGAN [21] 54.0 23.0 75.5 50.8
Cascade R-CNN [31] 77.3 84.3 79.8 80.5

YOLOv5s [10] 68.3 67.1 80.0 71.8
YOLOF [43] 67.8 68.1 79.4 71.8

Dual-YOLO (Ours) 88.6 66.7 93.0 84.5

Figure 7 shows some visualization results of the object detection effect on the FLIR
dataset. From the fourth scene in the first row and the first scene in the third row in Figure 7,
we can also see that for the objects with overlapping and occluded areas, our Dual-YOLO
can fully detect cars. In the second scene in the second row, our detector can accurately
detect overlapping objects and recognize objects with different scales. In this scenario, cars
can be large or small, and our detector can detect them accurately. In the second scenario
in the third row, our network also performs well in detecting small-sized objects such as
bicycles. The surrounding scene in infrared images easily drowns the bicycle features.
Therefore, it is challenging to detect this kind of object. Model complexity and runtime
comparison of Dual-YOLO and the plain counterparts are shown in Table 7.
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Table 7. Model complexity and runtime comparison of Dual-YOLO and the plain counterparts.

Method Dataset #Params Runtime (fps)

Faster R-CNN (OBB) DroneVehicle 58.3 M 5.3
Faster R-CNN (Dpool) DroneVehicle 59.9 M 4.3

Mask R-CNN DroneVehicle 242.0 M 13.5
RetinaNet DroneVehicle 145.0 M 15.0

Cascade Mask R-CNN DroneVehicle 368.0 M 9.8
RoITransformer DroneVehicle 273.0 M 7.1

YOLOv7 DroneVehicle 72.1 M 161.0
SSD FLIR 131.0 M 43.7

FCOS FLIR 123.0 M 22.9
RefineDet FLIR 128.0 M 24.1
YOLO-FIR FLIR 7.1 M 83.3

YOLOv3-tiny FLIR 17.0 M 50.0
Cascade R-CNN FLIR 165.0 M 16.1

YOLOv5s FLIR 14.0 M 41.0
YOLOF FLIR 44.0 M 32.0

Dual-YOLO DroneVehicle/FLIR 175.1 M 62.0

Figure 7. Visualization of Dual-YOLO detection results on the FLIR dataset.

3.5. Ablation Study
3.5.1. Position of the Shuffle

In the structure shown in Figure 5, we use the strategy of channel shuffle in the design
of the fusion module. This strategy increases the exchange of feature information between
different channels. Nevertheless, we have also considered whether shuffles should be used
before or after fusion. As shown in Figure 8, we have placed the shuffle operation before the
convolution fusion module to obtain a more blended feature. This processing is performed
in such a way as to obtain information on the effective blending of the infrared and visible
image before the convolutional fusion is performed. Therefore, we also conducted a set
of experiments for validation. On the FLIR dataset, we carry out three different types
of experiments.
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concatenation

concatenated 

feature

shuffle

output featureconcatenated 

features

infrared feature

visible feature

1×1 conv

mixed feature

fusion

Figure 8. The fusion shuffle module structure where the shuffle is performed before fusion.

The experimental results obtained according to the position of the shuffle are shown
in Table 8. In the first row of Table 8 is the experiment without adding the shuffle fusion
module, and the final obtained detection accuracy is 81.1%. The second row shows the
experiments with the addition of the shuffle fusion and the placement of the shuffle
operation after the convolutional fusion, resulting in an accuracy of 83.2%. Furthermore,
the last line is where we added the shuffle fusion module and placed the shuffle operation
before the convolutional fusion, resulting in an accuracy of 84.5%. Compared to the module
without the addition of shuffle fusion, the accuracy of the network improved by 3.4% with
the addition of this module. For the shuffle position, we can also conclude from Table 8
that there is a 1.3% improvement in the accuracy of the network when the shuffle operation
is performed before the convolutional fusion.

Table 8. On the FLIR dataset, object detection results at a single IoU of 0.50 when the shuffle is placed
in different positions of Dual-YOLO. All values are in %.The top results are marked in green.

Method Person Bicycle Car mAP

without shuffle 87.2 63.6 92.6 81.1
shuffle before fusion 88.0 68.6 92.9 83.2
shuffle after fusion 88.6 66.7 93.0 84.5

3.5.2. Functions of the Components in the Attention Fusion Module

We conduct the following ablation study to test the function of the attention fusion
module proposed in Section 2.2 and its components. It is worth noting that there are four D-
Fusion modules in our proposed Dual-YOLO network. In this ablation experiment, we
perform the same configuration on the attention fusion module in each D-Fusion module.
That is, the configuration of the four D-Fusions is precisely the same. Through experiments,
the results obtained are shown in Table 9. The training curves of the proposed algorithms
are shown in Figures 9 and 10. In Table 9, we test the accuracy of Dual-YOLO on the
FLIR dataset by adding or not adding Inception and SE modules. In order to eliminate the
influence of different IoU Settings on the experiment, we not only used mAP@0.5 to evaluate
the accuracy in this experiment but also used mAP@0.5:0.95 as the evaluation standard.

From Table 9, we can see that when we add Inception and SE modules in Dual-YOLO,
the highest mAP is achieved on the FLIR dataset. After adding Inception and SE, mAP@0.5
is a 4.8% improvement over not adding these two modules. We can also see that the
mAP@0.5 of the model increases by 1.4% when only SE is added. With Inception only,
mAP@0.5 increased by 2.8%. We achieve the highest accuracy when we use Inception and
SE modules together.
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Figure 9. The mAP@.5:0.95 performance curve of Dual-YOLO during training. From the curves, we
can see that Dual-YOLO has the highest accuracy when it adds Inception and the SE module together.
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Figure 10. The mAP@0.5 performance curve of Dual-YOLO during training. From the curves, we can
see that Dual-YOLO has the highest accuracy when it adds Inception and the SE module together.

Table 9. Object detection results of the synthesized images obtained by different modules in the
attention fusion module on the FLIR dataset. These results are computed at a single IoU of 0.50 and
IoU between 0.50 and 0.95. All values are in %.The top results are marked in green.

Inception SE Person Bicycle Car mAP@0.5 mAP@0.5:0.95

8 8 85.1 64.5 89.4 79.7 41.6
4 8 86.9 69.0 91.6 82.5 44.3
8 4 86.2 65.7 91.4 81.1 43.3
4 4 88.6 66.7 93.0 84.5 46.2

4. Conclusions

To overcome the problem of accuracy loss caused by the loss of texture features of
infrared objects, we propose the Dual-YOLO object detection network with infrared and
visible image fusion based on YOLOv7. In the infrared image feature extraction, we design
the infrared and visible image feature fusion module named D-fusion. Furthermore, we
obtain simplified and useful fusion information in feature extraction through attention
fusion and fusion shuffle design. This method reduces the impact of redundant information
on network accuracy reduction. Finally, we design the fusion module loss function in the
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network training process to accelerate the network’s convergence. Through experimental
verification on the DroneVehicle, KAIST, and FLIR datasets, we prove the effectiveness of
Dual-YOLO in improving the accuracy of infrared object detection. The proposed method
is expected to be applied in the fields of military reconnaissance, unmanned driving,
agricultural fruit detection, and public safety. Meanwhile, further research will include
infrared and visible image fusion for semantic segmentation and infrared object tracking.
In addition, we will do more optimization work in terms of parameter compression and
acceleration of the model. Through these optimization strategies, the proposed infrared
small target detection model Dual-YOLO is more suitable for embedded platform.
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