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Abstract: The popularity of smart sensors and the Internet of Things (IoT) is growing in various fields
and applications. Both collect and transfer data to networks. However, due to limited resources,
deploying IoT in real-world applications can be challenging. Most of the algorithmic solutions
proposed so far to address these challenges were based on linear interval approximations and
were developed for resource-constrained microcontroller architectures, i.e., they need buffering
of the sensor data and either have a runtime dependency on the segment length or require the
sensor inverse response to be analytically known in advance. Our present work proposed a new
algorithm for the piecewise-linear approximation of differentiable sensor characteristics with varying
algebraic curvature, maintaining the low fixed computational complexity as well as reduced memory
requirements, as demonstrated in a test concerning the linearization of the inverse sensor characteristic
of type K thermocouple. As before, our error-minimization approach solved the two problems of
finding the inverse sensor characteristic and its linearization simultaneously while minimizing the
number of points needed to support the characteristic.

Keywords: approximation; graphical programming; Internet of Things; linearization techniques;
measurement errors; smart sensors; sensor accuracy; thermocouples

1. Introduction (and Motivation)
1.1. Resource-Constrained Smart Sensor Devices and IoT

In recent years, there has been a growing interest in smart low-cost sensor technologies
and IoT [1]. Many very promising developments were made in the field of both sensor
technology and wireless communications. Research in the field of smart sensors (SS)
and the Internet of Things (IoT) continues to grow [2,3]. Advances in microcontrollers
and developments in the Internet have enabled the industry to create smart devices that
efficiently integrate sophisticated sensing and communication functions, with primary
signal-processing algorithms.

A key distinguishing feature of low-cost smart sensors and IoT devices is their lim-
ited resources. Typical self-powered smart sensors and IoT devices include two main
resource groups.

Hardware resources: for data storing and computing, communication, and power.
Because IoT devices are battery-powered and use low-power processors, they cannot

accommodate algorithms that require a large amount of computing power. Furthermore,
IoT devices have limited memory compared to regular digital systems, requiring the use of
lightweight mobile software and operating systems. As a result, the algorithms must be
designed in a way that is efficient in terms of memory usage [4,5].

Software resources: operating systems, system software, and applications. The adaptive
allocation of these resources is critical in most applications [6,7]. The remote reprogramming
of devices is not always an option as the operating system may not be capable of accepting
and integrating new codes.
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1.2. The Main Error Components of Smart Sensors and IoT Devices

As already stated, the main objective of this study was to seek opportunities to allocate
the limited resources of networked sensors and IoT adaptively and, in particular, to limit
the amount of memory required without compromising the accuracy requirements of the
devices. The structure of a smart sensor or an IoT device and its main components are
shown in Figure 1.
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Figure 1. Block diagram and basic error components of smart sensor and IoT devices (x—input
quantity, x*—microcontroller output).

For the devices to meet the desired accuracy standards, the major sources of error
must be considered. These can be divided into δAP which are sourced from the analog
portion and δDP which are sourced from the digital part. Further information can be found
in [1] and [8].

Here, δAP is the relative compound error of the analog sensor and sensor interface, δDP
is the relative compound error of the digital part, δAP = ∆x

xFS
is the relative approximation

error, ∆x is the predefined absolute approximation error; xFS is the full scale (FS) of the
microcontroller output value x*; and δADC is the relative error of the analog-to-digital
conversion. Given a serial device structure, the total error budget of the system can be
determined as follows:

δSS =
√

δ2
AP + δ2

DP.

δADC and δAPR are the main error components of the δDP digital part. Once the analog
sensor and the analog-to-digital converter (ADC) are selected in the device implementation,
the error levels of δAS and δADC cannot be affected. ADCs with high resolution are most
commonly used in the implementation of smart sensors and IoT; therefore, the δADC
component is often negligible. This makes δAPR an essential component by which the
overall error rates can be controlled. To achieve typical accuracy levels in device design,
where δSS ≈ δAS, it is usually sufficient to achieve the condition δAS > (3÷ 10)δDP.

Published lookup tables, which are used in many applications, are often limited in the
number of digits and this can be an additional source of rounding errors [8].

1.3. Sensor Characteristics Linearization Approaches

Linearization is an important part of the initial processing of sensor inputs. Nonlinear-
ities in sensors can be reduced by either electronic linearization circuits or algorithms [9,10].
Linearization techniques can be divided into three main categories:

- Analog hardware linearization schemes;
- Linearization algorithms;
- Mixed hardware and software-based approaches [11].

Analog hardware linearization methods are typically performed by connecting an
analog scheme between the sensor and the ADC [12].

In [13], the focus is on the cold-end compensation of thermocouples used in room
temperature measurement applications. In [14], an approach to linearize the characteristics
of a K-type thermocouple and thermistor used for its temperature compensation was
shown. A reduction in the nonlinearity of about 100 times for the thermocouple and from
84% to 0.27% for the thermistor was demonstrated.

Software linearization techniques necessitate the deployment of (micro)computers
or digital signal processors (DSPs) with powerful processing capabilities [15,16]. Imple-
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menting these techniques on low-cost controllers that only have the capacity for limited
computational tasks is very difficult due to the limited resources of the controller. Different
software linearization methods were analyzed in the literature. One of the most frequently
used methods was the lookup table (LUT)-based linearization, which can be implemented
easily on any microcontroller [11,17].

This research built upon the technique outlined in [1,18], which was used to adaptively
linearize sensor characteristics, make the design simpler, and improve the measurement
accuracy of sensors and IoT devices that are resource-limited.

The identification of the inverse transfer function is often complicated due to the
difficulty in selecting the correct analytic form of the function and the constraints in its
parameterization. This can lead to inaccurate sensor responses, so it should be avoided.
Generally, the scalar inverse sensor transfer function is modeled using a nonlinear regres-
sion model (e.g., polynomial, exponential, etc.) which is determined by minimizing the
least squares error on a statistically representative set of data [19,20].

In [21], the use of a simple model based on a three-layer recurrent neural network
(RNN) that considers a short history of the immediately preceding predictions (temper-
atures) together with the current measurement to predict the current output signal was
shown. In [22], the use of popular sensor linearization techniques based on the multilinear
model approach was shown to be popular due to the simplicity and transparency of local
linear models. The paper presented a systematic data-driven approach that used the in-
cluded angle method to determine optimal linear models. A fuzzy interpolation technique
was then used to combine the linear models.

Linearization approaches can be also regarded as shape-preserving dimensionality-
reducing methods [23]. In such methods, the inverse sensor characteristic is mapped into a
polygonal shape, by using either distance minimizing embedding technique, or, whenever
permissible, by range and accuracy requirements—a non-negative matrix factorization
technique, as suggested in [24].

A general approach to reducing the uncertainty problems arising in nonlinear regres-
sion identification of sensor feedback can be provided by segmenting its transfer function.

Essentially, it implements a polygonal approximation of x = x(y) with approximation
error control. The proposed algorithmic control is an important aspect supporting adaptive
resource allocation.

Piecewise linear approximation (PLA) for sensor data is a classical approach used in
data compression. There are many other data compression approaches, such as piecewise
aggregate approximation [25], discrete wavelet transform [26], discrete Fourier trans-
form [27], Chebyshev polynomials [28], etc. However, PLA remains one of the most
commonly used approaches for data compression, as claimed in [29,30].

The approach dates back to the middle of the last century but, in recent years, the data
compression problem became topical due to the widespread adoption of smart sensors and
IoT devices. It was increasingly used wherever data acquisition devices limited local buffer
space and communication bandwidth [31].

It is essential that data are compressed due to the restricted resources of data acqui-
sition devices, including memory and communication capabilities. The main criteria for
measuring compression quality are the magnitude of the approximation error and the
number of line segments.

In optimizing the PLA results, two approaches are commonly used:
Setting a bound on the error ∆x and minimizing the number of k segments;
Setting the number of k segments for which to construct a PLA with at most k segments

that minimize the error ∆x.
In the approach investigated in this paper, we set the delta error bound and minimized

the PLA size [32].
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1.4. Piecewise Linear Approximation of Sensor Characteristics with Inflex Points

In [15], an algorithm was formulated to linearize sensor characteristics when the
characteristic was a differentiable function. This two-step algorithm involved an iterative
process with a given sensor characteristic and a maximum approximation error. The result
of this process was a discrete form (a broken line) of the inverse characteristic.

With a set sensor characteristic in the form y = y(x) the first step is to determine the
inverse sensory characteristic x = x(y). The second step is related to the approximation
of the received discrete inverse sensory characteristic in the species xi = xi(yi), i = 1, n
with a new feature xj = xj

(
yj
)
, j = 1, k given the maximum approximation error and

minimization of k. An approach to solving the problem was developed in [15] and in [33].
In [1], a novel technique for linearizing the characteristics of sensors, which were

represented by differentiable functions with a constant sign of curvature, was proposed.
This approach simultaneously solved the issues of locating the inverse sensor characteristic
and its linearization, as was exemplified by the resistance–temperature relationship of
platinum temperature sensors that followed the Callendar–Van Dusen equation. The
approach was characterized by the fact that when the maximum approximation error is set
∆x in the linearization of the inverse sensing characteristic, the inverse sensing characteristic
xi = xi(yi), i = 1, n is found directly in linearized form. The advantages of the developed
approach are as follows:

- The approach is applied in intervals, and at each subsequent step (each subsequent
interval) as a result of analogously solving the task under the new initial conditions,
the desired solution is obtained directly, containing, in turn, the initial conditions for
the next step;

- The maximum linearization error of the inverse sensor characteristic in all intervals is
the same;

- The approach makes it possible to set a different maximum approximation error in
each subsequent interval.

The proposed approach was tested in the linearization of the inverse sensor character-
istic of Pt100 sensors, where the relationship between the resistance and the temperature
was set by employing the Callendar–Van Dusen equation [34,35]. When the maximum
approximation error is set ∆T = −0.375 °C in the interval T ∈ [−200 °C, 661 °C] the reverse
sensory characteristic T(R) (representing a broken line) is described by 11 points.

Thermocouples are simple and widely used sensor elements for temperature mea-
surement. However, it is not easy to convert the voltage generated by the thermocouple
to temperature with high accuracy for several reasons, the main ones being the low levels
of useful signal and the non-linear relationship between temperature and voltage. The
thermocouples also change their sensitivity depending on the temperature, as seen in
Figure 2. This is why they were chosen for the tests in our study.
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This approach for approximating sensor characteristics y = y(x) with linear intervals
can be used for features that contain inflection points, where the curvature changes in
different subintervals (i.e., “concave” and “convex” functions). An example of this is type
K thermocouples [37]. To do this, the approach must be applied separately to each of the
subintervals in which the sensory characteristic is “concave” and separately to each of the
subintervals in which the sensory characteristic is “convex”. However, this would lead
to the elimination of one of the main advantages of the approach developed in [1]—the
maximum linearization error of the inverse sensor response in all intervals (except the last
one) to be the same.

In the context of the above, this paper was devoted to the development of a generalized
approach for linear point-interval approximation of sensor characteristics, representing
differentiable functions, with inflection points present. The main advantage of this is
that, similar to the approach developed in [1], the tasks of finding the inverse sensor
characteristic and its linearization are solved simultaneously.

The proposed generalized approach for linear point-interval approximation of sensor
characteristics applies to all sensory characteristics, representing differentiable functions.
The essence of the approach is illustrated in Figure 3.
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The preset maximum linearization error is the only parameter in the generalized
approach for linear point-interval approximation of sensor characteristics, on which the
number of segments of the broken line (inverse linearized sensor characteristic) depends. A
smaller value of the parameter (the maximum linearization error) results in more segments.
The particular value of this parameter is determined by the application of the sensor and
the accuracy target set.

2. The Analytical Frame of the Proposed Approach

In [1], an approach for the linearization of sensor characteristics representing dif-
ferentiable functions with an invariant sign of curvature was presented. In the present
study, this approach will be further developed for cases where sensory features include
inflection points.

Let a differentiable sensor characteristic be given in the form y = y(x), x ∈
[
xAi , xB

]
,

i = 1, n− 1. The goal is to obtain the inverse sensor characteristic x(y) in a linearized form
with a set maximum approximation error ∆x.

The approach is based on the following. We are looking for the closest to point Ai
point EiI from the curve y = y(x), such that tangent tiI to the curve at point EiI passes
through the coordinate point

(
xAi + ∆x, yAi

)
(Figure 4).



Sensors 2023, 23, 2933 6 of 16

Sensors 2023, 22, x FOR PEER REVIEW 6 of 17 
 

 

number of segments of the broken line (inverse linearized sensor characteristic) depends. 

A smaller value of the parameter (the maximum linearization error) results in more 

segments. The particular value of this parameter is determined by the application of the 

sensor and the accuracy target set. 

2. The Analytical Frame of the Proposed Approach  

In [1], an approach for the linearization of sensor characteristics representing 

differentiable functions with an invariant sign of curvature was presented. In the present 

study, this approach will be further developed for cases where sensory features include 

inflection points. 

Let a differentiable sensor characteristic be given in the form 𝑦 = 𝑦(𝑥), 𝑥 ∈ [𝑥𝐴𝑖
, 𝑥𝐵], 

𝑖 = 1, 𝑛 − 1. The goal is to obtain the inverse sensor characteristic 𝑥(𝑦) in a linearized 

form with a set maximum approximation error 𝛥𝑥. 

The approach is based on the following. We are looking for the closest to point 𝐴𝑖 

point 𝐸𝑖𝐼
 from the curve 𝑦 = 𝑦(𝑥), such that tangent 𝑡𝑖𝐼

 to the curve at point 𝐸𝑖𝐼
 passes 

through the coordinate point (𝑥𝐴𝑖
+ 𝛥𝑥, 𝑦𝐴𝑖

) (Figure 4).  

 

Figure 4. An example of mathematical processing of sensor characteristic. 

Then, we search for the closest to point 𝐴𝑖 point 𝐴𝑖+1𝐼
 from curve 𝑦 = 𝑦(𝑥), being 

the point of intersection of curve 𝑦 = 𝑦(𝑥) with the line passing through point 𝐴𝑖 and 

parallel to the tangent 𝑡𝑖𝐼
. Analogously, we look for the closest to point 𝐴𝑖  point 𝐸𝑖𝐼𝐼

 

from curve 𝑦 = 𝑦(𝑥), such that the tangent 𝑡𝑖𝐼𝐼
 to the curve at point 𝐸𝑖𝐼𝐼

 to pass through 

the coordinate point (𝑥𝐴𝑖
− 𝛥𝑥, 𝑦𝐴𝑖

). Then, we search for the closest to point 𝐴𝑖  point 

𝐴𝑖+1𝐼𝐼
 from curve 𝑦 = 𝑦(𝑥), being the point of intersection of curve 𝑦 = 𝑦(𝑥) with the 

line passing through point 𝐴𝑖 and parallel to the tangent 𝑡𝑖𝐼𝐼
 (Figure 4). The closer to the 

point 𝐴𝑖 of the points 𝐴𝑖+1𝐼
 and 𝐴𝑖+1𝐼𝐼

 is the endpoint 𝐴𝑖+1 of the interval in which the 

maximum absolute value of the error is 𝛥𝑥 when approximating the inverse sensor 

response 𝑥(𝑦) with a linear dependence (the segment 𝐴𝑖𝐴𝑖+1). 

If after some value of 𝑖, the interval 𝑥 ∈ [𝑥𝐴𝑖
, 𝑥𝐵] does not include an inflection point 

(the function 𝑦 = 𝑦(𝑥) is “concave” or “convex” in the interval), then one of the two 

Figure 4. An example of mathematical processing of sensor characteristic.

Then, we search for the closest to point Ai point Ai+1I from curve y = y(x), being
the point of intersection of curve y = y(x) with the line passing through point Ai and
parallel to the tangent tiI . Analogously, we look for the closest to point Ai point EiI I from
curve y = y(x), such that the tangent tiI I to the curve at point EiI I to pass through the
coordinate point

(
xAi − ∆x, yAi

)
. Then, we search for the closest to point Ai point Ai+1I I

from curve y = y(x), being the point of intersection of curve y = y(x) with the line passing
through point Ai and parallel to the tangent tiI I (Figure 4). The closer to the point Ai of
the points Ai+1I and Ai+1I I is the endpoint Ai+1 of the interval in which the maximum
absolute value of the error is ∆x when approximating the inverse sensor response x(y) with
a linear dependence (the segment Ai Ai+1).

If after some value of i, the interval x ∈
[
xAi , xB

]
does not include an inflection point

(the function y = y(x) is “concave” or “convex” in the interval), then one of the two
tangents tiI and tiI I does not exist, and the approach presented here is practically reduced
to the approach presented in [1].

If xAi+1 > xB, then Ai+1 ≡ B and the procedure ends, as in the general case in this last
interval, the maximum absolute error is less than the set ∆x.

In the general case, when range x ∈
[
xAi , xB

]
includes an inflection point, the two

extremes ∆x
iI

and ∆x
iI I

of error ∆x
i (y) in the linear approximation of the inverse function x(y)

are determined by (Figure 4):

∆x
iI

(
xEiI

)
=

∆y
iI

(
xEiI

)
−kiI

= xEiI
− xAi −

y
(

xEiI

)
−yAi

kiI
;

∆x
iI I

(
xEiI I

)
=

∆y
iI

(
xEiI I

)
−kiI I

= xEiI I
− xAi −

y
(

xEiI I

)
−yAi

kiI I
,

(1)
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where
∆y

i

(
xEiI

)
∆x

i

(
xEiI

) = − tan αiI = −kiI ;

∆y
i

(
xEiI I

)
∆x

i

(
xEiI I

) = − tan αiI I = −kiI I .

From the extremum necessary condition [∆y
iI

(
xEiI

)
]
′
= 0, respectively, [∆y

iI I

(
xEiI I

)
]
′
= 0,

is obtained:
y′
(

xEiI

)
− kiI = 0;

y′
(

xEiI I

)
− kiI I = 0.

(2)

From Equations (1) and (2) follows:

∆x
iI

(
xEiI

)
= ∆x = xEiI

− xAi −
y
(

xEiI

)
− yAi

kiI

= xEiI
− xAi −

y
(

xEiI

)
− yAi

y′
(

xEiI

) ;

∆x
iI I

(
xEiI

)
= −∆x = xEiI I

− xAi −
y
(

xEiI I

)
− yAi

kiI I

= xEiI I
− xAi −

y
(

xEiI I

)
− yAi

y′
(

xEiI I

) .

respectively

y′
(

xEiI

)
−

y
(

xEiI

)
−yAi

xEiI
−xAi

−∆x = 0;

y′
(

xEiI I

)
−

y
(

xEiI I

)
−yAi

xEiI I
−xAi

+∆x = 0.

(3)

From the last equation, we determine the nearest points EiI and EiI I (in case there are
more than one) to the point Ai.

From the equations

y
(

xAi+1I

)
= yAi + y′

(
xEiI

)(
xAi+1I

− xAi

)
,

y
(

xAi+1I I

)
= yAi + y′

(
xEiI I

)(
xAi+1I I

− xAi

)
,

(4)

xAi+1I
and xAi+1I I

are determined, with the smaller of the two values representing xAi+1

(i.e., the point closest to the point Ai of the points Ai+1I and Ai+1I I being the endpoint Ai+1
of the interval).

As a result of applying the approach, the sensory characteristic y(x) is approximated
by the broken line A1 A2 A3 . . . An−1B ≡ An, Ai

(
xAi , yAi

)
, i = 1, n− 1, An(xB, yB).

The inverse sensor characteristic x(y) in coordinate system yx is approximated by the
broken line A1 A2 A3 . . . An−1B ≡ An, Ai

(
yAi , xAi

)
, i = 1, n− 1, An(yB, xB), as

x(y) = xAi +
(
y− yAi

) xAi+1
−xAi

yAi+1
−yAi

,

y ∈
[
yAi , yAi+1

]
, i = 1, n− 1.

(5)

In the general case, in all intervals, except for the last one, the maximum errors of the
approximation are equal and equal to the specified maximum error ∆x. The error ∆x

i (x) in
each of the intervals is determined by

∆x
i (x) = x− xAi −

(
y(x)− yAi

) xAi+1
−xAi

yAi+1
−yAi

,

x ∈
[
xAi , xAi+1

]
, i = 1, n− 1.

(6)
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The error ∆x
i (y) can also be determined from Equation (6), because the function

y = y(x) is strictly monotonic (at any value of x matches a single corresponding value
of y(x))

∆x
i [y(x)] = ∆x

i (x),
x ∈

[
xAi , xAi+1

]
, i = 1, n− 1.

(7)

3. Linearization of the Inverse Sensor Characteristic of Type K and Type
J Thermocouples
3.1. Type K Segmentation in the Temperature Range t90 ∈ [0, 1371.655 ◦C]

The thermoelectric voltage E in microvolts, as a function of temperature t90 in degrees
Celsius, in the range t90 ∈ [0, 1372 ◦C], is defined by:

E(t90) =
9

∑
i=0

ci (t90)
i + α0eα1(t90−126.9686)2

,

where the coefficients ci, α0 and α1 are specified in NIST ITS-90 [37].
With the help of the proposed approach, the problem of interval linearization of the

inverse characteristic of the sensory characteristic in question, including inflection points,
will be solved. The graphs of the function E(t90) and its first derivative E′(t90) and the
second derivative E′′ (t90) in the interval t90 ∈ [0, 1372 ◦C] are shown in Figure 5.
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t_90 ∈ [0, 1372 ◦C].

The results of applying the approach at
∣∣∆t90

∣∣ = 0.04 ◦C in the temperature range
t90A1

= 0 ◦C, t90An≡B = 1371.655 ◦C are shown numerically in Table 1 and in Figure 6.

Function ∆t90
i (t90):

∆t90
i (t90) = t90 − t90Ai

−
(
E(t90)− EAi

) t90Ai+1
−t90Ai

EAi+1
−EAi

,

t90 ∈
[
t90Ai

, t90Ai+1

]
, i = 1, n− 1.

(8)

is shown in Figure 7.

Table 1. Interval linearization results in a range t90 ∈ [0, 1371.655 ◦C].

A1 A2
A1(0, 0.000)

A2(16.882, 672.556)

A2 A3
A2(16.882, 672.556)

A3(35.972, 1446.874)

A3 A4
A3(35.972, 1446.874)
A4(60.200, 2444.756)

A4 A5
A4(60.200, 2444.756)

A5(108.378, 4442.207)

t90 ∈ [0, 16.882] t90 ∈ [16.882, 35.972] t90 ∈ [35.972, 60.200] t90 ∈ [60.200, 108.378]

t90E1
= 8.312 t90E2

= 26.197 t90E3
= 47.351 t90E4

= 93.078
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Table 1. Cont.

∆t90
1 = 0.04 ∆t90

2 = 0.04 ∆t90
3 = 0.04 ∆t90

4 = −0.04

A5 A6
A5(108.378, 4442.207)
A6(132.208, 5418.271)

A6 A7
A6(132.208, 5418.271)
A7(156.708, 6408.103)

A7 A8
A7(156.708, 6408.103)
A8(220.884, 8975.453)

A8 A9
A8(220.884, 8975.453)

A9(248.358, 10, 086.534)

t90 ∈ [108.378, 132.208] t90 ∈ [132.208, 156.708] t90 ∈ [156.708, 220.884] t90 ∈ [220.884, 248.358]

t90E5
= 120.487 t90E6

= 144.107 t90E7
= 204.448 t90E8

= 234.769

∆t90
5 = −0.04 ∆t90

6 = −0.04 ∆t90
7 = 0.04 ∆t90

8 = 0.04

A9 A10
A9(248.358, 10, 086.534)
A10(276.647, 11, 244.101)

A10 A11
A10(276.647, 11, 244.101)
A11(309.309, 12, 594.865)

A11 A12
A11(309.309, 12, 594.865)
A12(348.251, 14, 219.886)

A12 A13
A12(348.251, 14, 219.886)
A13(392.599, 16, 084.688)

t90 ∈ [248.358, 276.647] t90 ∈ [276.647, 309.309] t90 ∈ [309.309, 348.251] t90 ∈ [348.251, 392.599]

t90E9
= 262.283 t90E10

= 292.511 t90E11
= 328.276 t90E12

= 370.030

∆t90
9 = 0.04 ∆t90

10 = 0.04 ∆t90
11 = 0.04 ∆t90

12 = 0.04

A13 A14
A13(392.599, 16, 084.688)
A14(443.288, 18, 230.712)

A14 A15
A14(443.288, 18, 230.712)
A15(516.197, 21, 334.882)

A15 A16
A15(516.197, 21, 334.882)
A16(602.521, 25, 012.615)

A16 A17
A16(602.521, 25, 012.615)
A17(653.510, 27, 173.147)

t90 ∈ [392.599, 443.288] t90 ∈ [443.288, 516.197] t90 ∈ [516.197, 602.521] t90 ∈ [602.521, 653.510]

t90E13
= 417.202 t90E14

= 475.511 t90E15
= 567.800 t90E16

= 628.945

∆t90
13 = 0.04 ∆t90

14 = 0.04 ∆t90
15 = −0.04 ∆t90

16 = −0.04

A17 A18
A17(653.510, 27, 173.147)
A18(697.047, 29, 005.203)

A18 A19
A18(697.047, 29, 005.203)
A19(737.039, 30, 675.189)

A19 A20
A19(737.039, 30, 675.189)
A20(775.070, 32, 250.248)

A20 A21
A20(775.070, 32, 250.248)
A21(811.974, 33, 765.632)

t90 ∈ [653.510, 697.047] t90 ∈ [697.047, 737.039] t90 ∈ [737.039, 775.070] t90 ∈ [775.070, 811.974]

t90E17
= 675.665 t90E18

= 717.243 t90E19
= 756.163 t90E20

= 793.579

∆t90
17 = −0.04 ∆t90

18 = −0.04 ∆t90
19 = −0.04 ∆t90

20 = −0.04

A21 A22
A21(811.974, 33, 765.632)
A22(848.239, 35, 241.740)

A22 A23
A22(848.239, 35, 241.740)
A23(884.134, 36, 689.927)

A23 A24
A23(884.134, 36, 689.927)
A24(919.767, 38, 114.730)

A24 A25
A24(919.767, 38, 114.730)
A25(955.104, 39, 514.991)

t90 ∈ [811.974, 848.239] t90 ∈ [848.239, 884.134] t90 ∈ [884.134, 919.767] t90 ∈ [919.767, 955.104]

t90E21
= 830.133 t90E22

= 866.197 t90E23
= 901.959 t90E24

= 937.452

∆t90
21 = −0.04 ∆t90

22 = −0.04 ∆t90
23 = −0.04 ∆t90

24 = −0.04

A25 A26
A25(955.104, 39, 514.991)
A26(989.996, 40, 885.113)

A26 A27
A26(989.996, 40, 885.113)

A27(1024.231, 42, 217.028)

A27 A28
A27(1024.231, 42, 217.028)
A28(1057.590, 43, 502.686)

A28 A29
A28(1057.590, 43, 502.686)
A29(1089.912, 44, 736.246)

t90 ∈ [955.104, 989.996] t90 ∈ [989.996, 1024.231] t90 ∈ [1024.231, 1057.590] t90 ∈ [1057.590, 1089.912]

t90E25
= 972.582 t90E26

= 1007.164 t90E27
= 1040.978 t90E28

= 1073.829

∆t90
25 = −0.04 ∆t90

26 = −0.04 ∆t90
27 = −0.04 ∆t90

28 = −0.04

A29 A30
A29(1089.912, 44, 736.246)
A30(1121.115, 45, 915.218)

A30 A31
A30(1121.115, 45, 915.218)
A31(1151.210, 47, 040.472)

A31 A32
A31(1151.210, 47, 040.472)
A32(1180.276, 48, 115.572)

A32 A33
A32(1180.276, 48, 115.572)
A33(1208.447, 49, 145.979)

t90 ∈ [1089.912, 1121.115] t90 ∈ [1121.115, 1151.210] t90 ∈ [1151.210, 1180.276] t90 ∈ [1180.276, 1208.447]

t90E29
= 1105.594 t90E30

= 1136.239 t90E31
= 1165.810 t90E32

= 1194.416

∆t90
29 = −0.04 ∆t90

30 = −0.04 ∆t90
31 = −0.04 ∆t90

32 = −0.04
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Table 1. Cont.

A33 A34
A33(1208.447, 49, 145.979)
A34(1235.896, 50, 138.464)

A34 A35
A34(1235.896, 50, 138.464)
A35(1262.828, 51, 100.866)

A35 A36
A35(1262.828, 51, 100.866)
A36(1289.490, 52, 042.271)

A36 A37
A36(1289.490, 52, 042.271)
A37(1316.189, 52, 973.750)

t90 ∈ [1208.447, 1235.896] t90 ∈ [1235.896, 1262.828] t90 ∈ [1262.828, 1289.490] t90 ∈ [1289.490, 1316.189]

t90E33
= 1222.211 t90E34

= 1249.382 t90E35
= 1276.157 t90E36

= 1302.808

∆t90
33 = −0.04 ∆t90

34 = −0.04 ∆t90
35 = −0.04 ∆t90

36 = −0.04

A37 A38
A37(1316.189, 52, 973.750)
A38(1343.352, 53, 910.167)

A38 A39
A38(1343.352, 53, 910.167)
A39(1371.655, 54, 874.662)

t90 ∈ [1316.189, 1343.352] t90 ∈ [1343.352, 1371.655]

t90E37
= 1329.696 t90E38

= 1357.354

∆t90
37 = −0.04 ∆t90

38 = −0.04
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Figure 7. Graphical representation of the absolute error ∆t90
i (t90) in the temperature range

t90 ∈ [0, 1371.655 ◦C].

Error ∆t90
i (t90), defined as the difference between the actual and the measured value

(8), is positive in the intervals in which the second derivative E′′ (t90) of the sensory char-
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acteristic E(t90) is positive, and negative in the intervals in which the second derivative
E′′ (t90) of the sensory characteristic E(t90) is negative (Figures 5 and 7).

3.2. Microcontroller and LabVIEW Implementation of the Inverse Sensor Characteristics
Linearization Algorithm

This design uses an Adafruit ESP32 Feather V2 [38] development board based on
Espressif Systems’ ESP32 microcontroller [39]. The linearization is implemented by splitting
the individual segments to ensure that the maximum predefined error requirements are
satisfied. For this particular implementation, the coordinates of the points defining each
interval were stored in two one-dimensional arrays each with 39 elements of type float (see
Table 1). The input parameter of the implemented function is the generated voltage of the
thermocouple, which must be compensated for the cold junction temperature. The variable
to which its value is assigned is also of type float, with the voltage being given in µV.
Following this, the determination of which of the 38 intervals the measured temperature
fell into was made using the formula shown in Algorithm 1.

Algorithm 1. Linearization of a k-Type thermocouple

Algorithm K-Type Linearization
Input: Measured and compensated voltage, Measured_Voltage, floating point type
Output: Calculated temperature, Temperature, floating point type
Initialization: Define the points determining the coordinates of each interval:
U_set[1], U_set[2] . . . U_set[End] and T_set[1], T_set[2] . . . T_set[End]
1: Determine the interval, where the measured temperature is situated
If ((Measured_Voltage > U_set[n]) and (Measured_Voltage ≤ U_set[n+1]))
2: Calculate the temperature by the formula
Temperature = (Measured_Voltage − U_set[n])×((T_set[n+1] − T_set[n])/(U_set[n+1] −
U_set[n])) + T_set[n];
3: Return Temperature

The implementation of the function for the particular example considered in Table 1
took 449 bytes of Flash memory and 4 bytes of RAM, with the size optimization set to -Os.
Only 312 bytes were needed to define the two arrays, out of the 449 used.

The algorithm was also implemented as a virtual instrument in the LabVIEW program-
ming environment (see Figure 8). The version used by the authors to validate the proposed
virtual instrument was LabVIEW 2012, but it would work on any newer version. The input
parameters were the generated voltage from the thermocouple (Measured Voltage) and the
two arrays with the stored coordinate values for each point (U_set and T_set). The output
parameters were the converted temperature and an array (output array) in which only
one element will have a value other than the constant NaN, and this will be the converted
temperature. For input voltages that are in the specified range, there will be only one
case where the condition of the “case” structure will be “True”. This is the case where the
temperature needs to be calculated. In all other cases, the element with the constant “NaN”
is added to the “Output array”.

To prove the correct operation of the developed virtual instrument, values in the range
0 ÷ 54874.662 µV with step 0.01 µV were fed to its input. Figure 9 shows the linearized
output, the temperature calculated by approximate inverse functions giving temperature,
t90, as a function of the thermoelectric voltage and the difference between them.
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Figure 9. Linearized output in the range t90 ∈ [0, 1371.655 ◦C].

We observed that the difference did not exceed the sum error of the approximation
and the polynomial for the corresponding temperature range (Table 2).

Table 2. Error range for the temperature, t90, as a function of the thermoelectric voltage, in selected
temperature and voltage ranges [37].

Temperature Range: −200
to 0 ◦C

0
to 500 ◦C

500
to 1 372 ◦C

Voltage Range: −5891
to 0 µV

0
to 20,644 µV

20 644
to 54,886 µV

Error Range: 0.04 ◦C
to −0.02 ◦C

0.04 ◦C
to −0.05 ◦C

0.06 ◦C
to −0.05 ◦C
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3.3. Linearization of the Inverse Characteristic of Type J Thermocouples in the Temperature Range
t90 ∈ [−210, 760 ◦C]

The thermoelectric voltage E in microvolts, as a function of temperature t90 in degrees
Celsius, in the range t90 ∈ [−210, 760 ◦C] is defined by:

E(t90) =
8

∑
i=0

ci (t90)
i, (9)

where the coefficients ci are specified in NIST ITS-90 [37].
With the help of the proposed approach, the problem of interval linearization of the

inverse characteristic of the sensory characteristic in question, including inflection points,
will be solved.

The graphs of the function E(t90) and the first E′(t90) and the second E′′ (t90) its
derivatives in the interval t90 ∈ [−210, 760 ◦C], are shown in Figure 10.
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Figure 10. Functions E(t90), its first derivative E′(t90) and second derivative E′′ (t90) in the interval
t90 ∈ [−210, 760 ◦C].

The results of applying the approach at
∣∣∆t90

∣∣ = 0.348 ◦C in the temperature range
t90A1

= −210 ◦C, t90An≡B = 760 ◦C are shown numerically in Table 3 and graphically in

Figure 11, and the graph of the function ∆t90
i (t90) is shown in Figure 12.
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Table 3. Interval linearization results in the range t90 ∈ [−210, 760 ◦C].

A1 A2
A1(−210, −8095.380)

A2(−195.274, −7784.257)

A2 A3
A2(−195.274, −7784.257)
A3(−178.302, −7356.617)

A3 A4
A3(−178.302, −7356.617)
A4(−158.798, −6783.821)

A4 A5
A4(−158.798, −6783.821)
A5(−136.378, −6031.463)

t90 ∈ [−210, −195.274] t90 ∈ [−195.274, −178.302] t90 ∈ [−178.302, −158.798] t90 ∈ [−158.798, −136.378]

t90E1
= −202.698 t90E2

= −186.870 t90E3
= −168.660 t90E4

= −147.735

∆t90
1 = 0.348 ∆t90

2 = 0.348 ∆t90
3 = 0.348 ∆t90

4 = 0.348

A5 A6
A5(−136.378, −6031.463)
A6(−110.511, −5056.892)

A6 A7
A6(−110.511, −5056.892)
A7(−80.438, −3804.623)

A7 A8
A7(−80.438, −3804.623)
A8(−45.000, −2197.052)

A8 A9
A8(−45.000, −2197.052)
A9(−2.242, −112.816)

t90 ∈ [−136.378, −110.511] t90 ∈ [−110.511, −80.438] t90 ∈ [−80.438, −45.000] t90 ∈ [−45.000, −2.242]

t90E5
= −123.643 t90E6

= −95.749 t90E7
= −63.115 t90E8

= −24.233

∆t90
5 = 0.348 ∆t90

6 = 0.348 ∆t90
7 = 0.348 ∆t90

8 = 0.348

A9 A10
A9(−2.242, −112.816)
A10(51.729, 2676.741)

A10 A11
A10(51.729, 2676.741)

A11(128.045, 6801.389)

A11 A12
A11(128.045, 6801.389)

A12(507.969, 27, 839.325)

A12 A13
A12(507.969, 27, 839.325)
A13(587.888, 32, 396.359)

t90 ∈ [−2.242, 51.729] t90 ∈ [51.729, 128.045] t90 ∈ [128.045, 507.969] t90 ∈ [507.969, 587.888]

t90E9
= 23.657 t90E10

= 87.116 t90E11
= 448.839 t90E12

= 549.777

∆t90
9 = 0.348 ∆t90

10 = 0.348 ∆t90
11 = 0.348 ∆t90

12 = 0.348

A13 A14
A13(587.888, 32, 396.359)
A14(656.077, 36, 437.746)

A14 A15
A14(656.077, 36, 437.746)
A15(724.711, 40, 678.242)

A15 A16
A15(724.711, 40, 678.242)

A16(760, 42, 918.641)

t90 ∈ [587.888, 656.077] t90 ∈ [656.077, 724.711] t90 ∈ [724.711, 760]

t90E13
= 622.514 t90E14

= 689.931 t90E15
= 741.725

∆t90
13 = 0.348 ∆t90

14 = 0.348 ∆t90
15 = 0.065
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4. Conclusions

This paper presented a generalized approach for linear interval approximation of
sensor characteristics y = y(x), representing differentiable functions where the sign of the
curvature changed, i.e., including inflection points. The goal was to obtain in a discrete
form the inverse sensory characteristic in the species xi = xi(yi), i = 1, n, at a pre-set
maximum error ∆x, while minimizing the number of points determining the characteristic.
This approach enabled the utilization of low-cost microcontrollers.

The approach, similar to the approach presented in [1], was characterized by the fact
that when the maximum approximation error is set ∆x in the linearization of the inverse
sensing characteristic, the inverse sensing characteristic xi = xi(yi), i = 1, n is found directly
in linearized form. The advantages of the herein-developed approach are as follows:
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- The approach is applied in intervals, and at each subsequent step (each subsequent
interval), as a result of analogously solving the task under the new initial conditions,
the desired solution is obtained directly, containing, in turn, the initial conditions for
the next step;

- The maximum linearization error of the inverse response of the sensor in all but the
last interval is the same;

- The approach makes it possible to set a different maximum predefined error bound in
each subsequent interval.

The proposed generalized approach was tested in the linearization of the inverse sensor
characteristic of Type K thermocouples [37]. When the maximum approximation error
is set

∣∣∆t90
∣∣ = 0.04 ◦C in interval t90 ∈ [0, 1371.655 ◦C], the inverse sensory characteristic

t90 = t90(E) (representing a broken line) is described by 39 points (Figure 6).
The proposed generalized approach was also tested in the linearization of the inverse

sensor characteristic of Type J thermocouples [39]. When the maximum approximation error
is set

∣∣∆t90
∣∣ = 0.348 ◦C in interval t90 ∈ [−210, 760 ◦C], the inverse sensor characteristic

t90 = t90(E) (representing a broken line) is described by 16 points (Figure 11).
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