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Abstract: In recent years, affective computing has emerged as a promising approach to studying
user experience, replacing subjective methods that rely on participants’ self-evaluation. Affective
computing uses biometrics to recognize people’s emotional states as they interact with a product.
However, the cost of medical-grade biofeedback systems is prohibitive for researchers with limited
budgets. An alternative solution is to use consumer-grade devices, which are more affordable.
However, these devices require proprietary software to collect data, complicating data processing,
synchronization, and integration. Additionally, researchers need multiple computers to control the
biofeedback system, increasing equipment costs and complexity. To address these challenges, we
developed a low-cost biofeedback platform using inexpensive hardware and open-source libraries.
Our software can serve as a system development kit for future studies. We conducted a simple
experiment with one participant to validate the platform’s effectiveness, using one baseline and
two tasks that elicited distinct responses. Our low-cost biofeedback platform provides a reference
architecture for researchers with limited budgets who wish to incorporate biometrics into their
studies. This platform can be used to develop affective computing models in various domains,
including ergonomics, human factors engineering, user experience, human behavioral studies, and
human–robot interaction.

Keywords: human–robot interaction; low-cost; biometric; affective computing; wearable sensor;
user experience

1. Introduction

Biofeedback involves using electrical instruments to measure a person’s biometric
responses, including brainwaves, heart rate, skin conductance, facial expressions, respira-
tion, peripheral skin temperature, and muscle tone [1,2]. These biometric signals are often
referred to as physiological [3–5] and psychophysiological signals [6]. The applications of
biofeedback are broad and include medical purposes, such as physical and occupational
therapy [7–10], psychological clinics [11–14], and cognitive research [15–18]. To ensure
the accuracy and quality of their work, researchers often use medical-grade devices in
biofeedback studies. The results obtained from medical-grade equipment provide a compa-
rable standard for other research, which is particularly important for medical applications.
Therefore, the use of medically certified instruments in therapeutic studies is mandatory.
However, the high price of such equipment can be a significant barrier to its widespread
adoption. Manufacturers must acquire an FDA class II or CE IIa certification for their
products to meet medical certification requirements, making them excellent and reliable,
but costly.

1.1. Consumer-Grade Physiological Sensors Applied in Research

Cost can be a concern when using medically certified devices for non-medical pur-
poses [19]. In recent years, consumer-grade biometric devices have been extended to
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non-medical fields, such as measuring pupils’ attention in education [20], brain–computer
interfaces in human–computer interaction [21], workers’ mental load in human–robot col-
laboration [22], and affective computing [23,24]. Some consumer-grade biometric devices
have been reported to be as accurate as medical-grade products [25,26] or can be used for
health care purposes [27].

When selecting wearable sensors for Industry 5.0 applications, the two top features
to consider are system development kit (SDK) support for real-time data streaming and
wireless communication protocols. Three communication protocols are widely used in the
industry sector. Experts recognize that the Bluetooth Low Energy (BLE) protocol is much
more important than ANT+ and Wi-Fi. Every wearable device on the market supports BLE,
the mainstream communication protocol. Other features, such as weight and comfort for
workers without obstructions, are also important considerations [28].

Photoplethysmography (PPG) is prevalent in the application of individual health care [27].
Bolanos et al. [29] indicated that heart rate variability (HRV) derived from PPG has excellent
potential to replace the one from ECG. Recently, no significant differences have been reported
in the HRV features derived from PPG and ECG signals in time, frequency, and non-linear
domains [30]. However, PPG should be used only when the user is resting [31,32] due to
motion artifacts caused by the movement of the PPG sensor over the tissue, skin deformation
due to muscle contraction, and blood flow dynamics [33,34]. Nevertheless, an algorithm can
reduce movement artifacts using user kinematics data from embedded accelerometers [35].
PPG is a non-invasive, low-cost, and wearable wireless device that can be an alternative to
electrocardiogram (ECG) technology for heart rate (HR) monitoring. Although ECG has been
continuously improved in terms of measurement accuracy and wearing comfort, the flexibility,
portability, and convenience for users have not been enhanced [27]. In contrast, PPG does
not require several electrodes to be placed on specific body locations. Users can wear a PPG
device like a watch, with flexibility of movement, portability to any location, and convenience
to monitor HR all day. These features make PPG suitable for non-medical activities [27], such
as user experience studies [36]. In recent years, there has been an extension of the use of PPG
to non-medical fields, such as measuring pupils’ attention in education [20], brain–computer
interfaces in human–computer interaction [21,22], and affective computing [23,24]. Some
consumer-grade biometric devices have been reported to be as accurate as medical-grade
products [25,26] and can be used for health care purposes [27].

Two review papers [19,36] provide a list of consumer-grade EEG devices and a compre-
hensive literature survey for researchers’ reference. The key results are summarized below:
four brands, namely, NeuroSky, Emotive, Interaxon, and OpenBCI, provide consumer-
grade EEG products with high potential. Most EEG products are equipped with dry
sensors, single channels, and BLE or classical Bluetooth communication protocols to stream
data. The sampling frequency ranges from 128 to 512 Hz. The classification accuracy of
the machine learning algorithm for the responded study ranges between 60% to 90%, as
cited in the literature in the categories of cognition, education, entertainment, and brain–
computer interaction. When comparing the performance of the power spectra, NeuroSky
MindWave is similar to two medical-level EEG devices. Emotive EPOC is worse than the
benchmark medical-level rival, Interaxon Muse, which demonstrates lower reliability than
medical-level products. The results for OpenBCI resemble those of medical-grade devices.
Moreover, a random time lag is a common phenomenon in wireless EEG devices.

Consumer-grade electroencephalography (EEG) products have been widely accepted
for non-medical applications [19,36]. Similarly, PPG devices are popular for non-medical
health care [37,38]. Innovations in technology over the last decade have advanced consumer-
grade wearable sensors, enabling them to prosper in the market. The wireless, wearable,
and lightweight features make consumer-grade products capable of collecting data con-
tinuously with no time or location limits. As a result, users do not feel discomfort after
wearing such devices for a long period. In addition, they are easy to use and even novices
can handle them easily.
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In contrast, a medical-grade EEG system is accurate, but it comes at the price of
a complex structure and long setup time [36]. ECG does not offer users the flexibility,
portability, or convenience offered by medical-grade EEG [27]. Consequently, medical-
grade device applications are usually limited to the laboratory [19,36].

Another point to note is that for research requiring high data retention, reliable com-
munication, no real-time data transmission, and involving field investigations, wearable
devices with temporary memory storage should be considered, with data uploaded to
cloud servers at regular intervals. Examples of such research include investigations of
the relationship between human well-being and daily experiences [39] or the relationship
between human emotions and daily life events [40]. Physiological signals are excellent
objective metrics for such research, and when combined with subjective assessments from
participants, they can provide valuable insights. However, such studies involve scenarios
that are not pre-designed or controlled; therefore, experiments can only be conducted in
real-life settings. Carrying around another real-time data collection system is not feasible.

1.2. Relationship between User Experience and Users’ Emotional State

Norman coined and proposed the term “user experience” [41]; however, initially, this
term lacked a clear definition. Years later, Norman and Nielsen defined UX as “meeting the
exact needs of the customer” and “a joy to own, a joy to use” [42]. Some experts organized a
special interest group (SIG) to comprehensively investigate UX. There are many definitions
of UX in the survey results of the published literature or on the websites of UX organiza-
tions [43]. The conclusion of the SIG suggests that researchers may choose their preferred
definition from the identified list, which includes Norman and Nielsen’s definition.

The evaluation of UX traditionally uses participants’ self-evaluation through a ques-
tionnaire or personal interview after experiencing a product. This assessment method relies
on the participants’ subjective perceptions, and is referred to as subjective evaluation. In
contrast, UX evaluation based on biometrics is considered an objective method as it uses
signals generated from the human autonomic nervous system. The SIG mentioned in the
previous paragraph identified eighty-six UX evaluation tools [44], but only four of these use
physiological signals or facial expressions to assess UX. Therefore, thirty-three subjective
methods utilize emotion/affect/hedonic as the index for UX evaluation. This finding is
consistent with Norman and Nielsen’s definition, and implies that UX is related to a user’s
emotional state after experiencing a product. Moreover, the limited number of tools using
objective methods suggests that researchers should investigate this topic in greater depth.

1.3. Affective Computing as a Tool for User Experience Evaluation

Affective computing [45] is an algorithm that recognizes a human’s emotional state [46]
through biometric signals [47]. Accordingly, a user’s perceived pleasure while experiencing
a product estimated using biometrics might serve as a UX metric. When a user experiences
pleasurable emotions such as joy or positive valence for a product, it is reasonable to believe
that this product generates a good user experience. Conversely, a user responding with
anger or negative valence signals a poor user experience if. Instead of relying on a user self-
report assessment or verbal expressions—-referred to as subjective evaluation, and used in
traditional UX studies—-the affective computing applied in UX research is considered an
objective method [46]. Consequently, researchers interested in user experience (UX) use
affective computing to recognize users’ emotional states when they experience a specific
software or product [48–52].

Although subjective methods are related to the assessment target, the participants may
have cognitive bias [53] and may not be sufficiently robust [54]. An objective assessment
could compensate for this disadvantage [55]. Thus, subjective measures should not be the
sole metrics used to evaluate UX [49]. Using a subjective assessment of human emotion
may be unreliable since emotions are often swift, hard to perceive, and sometimes have
multiple states [56]. Additionally, participants may be afraid to confess their emotions to
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the researcher. Worse, some participants may answer questions by imagining what the
researcher expects them to say [56].

In contrast, an objective metric could assist researchers to fill the gap caused by using
subjective methods to evaluate the UX of a specific product. For example, a case study
evaluated participants’ user experience of three different virtual dressing websites using
verbal expressions and biometrics [56]. There was no difference between the websites in
terms of positive expressions resulting from verbal expressions. However, the percent-
age of engagement and attention, the positive/negative emotion, and the joy derived
from biometrics showed that the three websites differed. This result illustrates the value
of biometrics.

Moreover, affective computing can be applied in robotics to increase people’s enjoy-
ment while interacting with robots. Physiological signals were one of the elements acting
as medical robots’ human–machine interface. Using flexible electronics and devices makes
the interface biocompatible, functional, conformable, and low-cost, resulting in an excellent
user experience [57]. Service robots in the health care sector can aid patients with cognitive
obstruction via built-in affective computing algorithms [58]. In commerce, empowering
service robots with emotion recognition is a highly popular topic in research [59–64]. Some
emotion recognition databases are available for service robots [65,66]. Accordingly, users’
emotional state during the experience with robots is a critical metric of human–robot
interaction [67–69]. Affective computing algorithms built into robots allow machines to
recognize humans’ emotional states.

The present study focused on single-electrode electroencephalography (EEG), pho-
toplethysmography (PPG) technology in heart rate (HR), galvanic skin response (GSR),
and facial expressions, which are the biometrics frequently applied in affective computing
studies [4,70–84].

Although subjective methods are commonly used for UX assessment, they have some
limitations. For example, participants may have cognitive biases [53] or the methods may
not be sufficiently robust [54]. To compensate for these limitations, objective assessments
could be used [55]. Therefore, subjective measures should not be the only metric used for
UX evaluation [49]. Assessing human emotions subjectively can also be unreliable since
emotions can be swift, hard to perceive, and have multiple states [56]. Additionally, partici-
pants may be reluctant to reveal their emotions to the researcher, and some participants
may answer questions based on what they think the researcher expects them to say [56].

1.4. Motivations and Objectives

This research aims to assist researchers who are interested in applying affective comput-
ing to investigate human behavior but are limited by a restricted budget for medical-grade
instruments. While various consumer-grade alternatives are available, there are drawbacks
to using these commercial products. Firstly, most consumer devices only provide a single
biometric signal, which means that a study typically requires multiple physiological signals
from different manufacturers. This means the software is not an integrated system, such
as that used in medical-grade devices. Therefore, researchers must use multiple, specific
software programs simultaneously to collect data. Consequently, each instrument may
need an independent computer or mobile device, and software manipulation is more com-
plex than with an integrated system. Moreover, it is impossible to synchronize data from
different consumer alternatives in terms of timestamps, even with multiple experimenters
collaborating to press the buttons simultaneously. This can lead to a minimal time gap of
less than one second, which may be insufficient for some psychology studies. Finally, the
data processing of different signals distributed in many files can also be troublesome.

The objective of this research is to use affordable hardware and free software libraries
to develop a low-cost biofeedback platform for biometrics-related studies, such as human
factors engineering, user experience, human behavioral studies, and human–robot interac-
tion. The specific aim of the hardware is achieved by using consumer products or electronic
modules designed for Arduino makers rather than medical-grade instruments. Another
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objective of the software is achieved through the use of open-source libraries that can be
used free of charge. The software is an object-oriented programming (OOP) class that
serves as a software development kit (SDK), which can be reused for other research or as a
standalone biometrics collecting system. An SDK design allows researchers to integrate
data collection with their experimental stimulus into a single system through customized
coding. Nonintegrated devices require at least one additional computer beside the one
controlling the experiment stimulus [85]. Moreover, the integrated software simplifies
researchers’ manipulation during experimentation. A single button click triggers the stimu-
lus, and the data collection is synchronized. Therefore, the biofeedback platform developed
in this study improves the ease of operation in experiments and reduces equipment costs.

2. Methods

Design science research (DSR) is a problem-solving paradigm achieved through the in-
vention of innovative artifacts [86]. DSR has been adopted as a legitimate research paradigm
in the information system research community to develop innovative software [87]. The
design science research methodology (DSRM) is the most commonly applied model in re-
search communities [86]. One possible entry point in DSRM is problem-centered initiation,
where the ultimate goal is to design and develop an artifact for the identified problem. This
study aims to solve a problem that many junior researchers encounter by developing a
reusable hardware/software architecture. Accordingly, the DSRM framework is a suitable
paradigm for this study.

Figure 1 shows the development procedure of the low-cost biofeedback system in
this study. The DSRM paradigm involves six activities, with activity one being to identify
the problem and motivate, as stated in Section 1.4. Similarly, the objectives of this paper,
defined in activity two are also described in Section 1.4. The design and development,
demonstration, and evaluation in activities three to five are presented in the results section
below. The last activity, communication, is the purpose of this paper.
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Figure 1. The development procedure of the low-cost biofeedback platform using the design science
research methodology.

3. Results
3.1. Using Biofeedback Sensors with Arduino
3.1.1. Activity 3: Design and Development

During the first stage of hardware selection, biofeedback sensors for Arduino were
identified as the preferred choice due to their cost-effectiveness. Table 1 presents the survey
results of the available sensors in Taiwan’s makers market. These sensors can be purchased
from local suppliers or manufacturers’ websites worldwide.
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Table 1. Available EEG, HR, and GSR sensors for Arduino makers in the local market.

Sensor Manufacturer Model

EEG Twarm.com NeuroSky TGAM MDL0026
GSR SEEED Grove-GSR_Sensor V1.2
HR SEEED Grove-Finger-clip Heart Rate Sensor

SEEED Grove-Ear-clip Heart Rate Sensor
SEEED Grove-Chest Strap Heart Rate Sensor

DFRobot Heart Rate Monitor Sensor (PPG)
DFRobot Analog Heart Rate Monitor Sensor (ECG)

World Famous Electronics LLC. Pulse Sensor

Many third-party companies manufacture EEG solutions using only NeuroSky’s
ThinkGear ASIC Module (TGAM). The TGAM module generates EEG signals automatically,
while its EEG module board integrates a classical Bluetooth module, HC-06, which makes
it easy to connect to a personal computer. This allows users to easily access the EEG signals
via the PC’s COM port. The TGAM module provides eight spectrum signals and two
eSense meters, which measure attention and meditation. Another feature, Poor Signal,
provides signal quality information for users. Ideally, the value of Poor Signal should be
zero. All the spectrum features are calculated from the raw EEG values by an algorithm
inside the integrated circuit, updated with a frequency of one Hz. However, the sampling
rate of the raw EEG values is 512 Hz.

Three PPG-type sensors were selected for HR monitoring from six modules designed
by three companies. All three products have one LED to emit green light and one pho-
totransistor to receive the reflection from the veins. Since this low-cost system could be
applied in field studies in the future, the ease of applying the sensor on the human body
and its esthetic appearance were considered. Therefore, chest strap products were excluded.
Ear clip sensors were also excluded because of their unattractive appearance, which could
discourage people from participating in research. Consequently, the Heart Rate Monitor
Sensor for Arduino, Pulse Sensor, and Grove-Finger-Clip Heart Rate Sensor with a shell
were selected for the next activity.

Moreover, only one GSR device designed by SEEED is available in the market. Grove-
GSR Sensor measures the resistance of humans. However, the value measured by a sensor
is noisy. Therefore, a high-pass filter should filter the data before being applied. This
research used a simple moving-average method to reduce the effect of the white noise
generated by the sensors (EEG and GSR). Although the unit of measured GSR value is
intensity, the manufacturer offers a formula to convert an intensity value to Ohm.

Thus, this study selected one EEG, one GSR, and three HR sensors from the discrete
physiological sensor for Arduino makers in the design and development activity.

3.1.2. Activities 4 and 5: Demonstration and Evaluation

We utilized the library provided by the HR and GSR sensor manufacturer to develop
a simple program in Arduino Studio to test the functionality. The EEG test program was
developed using Python. In addition to the desired function, the quality and stability of
the biometric signal were evaluated. Furthermore, the generated signal had to be clear and
without interruption for two hours. User feedback on the comfort of wearing the sensor
was also considered. Only when all of these criteria were satisfied, a specific physiological
sensor was adopted.

The TGAM module was excluded from the current research because the value of
Poor Signal was not zero most of the time during our trials. In addition, the values of the
EEG signals oscillated significantly during connection. These signals were gathered by a
program using NeuroSkyPy, a Python package for the NeuroSky TGAM module in the
Python Package Index (PyPI), with Python 3.10, and executed in console mode.

A similar issue with EEG occurred with the HR sensors. Although all three products
successfully measured people’s heart rates, they did not work constantly. Sometimes,
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people’s heart rate was lower than 50 beats per minute. Consequently, the three devices
were unable to sense people’s heart rates at times. Since all three candidates were too
unstable to work properly, the signal quality was poor. Therefore, the heart rate monitor
for Arduino was not applied to the low-cost biofeedback system in the current study.

Fortunately, the GSR test result with members from our laboratory satisfied the desired
criteria. Therefore, this GSR sensor for Arduino makers was chosen for the low-cost
biofeedback system.

To summarize, GSR is the only sensor for Arduino makers used in this study. The
study also considered EEG and heart rate monitor sensors from consumer-grade devices
on the market. The development process iterated back to activity three.

3.2. Using Consumer-Grade Biofeedback Devices
3.2.1. Activity 3: Design and Development

There are numerous consumer-grade EEG devices available on the market, including
products from NeuroSky, Emotiv, Interaxon, and OpenBCI, as suggested by Sawangjai and
colleagues [19]. The most critical condition for the current project was PyPI open-source
library support. Table 2 summarizes the characteristics of the libraries for the target EEG in
this study. For an open-source package, the essential consideration is whether a specific
team maintains and documents the usage of the library. The version, release date, and
documentation of the library on the website are crucial features to consider. The second
condition was that the implemented library operation system had to be compatible with the
platform used in this study, namely, Windows. All four products satisfied the requirements
of the current study.

Table 2. Available EEG library for targeted consumer devices in PyPI.

Designer Library Version OS Release Date DOC

NeuroSky NeuroSkyPy 1.6 Windows 24 January 2020 Yes
Emotiv pyeeg 1 0.0.2 Windows 31 March 2021 No

Interaxon Muselsl 2.2.1 Windows, 2 June 2022 Yes
Mac,

Linux,
POSIX,

OpenBCI pyOpenBCI 0.13 Windows 28 May 2019 Yes
Mac,

Linux 2

1 Only supports 5 channel products. 2 Ganglion only runs on Linux. Cyton runs on all OSs.

The next step was to physically evaluate the hardware. All the target products are
available on the local market. However, only NeuroSky has agents in Taiwan, making
it the only product we could physically evaluate before purchase. BrainLink Lite is a
headband-type EEG that uses NeuroSky’s TGAM, designed by Macrotellect. The electrodes
in the headband make firm contact with the forehead, so the user does not feel pain like
with other products that use ear clip electrodes for the ground or referred potential. The
TGAM module integrates Bluetooth and chargeable lithium cells, and packages these in a
tiny plastic shell, making the product light for users to wear. Consequently, users feel more
comfortable than with other EEG products. BrainLink’s light, thin, and tiny features make
it compatible with head-mounted MR headsets, such as HoloLens 2 (Figure 2). Thus, it is
hoped that BrainLink Lite can be used to collect EEG data on the user experience evaluation
of XR.

Heart rate monitors have become popular in recent years. Not every device displays
heart rate information on the hardware display, but all the products share information
through Bluetooth Low Energy (BLE) with the specific GATT specification. Developing a
low-cost and open-source biometrics system could take advantage of BLE’s standard heart
rate specification to simplify integration.
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Although wristband-type products with heart rate monitor functions are prevalent
in the market, most of them can access the information only from the software or mobile
application provided by the manufacturers. Commerce competition limits the alternatives
of heart rate application in low-cost and open-source biometrics systems. Nevertheless, the
patented optical sensor technology in the Rhythm+2.0 heart rate monitor utilizes green and
yellow LEDs to measure blood flow for a highly accurate reading with all skin tones [35].
A built-in accelerometer, which is applied to solve the motion artifacts issue caused by
human movement [27], assists in providing hyper-accurate measurement. Since the yellow
LED improves measurement accuracy for Asian people, the current study considered
Rhythm+2.0 as the heart rate monitor for the low-cost, open-source biometrics system.

3.2.2. Activity 4 and 5: Demonstration and Evaluation

A demonstration involved using the Python code developed earlier for the NeuroSky
TGAM device to ensure stable signal quality index (i.e., Poor Signal = 0). This confirmed
the suitability of BrainLink Lite for this study.

Additionally, a BLE communication program was developed in Python using the
bleak library to validate the readings of the Rhythm+2.0 device, which showed heart rate
values between 60–90 beats per minute for various members in our laboratory during the
validation stage. As the readings were reasonable for individuals in a benign condition, the
Rhythm+2.0 device was utilized in the current study.

All the required biofeedback devices were selected based on the nominal procedure
of the DSRM paradigm, and the project iterated back to the final stage of the design and
development activity.

3.3. Building a Low-Cost Biofeedback Platform
3.3.1. Activity 3: Design and Development

Another biometric feature, emotion reflected on a person’s face, can be quickly cap-
tured using a webcam. Any webcam connected to a computer is generally capable of
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this function. However, this study employed a mainstream commercial product, Logitech
StreamCam, to access users’ faces.

Once all the psychophysiological devices were determined, an integrated biofeedback
system was developed using Python 3.10. The system featured a graphic user interface
(GUI) for excellent usability. The GUI allows the user to input the required information, such
as experiment name, treatment of experiment, participant identification, and experiment
run. After the necessary data are entered, the sequential operations of the biofeedback
system can be performed by clicking ordered buttons from left to right. As the sensors
communicate with the integrated system, the psychophysiological signals are displayed
on the GUI to make the users aware of the sensors’ working status under experimental
conditions. All the signals were respectively represented on a trend chart, and the graphics
were updated dynamically with a frequency of one Hz. However, the sampling frequency
of the biometrical signal depended on the manufacturer’s design.

This study used BLE as the communication protocol of the low-cost system, in line with
the survey results in Section 1.1. This is because BLE is recognized as an essential part of the
application of wearable sensors. Apart from the physiological sensors mentioned earlier, an
ESP32 development board, WEMOS LOLIN32, was used to broadcast the measured value of
the GSR sensor. WEMOS LOLIN32 is equipped with features such as BLE communication,
it is tiny in terms of size, and is rechargeable using 3.7-volt lithium cells. The GSR value
was broadcast with a customized GATT using this package at a frequency of 125 Hz. Its
small size was essential for a wearable device, while the rechargeable 3.7-volt lithium cells
were light and easy to apply. The experimenter could quickly recharge the battery through
the USB-D type interface.

Figure 3 shows the sensors/devices used in this research. Our solution costs less
than USD one thousand compared with any medical-grade biofeedback system. Table 3
summarizes the free libraries that were used in the low-cost biofeedback system. The
sampling frequency of each physiological characteristic is also listed.
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To make the system easy to use, we designed a GUI (Figure 4) using PySide6 to interact
with the experimenter. EEG data were collected through COM port using NeuroSkyPy;
HR and GSR values were accessed via BLE GATT using bleak; and face images were
captured via a webcam and processed using OpenCV-python. All the data were visualized
through dynamic graphs utilizing pyqtgraph. The graphs on the GUI were updated every
second, with each update renewing 512 readings of EEG raw value, 125 readings of GSR
intensity, and one reading of HR (Figure 4). Table 4 shows the definition of the EEG powers
derived by NeuroSky TGAM. Although the powers and eSense meters were not shown
on the GUI, they were recorded and saved with other signals when the save button was
clicked. Moreover, the software applied a multithreaded framework to integrate these
signals effectively.
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Table 4. EEG powers derived from NeuroSky TGAM.

Power Range

delta 0.5–2.75 Hz
theta 3.5–6.75 Hz

low-alpha 7.5–9.25 Hz
high-alpha 10.0–11.75 Hz
low-beta 13.0–16.75 Hz
high-beta 18.0–29.75 Hz

low-gamma 31.0–39.75 Hz
mid-gamma 41.0–49.75 Hz

3.3.2. Activity 4: Demonstration

To validate the low-cost, open-source biometric integrated system developed in this
study, we conducted a simple experiment with one participant. The experiment consisted
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of one baseline lasting one minute and two tasks lasting ten minutes each. The tasks were
designed to test the system’s ability to handle different circumstances.

The first task involved playing a popular first-person shooter (FPS) game, DOOM
Eternal, using a physical keyboard and mouse. This task was referred to as the “2D
game” since the screen is a two-dimensional environment. Figure 5 shows a screenshot of
the game.
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The second task was to prepare the presentation slides using Google Slides in a mixed-
reality (MR) environment. This task, which was called “3D slide” for MR science, involved
a 3D environment. Figure 6 shows the screen when a user tries to prepare slides using
HoloLens 2.
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There are no reports in the literature regarding the emotional response to using
HoloLens 2 to create a slide. However, all the members who participated in the trial run
complained about the task and provided feedback that was very different compared with
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the 2D game. We were only able to confirm that the 3D slide elicits a different response to
the 2D game.

Previous research [88] has shown that participants with varied experience levels
perceived a more positive than negative affect in three FPS games, including the previ-
ous version of DOOM. As a result, the shooting game was assumed to create a positive
emotional user experience.

3.4. Activity 5: Evaluation

All of the physiological signals collected by the low-cost biofeedback system showed
differences between the two designed scenarios in the experiment. Figures 7–9 display the
EEG raw values, HR, and GSR, respectively. Each signal has readings in the baseline, the
2D game, and the 3D slide, respectively. The unweighted mean number of data points is
100 for EEG and 125 for GSR. Because there is a considerable amount of data in the EEG
raw values and GSR, it means the differences are not easy to observe in the limited width
of a graph. Therefore, only the first 600 data points (aligned with the number of HRs) were
truncated and displayed in Figures 7 and 9.
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Figure 7. Raw EEG readings in the baseline, 2D game, and 3D slide.
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Figure 8. Heart rate readings in the baseline, 2D game, and 3D slide.
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Figure 9. GSR readings in the baseline, 2D game, and 3D slide.

In addition, this study conducted two sample t-tests based on the data in Figures 7–9.
Each signal had three types of t-tests (baseline vs. the 2D game, baseline vs. the 3D slide,
and the 2D game vs. the 3D slide). Table 5 summarizes the nine t-test results. All significant
differences (p-value < 0.05) indicate that the biofeedback system developed in this study
has the potential to be applied in future studies.

Table 5. Two sample t-test for HR, GSR, and EEG raw data use paired combinations for the baseline,
2D game, and 3D slide conditions.

Comparisons t-Value p-Value

HR: 2D game vs. baseline t658 = 2.24 0.026
HR: 3D slide vs. baseline t658 = −11.17 <0.001
HR: 2D game vs. 3D slide t1198 = 27.85 <0.001
GSR: 2D game vs. baseline t1198 = −91.47 <0.001
GSR: 3D slide vs. baseline t1198 = −31.74 <0.001
GSR: 2D game vs. 3D slide t1198 = −36.70 <0.001

EEG Raw: 2D game vs. baseline t1198 = −2.02 0.043
EEG Raw: 3D slide vs. baseline t1198 = 4.17 <0.001
EEG Raw: 2D game vs. 3D slide t1198 = −5.28 <0.001

Although the derived EEG power signals are not shown in Figure 6, Table 6 displays
the saved powers. The derived power signals were updated with a frequency of one Hz
and had no noise (Poor Signal is zero). Figure 10 shows the users’ facial expressions at the
beginning of the 2D game and during the 2D game, respectively. A smiling face during the
game experience is distinguished from a neutral face before the game starts.

Table 6. Derived EEG powers dataset (part).

Sequence Poor
Signal Attention Meditation Delta Theta High

Alpha
Low

Alpha
High
Beta

Low
Beta

Mid
Gamma

Low
Gamma

0 0 66 77 2414 4479 1085 3016 2274 7953 3891 4919
1 0 48 81 225175 207487 39649 27987 24423 15753 49699 11359
2 0 50 67 89096 26396 4230 7523 9308 4242 3581 5368
3 0 40 51 485739 659212 59886 134022 52701 71614 71203 31691
4 0 40 56 86695 45658 15004 30145 25936 24866 31767 25100
5 0 57 47 11212 29726 4074 2742 35128 11414 13355 37743
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Table 6. Cont.

Sequence Poor
Signal Attention Meditation Delta Theta High

Alpha
Low

Alpha
High
Beta

Low
Beta

Mid
Gamma

Low
Gamma

6 0 69 38 18924 18845 4427 5056 39467 27661 14828 21849
7 0 84 35 51547 48415 12819 9886 30886 37115 19827 21989
8 0 78 29 304630 113782 2388 30708 13421 11459 8432 22863
9 0 61 34 706916 266871 11765 32688 26741 9476 8145 21529

10 0 57 37 368630 24306 7170 5785 39560 10214 53417 37668
11 0 61 38 6043 20863 8923 7053 26674 20595 31412 23924
12 0 74 34 121654 20911 3792 2298 13380 5358 7991 4227
13 0 83 34 793945 107148 7736 13083 43273 12841 25614 52645
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smiling during the 2D game (right).

4. Discussion
4.1. Considerations of Selecting Sensors for Arduino Makers

When selecting EEG products, researchers should take into account the utility fre-
quency. There are two power line frequencies used worldwide: 50 Hz and 60 Hz, depending
on the region or country. If an EEG device uses a different frequency from the electricity
system in the researcher’s region or country, the signal will be biased from the correct
value due to noise. The TGAM module for Arduino makers in this study is designed for
users with a 50 Hz utility frequency. Therefore, the poor signal was not zero, indicating the
presence of noise because the power frequency in Taiwan is 60 Hz.

There are many PPG-type HR sensor options available in the makers’ market, and
every manufacturer provides example codes and libraries for their users. However, the
stability of acquiring the signal successfully and the accuracy of the reading value are
not reported by the manufacturers. Due to the limitations of PPG technology, researchers
have suggested using an LED matrix instead of a single LED to increase accuracy and
stability [27]. Therefore, manufacturers targeting Arduino makers should endeavor to
improve reliable measurement with more LEDs. However, consumer HR monitors with at
least two LEDs are popular. The Rhythm+2.0 used in this study uses an extra yellow LED
to obtain a more accurate measurement for Asian people [35].

All consumer HR monitors support the BLE function with a unique UUID, which
makes accessing data with mobile equipment through applications quick. Unfortunately,
most mainstream products can only be accessed through the specific software provided by
the manufacturer. As a result, researchers wishing to integrate consumer-grade HR devices
into their research face data processing difficulties. Investigators are usually interested
in specific events in their research, and precise logging of the start/end time point when
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the onset occurred is complex, requiring more effort when using this type of product
in research.

4.2. Performance of the Low-Cost Biofeedback Platform Developed in This Study

While no noise obstructs the EEG signal with a 60 Hz chip, the poor signal is always
zero (Table 6). The waveform obtained from the BrainLink Lite device (Figure 4) closely
resembles those reported in the literature. The raw values obtained from the two different
tasks show differences (Figure 5), indicating that the single-electrode wireless EEG can be
applied in human behavior studies. This finding is consistent with the literature [89,90].
Although it is difficult to explain the meaning of EEG raw values directly, a noticeable
difference exists (Figure 7). Further power analysis (Table 6) could help to explain the
results more comprehensively.

In contrast, the heart rate (HR) readings can directly explain the relationship between
experimental settings. For example, the heart rate of the 2D game (Figure 8) was consistently
higher than for the 3D slide, which suggests that the 2D game elicits more excitement from
the player.

Similarly, the GSR sensor for Arduino makers clearly distinguished between the 2D
game and the 3D slide. Unlike the HR, the GSR signal in the 2D game was consistently
lower in intensity than the signal in the 3D slide (Figure 9). This finding suggests that
the user may have felt more relaxed during the 2D game than during the 3D slide. This
is because the former is more enjoyable, while the latter is more frustrating. Our results
demonstrate that HR and GSR can be used to evaluate whether the user experience is
consistent with the literature [49].

In addition, facial expressions captured by a regular webcam and a mixed-reality
headset have been validated as a means of emotion recognition in UX studies [52]. Figure 10
shows the facial expressions in neutral and delighted states during the 2D game in our
study. Furthermore, the results of the EEG, HR, GSR, and facial expressions validate that
the signals captured by our low-cost biofeedback system match the designed experimental
conditions. Therefore, the platform developed in this study has the potential to be applied
in future UX studies, which satisfies the first aim of our study.

While low-cost biofeedback studies have been reported in the literature, their number
is limited. Moreover, the existing literature reports that the hardware used was limited [1];
had a simple user interface for recording, event-marking, and downloading data without
integration with the experiment control [91]; or required another computer to execute the
experiment [26]. Some studies, such as event-related potential research, require precise
biometric accuracy in milliseconds at the occurrence of the event of interest [92]. However,
the existing literature cannot meet this specific requirement.

This study aimed to integrate low-cost biofeedback hardware with graphic user inter-
face software using open-source libraries to demonstrate its ability to differentiate between
design contexts. Biofeedback was used as standalone equipment, without integration with
the experiment stimulus. However, the GUI was an object-oriented programming class that
can serve as an SDK. Researchers can customize the SDK with their experiment stimulus
and synchronize it if necessary, allowing for precise biometric recordings when the desired
event occurs in the future. This study achieved its second aim by integrating data collection
and experiment control within one single computer system.

While consumer-grade wearable devices have been widely used in non-medical appli-
cations, researchers need to understand whether the devices they choose satisfy the tech-
nical requirements of their study objectives. Compared with medical-grade instruments,
consumer-grade products have lower sampling rates, less accuracy, a time lag in real-time
data streaming, and may even experience data loss, as indicated in the introduction of this
paper. These limitations can result in research failing to achieve desired outcomes.

Researchers can utilize the wearable and lightweight biofeedback system to conduct
laboratory or field research. Moreover, the low-cost platform’s convenience facilitates the
construction of a database based on physiological signals for the development of machine
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learning models. This database is crucial for affective computing that is used in various
fields, such as ergonomics, human factors engineering, user experience, human behavioral
studies, and human–robot interaction.

5. Conclusions

Although self-developed physiological data collection systems are reported in the
literature, they typically consist of either a single sensor for collecting one type of signal or
multiple sensors that are used independently with various personal computers and software
to collect data To the best of our knowledge, the present study is the first to emphasize the
importance of integrating low-cost individual sensors and consumer products into a single
biofeedback system, developed using open-source software, to create a reusable SDK for
future studies.

This low-cost biofeedback solution is still at an experimental stage, and more research
is required to investigate integrated experimental stimuli. Additionally, other physiological
signals, such as electromyography (EMG) or eye-tracker, should be considered in future
efforts to integrate the biofeedback platform. Wireless EMG sensors are readily available in
the Arduino makers’ market, while all mainstream eye-tracker manufacturers have recently
supported open-source Python libraries. A PyPI eye-tracking library for general webcams
is also available. The open-source movement has enabled the availability of a diverse and
rich low-cost biofeedback platform.

A summary of the significant contributions of the current study are listed below.

1. Our results demonstrate the possibility of identifying different physiological signals
in varied circumstances. This result suggests the potential for using a low-cost biofeed-
back system in non-medical research, such as ergonomics, human factors engineering,
user experience, human behavioral studies, and human–robot interaction.

2. Using the self-developed system, researchers can integrate the biofeedback platform
with different stimuli in various research contexts. By simultaneously recording
the time points of various events and physiological signals, researchers can reduce
the effort required for post-data processing while increasing the accuracy of time
alignment to a specific event.

3. Instead of using expensive medical-grade products, the success of the low-cost biofeed-
back system can serve as a reference framework, benefiting researchers who have
limited budgets for equipment and biofeedback system development.

4. The lightweight hardware makes the devices convenient to wear in ambient laborato-
ries or in field studies.
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