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Abstract: To date, comprehensive reviews and discussions of the strengths and limitations of Remote
Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in
archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss
existing studies that have applied these advanced approaches in archaeology, with a specific focus
on digital preservation and object detection. RS standalone approaches including range-based and
image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages
in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have
led some archaeological studies to fuse/integrate multiple RS datasets to overcome limitations and
produce comparatively detailed outcomes. However, there are still knowledge gaps in examining
the effectiveness of these RS approaches in enhancing the detection of archaeological remains/areas.
Thus, this review paper is likely to deliver valuable comprehension for archaeological studies to fill
knowledge gaps and further advance exploration of archaeological areas/features using RS along
with DL approaches.

Keywords: digital archaeology; Remote Sensing; hidden features; digital preservation; standalone
approaches; fusion approaches; photogrammetry; LiDAR; Deep Learning

1. Introduction

Geospatial data derived from Remote Sensing (RS) standalone, e.g., Laser Scanning
(LS) and photogrammetry, and combination approaches are being increasingly used for the
digital preservation of archaeological information [1–7]. The effective application of these
approaches is important, since there are hundreds of archaeological sites worldwide that
have already been destroyed [8], and once an archaeological site is changed/distorted it is
difficult to reconstruct it digitally without using appropriate and robust geospatial datasets.
Some conservation studies, e.g., Moussa [1], Liang et al. [2], and Jaber and Abed [9], have
used multi-RS data fusion to minimise the limitations (e.g., occlusion, Level Of Detail
(LOD), precision) associated with standalone approaches and to generate relatively more
detailed three-dimensional (3D) products.

Geospatial data have remarkable value in archaeological practice, as they are likely
to contribute to the preservation of endangered sites for future generations [10,11]. These
digital data can also be applied to discover new archaeological areas and detect previously
unknown archaeological remains [12]. RS standalone and combination approaches in
archaeology have a variety of applications, ranging from virtual reality consideration
methods and 3D models to data storage, interpretation, and visualization; all possible
without exposing sites to the prospect of demolition/excavation [13]. In parallel with
the use of geospatial data, over the last several years, several archaeological studies have
started applying Artificial Intelligence (AI) approaches, such as Machine Learning (ML)
and Deep Learning (DL), to analyse RS datasets. These AI approaches are being used for
the classification, identification, and segmentation of archaeological features.
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The intention of this literature review is to review and critically discuss the findings of
previous archaeological studies that have adopted RS (standalone and fusion/integration)
approaches and DL techniques. This review highlights the importance of these approaches
in detecting and preserving archaeological sites, and identifies a number of critical re-
search gaps.

Advanced Archaeological Techniques

Non-invasive techniques are applied in archaeological applications [14]. These tech-
niques include RS standalone and combination approaches, and AI techniques are also
used in archaeology. RS approaches are a further aspect of geophysical techniques. They
are neither destructive nor invasive, and can accurately measure spatial data and attribute
information (shape, size, areas) about AOIs.

The previous review paper led by Adamopoulos and Rinaudo [15] discussed the ap-
plications of UAV-based remote sensing approaches reported in archaeology. In this paper,
we aim to discuss the applications of RS approaches that are particularly based on laser
scanning and photogrammetry in detecting and preserving archaeological remains. Many
archaeological studies have applied RS standalone approaches (e.g., photogrammetry, Ter-
restrial Laser Scanning (TLS), and Light Detection and Ranging (LiDAR)) and combination
approaches to reveal archaeological features and digitally preserve them. Object detection
with DL is another advanced technique that has been adopted in archaeology in the last
three years (since 2018) [16]. It semi-automatically detects objects based on raster images
derived from RS approaches, as well as determines the likelihood of predicted features.
These merits can be achieved through RS approaches without causing any damage/change
to a site with respect to the original remains [17,18]. Previous studies are actively re-viewed
and critically discussed in the following sections in order to identify research gaps. This
review is divided into three sections: RS standalone approaches, including image-based
modelling (photogrammetry) and range-based modelling, e.g., TLS and LiDAR; RS com-
bination (integration and fusion) approaches; and object detection with DL (Figure 1).
Previous studies have referred to combination, integration, fusion, and blending/merging
terms as interchangeable terms. The research led by Kadhim et al. [19] referred to the
fusion approach as a combination of 2D images with digital models (DSM/DTM) to create
a fused model. In contrast, the term integration denotes a combination of raster images
(2.5D image) derived from two different sources (LiDAR and photogrammetry).

Studies that adopted these approaches were collated from the database Scopus (http:
//www.scopus.com/) (accessed on 15 January 2023). Three filters were used to identify
previous studies: For the standalone approaches, the key terms of “archaeology”, “hidden
features”, “buried features”, “digital preservation”, “documentation”, “cultural heritage”,
“3D modelling”, “3D reconstruction”, “GIS “, prospection”, “remote sensing”, “photogram-
metry”, “aerial images”, “UAV” “Laser scanning”, “LiDAR”, “Terrestrial Laser Scanning”
were used. The second filter was related to the RS combination approaches, and the key
terms used were: “combination approaches”, “fusion”, “integration”, “merging”, “remote
sensing”, “prospection”, “archaeology”, “cultural heritage”, “documentation”, “digital
preservations”, “3D models”. Lastly, the third filter was for artificial intelligence, and the
key terms used were “artificial intelligence”, “CNN”, “ANN”, “object detection”, “deep
learning”, “training data”, “prospection”, “remote sensing”, “archaeology”. A number of
scientific publications were obtained from the database Scopus (Figure 2). Results were cat-
egorized into three groups: (1) standalone, (2) combination, and (3) AI techniques in digital
archaeology. Further relevant publications were identified from the citations/references of
the studies identified from the database Scopus.

http://www.scopus.com/
http://www.scopus.com/
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identifying archaeological features. The figure illustrates that there is a continuous and increasing
trend of studies with the applications of LiDAR, photogrammetry, and AI techniques in archaeology—
from 2010 to 2022.
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2. RS Standalone Approaches

As presented in Figure 2, many archaeological studies have applied RS standalone
approaches, e.g., individually, TLS, LiDAR, and photogrammetry [7,13,18,20–36]. The main
reasons for applying such approaches in archaeology are to assess the quality (accuracy
and precision) of the delivered data, create 3D models, and discover hidden archaeological
areas/features.

Photogrammetric models for archaeology had been rarely used prior to 2003, but
since the emergence of the Structure from Motion-Multiview Stereo (SfM-MVS) method,
it has been widely used for modelling historical areas [13,35,37]. LS has also become a
popular technique to observe archaeological areas/constructions and create 3D models [38].
Early work by Hodge et al. [39] found that the high level of automated photogrammetric
processing can provide an opportunity for efficiently creating visual data of AOI. However,
the final products might not have adequate qualities for applications that require centimetre
precision (such as monitoring deformation), which could be obtained from LS data. This
finding also accords with the observations by Nuttens et al. [21], who carried out an
accuracy assessment of TLS and photogrammetry by establishing Ground Control Points
(GCPs) in a cultural site (Sint-Baafs Abbey in Belgium). They argued that these techniques
should not only be applied to create 3D models, but also to determine the model accuracy
of archaeological areas. Nuttens et al. [21] found that TLS errors were two times smaller
than those obtained from photogrammetry. However, aerial photogrammetry is the most
effective method for modelling the roof of archaeological constructions compared to other
non-invasive methods, e.g., TLS and terrestrial photogrammetry, due to their inability to
capture the top perspectives (rooftops) [1,9,26,40]. Accordingly, detailed digital 3D models
could be, arguably, created by aerial photogrammetry.

The observations of TLS in archaeology were proposed by Nuttens et al. [21] and
Hodge et al. [39], studies that established LS as an appropriate approach for modelling
archaeological sites. The LS system has the capability to capture dense point clouds that can
be processed to produce relatively highly accurate 3D models. Fassi et al. [22] disagreed
and debated whether the accuracy and resolution of LS could be adversely affected by
environmental conditions. For instance, wind, temperature, dust, raindrops, and fog
are not ideal conditions for conducting fieldwork using LS [41,42]. A similar conclusion
was reached by Grenzdörffer et al. [26], as they evaluated the limitations of the TLS and
stated that the incident angles and the range (distance between laser beams and an object)
relied on the reflection properties of the surface properties. The range measurement was
also examined by Shanoer and Abed [29], who observed the Root Mean Square Errors
(RMSE) of the TLS data for cultural heritage preservation. They found the RMSE of
the minimum measurement range (3.5 m) in a Stonex X300 TLS device (www.stonex.it)
(accessed on 27 November 2022) was 0.006 m, while the RMSE of a 7-m measurement range
was 0.012 m. Therefore, the accuracy of the TLS modelling tends to be higher than those
of photogrammetry, yet other factors (range measurements, incident angle, and surface
properties) could adversely impact the quality of the modelling.

With regard to the data quality comparison between photogrammetry and LS, the
work of Grenzdörffer et al. [26] determined the deviations between the LS and photogram-
metry in modelling an ancient building (Cathedral of St. Nikolai in Germany) and found
that the average deviations between the two observations were fluctuating from 0.02 m to
0.03 m. The outcome of the latter assessment means that the differences between these two
techniques are not significant. The accuracy of the 3D models derived from photogramme-
try was also examined by Hatzopoulos et al. [13], who employed the SfM photogrammetric
method to reconstruct archaeological monuments/features. They yielded centimetre pre-
cision, relying on GCPs as well as camera exposure positions. Marín-Buzón et al. [36]
also found that the SfM photogrammetry provided the most accurate data, compared
to TLS data, for archaeological excavations. The main differences between LS and pho-
togrammetry are summarised in Table 1. Shanoer and Abed [29] claimed that the TLS data
must be interpreted and assessed based on the registration methods. They applied two

www.stonex.it
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fine registration algorithms—Levenberg-Marquardt Iterative Closest Point (LM-ICP) and
Nearest Neighbour Iterative closest point (NN-ICP). The average registration errors were
reported as 0.0026 m and 0.0039 m for the LM-ICP and NN-ICP, respectively.

Table 1. The limitations of LS and photogrammetry.

Limitations Photogrammetry Laser Scanning

Accuracy Centimetre accuracy (geotagged
images). Millimetre accuracy.

Modelling
Texturing and coloring are
relatively better
than LS.

Relatively better in penetrating and
detecting features covered by dense
vegetation.

Time

Data collection: depends on area
coverage,
number of exposures,
overlap, speed.
Processing: with advanced methods
(e.g., the SfM), it might take less
time than
LS processing.

Data collection: scans thousands of
points per second, but the time
relies on area coverage, number of
stations.
Processing: it might take longer.

Cost (£) >500 depending on drone and
camera types. Around 100,000

Weight (g) ~2000 Around 14,000

The standalone RS approaches are not only applied to create detailed 3D models,
but also to detect new archaeological areas/features. The use of these approaches for the
detection of archaeological areas has been critically demonstrated in several archaeolog-
ical studies [23,27,43–47]. More specifically, RS techniques including LiDAR and aerial
photography can be adopted to both automatically and manually identify archaeological
topographies [20,48,49]. LiDAR and Photogrammetry-derived digital models have been
adopted in several archaeological projects to demonstrate how RS approaches can be used
to identify, interpret, and assess the characteristics of archaeological sites [49–52]. For
example, the DTMs generated from LiDAR data of Devil’s Furrow in the Czech Repub-
lic were used to identify terrain discontinuities, such as tracks and erosion furrows [23].
Bachagha et al. [43] illustrated the capability of DSM derived from LiDAR data along
with 1-m resolution satellite imagery in identifying possible hidden ancient areas in Wadi
El-Melah Valley in Gafsa, Tunisia. Based on spatial and pixel-based analysis methods,
Bachagha et al. [43] discovered two possible Roman forts. These findings suggest that
the combined application of RS datasets is a robust approach in archaeological prospec-
tion due to the detailed information that was obtained in terms of detection, localization,
classification, and mapping of ancient features.

The raster images derived from DSMs/DTMs are being used towards the further
successful detection of archaeological features [44,53]. Specifically, several Visual Analysis
Techniques (VATs), e.g., hillshade, gradient, aspect, and Sky View Factor (SVF) derived
from digital models, are applied to highlight topographic features of AOIs. VATs are
adopted to identify topographic features and improve the understanding of archaeological
areas. The gradient raster emphasises the altitude variations in AOIs, while aspect images
show the directions of altitude variations [53]. In Bennett’s study [53], mounds and a
potential new shell ring were detected through gradient and aspect images, as well as
other VATS (e.g., hillshade). Cowley et al. [44] generated hillshade raster from LiDAR
data (1 point/m2 point density). This raster successfully identified several archaeological
features of AOI (Barwhill in the north of Gatehouse of the Fleet in Scotland). Examples of
these detected remains are linear features that represent old water drainage and a Roman
road. However, features could not be extracted from hillshade images, in some cases, the
influence of the illumination in hillshade raster generates distortion and, in some cases, led
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to obscuring topographic features and hiding some archaeological remains [45]. Thompson
and Prufer [27] support the claims of the previous observations, e.g., Bennett [53], as they
observed that the LiDAR-derived hillshade, unlike the gradient raster, is not effective
in recognising small structures. For this reason, they consider gradient raster images to
be a robust alternative technique for detecting archaeological remains. Both Laser and
photogrammetric data are being used to uncover archaeological information that might be
unobtainable through the use of destructive excavation methods. The uses of standalone
approaches (LS and Photogrammetry) in archaeology, experimental and analysis setup,
their merits, and key findings from previous studies have been summarised in Table 2.

Table 2. A meta-analysis of some previous archaeological studies for Remote Sensing (RS) standalone
approaches—Laser Scanning (LS) and image-based photogrammetry.

Study Archaeological Site RS Data Finings/Conclusions

[32] Chun Castle, UK LiDAR and aerial
photogrammetry

(I) Both LiDAR and photogrammetric data-derived VATs
revealed archaeological features, such as huts/houses, linear
features (possible paths), circular structures, and castle well.
(II) In general, relatively less archaeological remains were
detected by LiDAR data than those from photogrammetry.
(III) The Red Relief Image Map (RRIM) of both data sources
provided a comparatively higher level of detail compared to
hillshade, aspect, and gradient raster images.

[31] Cahokia Mounds, USA LiDAR and aerial
photogrammetry

(I) In some cases, photogrammetric data are appropriate
alternatives to LiDAR data, specifically in areas with low
vegetation coverage.
(II) Aerial photogrammetry is faster and costs less than a
LiDAR survey in observing archaeological areas.
(III) Photogrammetry is relatively better in interpreting
archaeological data due to its capability in generating true
colour mosaics.

[45] Beaufort County, South
Carolina LiDAR data (I) Revealed 160 undetected mounds.

[44] Barwhill in Scotland LiDAR data

(I) Some archaeological remains (e.g., Roman roads and water
drainage) were identified.
(II) The influence of the illumination in LiDAR-derived
hillshade (1-m spatial resolution) generates distorted raster,
which led to the burying of some archaeological remains.

[29] Lamassu and Sargon II the
king of Assyria, Iraq

TLS and terrestrial
photogrammetry

(I) Two TLS registration methods (LM-ICP and NN-ICP) were
examined; the average errors were 0.004 m and 0.003 m for the
NN-ICP and LM-ICP, correspondingly.

[13] The Tholos of Delphi,
Greece

Close range
photogrammetry,
TLS, GNSS

(I) A 3D map of ancient structures was created.

[28] Palace Bridge, Russia TLS data

(I) The draw spans of the bridge structure were reconstructed
by creating 3D models.
(II) TLS point clouds provided complete detail for modelling
the bridge structure.

[27]
Uxbenká site core
architecture, Toledo
District, Belize

LiDAR data

(I) The Hillshade derived from LiDAR data (1-m spatial
resolution), in some cases, provides a less robust method for
revealing small structures if only LiDAR data is applied while
gradient raster is relatively more effective in that case.

[26]
An ancient building
‘Cathedral St. Nikolai in
Germany’

TLS, aerial
photogrammetry,
and total stations

(I) The standard deviations between models generated from the
TLS and photogrammetry are not significant (between 0.03 m to
0.09 m) and variations in overlapping two models ranging
between 0.02 m and 0.03 m, are determined through algorithms
in CloudCompare.
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Table 2. Cont.

Study Archaeological Site RS Data Finings/Conclusions

[25] Cotehele Quay, Cornwall
in UK

LiDAR, TLS, and aerial
images

(I) A realistic 3D model of Cotehele Quay was created.
(II) Digital formats were translated from spatial data of coastal
change to be available for general audiences.
(III) Mixed-media films were designed to be used for climate
and coastal change communications.

[24] An old construction was
built in 1874, Germany

Photogrammetry, TLS,
total stations

(I) Photorealistic models were generated for digital
visualization and reconstruction.

[23]
The southern part of
Devil’s Furrow in the
Czech Republic

LiDAR data

(I) Some archaeological features, such as tracks, pathways, and
erosion furrows were detected and digitally preserved through
various VATs, e.g., hillshade, gradient, and aspect images
derived from LiDAR DTM.

[54]
An ancient building
“Palazzo del Capitano”,
Italy

TLS data (I) Observing and monitoring ancient buildings.

[21]
A cultural site ‘Sint-Baafs
Abbey
in Belgium’

TLS, photogrammetry,
and total stations

(I) 3D models of the AOI were created.
(II) The horizontal and vertical accuracy of the TLS is two times
higher than those generated from terrestrial photogrammetry.

[21]
Pinchango Alto, in the
south of
Lima, Peru

TLS and UAV imagery

(I) The standard deviation between models generated from TLS
and photogrammetric data was 6 cm and the mean difference
was less than 1 cm. These differences result from occlusions in
both datasets.

Therefore, RS data have been independently applied in many archaeological studies
to evaluate how such approaches can be adopted to discover, interpret, and examine
the physical characteristics of archaeological areas/objects [55–59]. Given that, there are
strengths and weaknesses in both LS and photogrammetry. The range sensors are capable
of creating 3D point clouds that are utilised later to produce fine geometric models [60]. In
contrast, image sensors are more capable and appropriate for building 3D texture models
of an object structure [60,61]. As such, combining the datasets is likely to create, to some
degree, more complete 2.5D/3D models. Previous studies by Hatzopoulos et al. [13] and
Dostal and Yamafune [60] argued that these methods could complement each other in
generating relatively highly precise digital models of archaeological areas. More details
about the combination approaches are discussed in Section 3.

3. RS Combination Approaches

The main purpose of combining multi-datasets is to address the limitations of the
standalone approaches. Addressing these limitations is accomplished by combining multi-
datasets derived from the same sensors and multi-sensors datasets. The development of
both photogrammetry and LiDAR data in terms of quality and efficiency led some studies
to recommend applying one technique over another to enhance the construction of digital
models, as well as to improve the detection of archaeology [21,62]. An example of data inte-
gration from the same sensors is image-based modelling or range-based modelling [58,63],
while an example of fusing/integrating different sensors is image-based modelling with
range-based modelling [3,64].

Data integration from the same sensor has been applied in several archaeological
studies, such as [57,58,63]. The concept of this approach is to combine two or more
different raster layers derived from the same source (e.g., photogrammetry or LiDAR); this
integration is based on the VATs. The intention of integrating multiple VATs is to address
the limitations of single-raster images, generate newly enhanced datasets, and acquire
clear topographical features of the AOI. The limitations of the standalone approaches
are mainly associated with the illumination, distortions of the raster, and filtering [53,65].
Inomata et al. [57] suggested applying Red Relief Image Maps (RRIM) for object detection;
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RRIM is a VAT based on multi-layered topographic data; i.e., gradient and differential
topographic data that are derived from the same sensor. It is a shade-free raster that
signifies a fine feature of topographic data. This raster is normally used in archaeological
studies, since it provides a clearer and less distorted view of topographic changes than the
standalone VATs.

With regard to the RRIM, a relatively finer distinction of archaeological features
(e.g., structures smaller than 50 cm) can be observed in the RRIM [57]. These results
reflect those of Davis et al. [45], who found that the edges of archaeological features of
Beaufort County, South Carolina, were emphasised in RRIMs. Kokalj and Somrak [58] and
Kokalj et al. [66] corroborated the conclusions of the previous studies, as they suggested
enhancing the existing individual VATs to improve archaeological prospection and avoid
missing possible remains. Kokalj et al. [66] created open-access Relief Visualisation Tools
(RVT) to integrate various raster images derived from various fine LiDAR data (e.g.,
50 cm/pix and 25 cm/pix) in different archaeological areas to improve the visibility of the
detected remains. Comparisons of various LiDAR-derived VATs (hillshade, gradient, and
RRIM) and raster images from the RVT with 1-m/pix spatial resolution were implemented
by Inomata et al. [57]. The results of the latter study showed that the edge of traces was
relatively more emphasized in the RRIM than in other applied VATs.

In addition to the detection of archaeological remains based on integration approaches
of VATs obtained from the same data source, combining multi datasets from different
sensors is being applied to create relatively detailed 3D models for digital preservation. For
instance, Papasaika et al. [67] applied the integration method to enhance accuracy, density,
and reduced data voids. This enhancement is achieved by the combination of two different
DSMs derived from different sources (LiDAR and IKONOS satellite imagery). The LiDAR
data and IKONOS satellite imagery are different in terms of Ground Sampling Distance
(GSD) and acquisition times. The weaknesses (e.g., voids, discontinuities) in the standalone
data (e.g., LiDAR and satellite data) are often addressed in the fused/integrated data [67].
In accordance with the previous studies, other datasets were applied by Tapete et al. [68] to
boost final outcomes. They combined synthetic aperture radar with TLS data to monitor
the deformations of archaeological artefacts. Integrating these two techniques results
in generating new datasets, consequently, enhancing data interpretation of segregations’
impact ancient monuments [68].

Recent archaeological studies, e.g., Liang et al. [6], Filzwieser et al. [69], and Luh-
mann et al. [40], found that combining multiple techniques is likely to boost the benefits
of the acquired data to generate consistent and, to some extent, complete results. These
approaches could complement each other to enhance 2.5D and 3D models of archaeological
areas [13,60]. Therefore, the second approach discussed in this review is data combination
from different sensors. This type of data combination is progressively becoming a vital fac-
tor in several RS applications, including archaeology [1,6,70]. Prior archaeological studies
have noted the importance of combining multiple datasets derived from different sources
(after individual processing) [1,3,5,40,64,70,71]. This approach includes the integration of
3D-to-3D dense clouds models [1,40,61,72], as well as 2D-to-2D raster images that were
generated from photogrammetry and laser data [3,9,40] in order to generate integrated 3D
models and digitally preserve ancient buildings/archaeological status.

The purposes for combining multiple datasets derived from different sensors have
varied in individual previous studies. For instance, Forkuo and King [73] fused terrestrial
photogrammetry with TLS data to generate realistic 3D models. The aim of their study was
to develop a geometric relationship between the 2D digital images-based photogrammetry
extracted from the LS 3D point clouds (the collinearity equations are often used for image-to-
image registration to successfully merge multi-datasets that have different projections) [73].
To further support the idea of generating realistic models, an insight investigation on
integrating photogrammetric and TLS data to create 3D models of a historical building (Villa
Giovanelli) was carried out by Guarnieri et al. [61]. This study was based on highlighting the
limitations of individual standalone approaches, as they used terrestrial photogrammetry
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to capture the basic detail, such as walls and facades, while more complex structures, e.g.,
turrets, statues, and the staircase, were determined by employing range-based modelling—
Time Of Flight (TOF) TLS. The combination was executed by Guarnieri et al. [61] after
establishing ten GCPs measured by total stations to geo-reference and merge both datasets
towards achieving a realistic 3D integrated model. Thus, improving the visual quality
and geometry of 2.5D/3D models is required to reduce or even eliminate occlusions in
standalone data, generate relatively more detailed information, and digitally preserve
archaeological sites.

The previous study led by Jaber and Abed [9] evaluated the effectiveness of the fusion
approach in producing 3D modelling in both indoor and outdoor case studies; the statue
of the Lady of Hatra (indoor case study) and Abbasid Mustansiriya School (outdoor case
study) in Baghdad. The fusion was implemented by combining synthetic images derived
from TLS point clouds and aerial images captured from a digital camera after identify-
ing the limitations of individual sensors in archaeological preservation. An automatic
co-registration scheme was executed, which involves the creation of synthetic images from
the TLS to be combined with 2D images through the SfM method, and later applying
simultaneous bundle block adjustment and Helmart transformation to eliminate discrepan-
cies [64]. They found that fusing LS with digital images had significant benefits for digital
preservation as it provided more detailed models by filling data occlusion and increasing
the overall data density. Different RS datasets (e.g., digital images and LiDAR), in some
cases, have varied data formats and projections. As a result, it is challenging to implement
direct registration and identify common points to match both datasets [1,74]. The automatic
registration of LS data and camera images was developed in Yanga et al. [74]; registration
usually refers to LS aided by photogrammetry [5]. Moussa [1] stated that different types of
methods can be used for registration, which can be categorised into manual registration
and automatic registration; the latter method is highly preferable to minimise costs and
time. The registration and the alignment processing with the Iterative Closest Point (ICP)
algorithm can be applied with georeferencing processing. The registration errors between
LiDAR and photogrammetric data (DSMs of Mount Cornello in Italy) did not exceed two
meters. The resulting 3D model allowed for the identification and digitization of geologic
features [75]. Thus, successful registration between two different datasets of the same AOI
tends to achieve photorealistic 3D models.

As noted above, the combination approaches are mostly applied in archaeology to
produce relatively more detailed 3D models than those obtained from the standalone
approaches for digital preservation. Nonetheless, combination approaches, specifically
LiDAR with photogrammetric data, are not commonly applied to improve the detection of
archaeological remains. Specifically, limited archaeological studies have integrated/fused
different datasets for object detection, such as [3,76–79]. From the archaeological perspec-
tive, the use of geophysics methods, e.g., Ground-penetrating radar (GPR) has facilitated
the detection of unknown buried features [76]. The latter study by Deiana et al. [76] found
that the integration of GPR with Electrical Resistivity Tomography (ERT) data into a single
map can demonstrate an adequate method to interpret the geophysical anomalies and
buried remains of Nora, in southern Sardinia. The detection of archaeological features
using non-invasive techniques (geophysics and RS) should be implemented prior to the
excavation process [76]. The purpose of applying such approaches is to examine the ef-
fectiveness of integrating/fusing multi-datasets obtained from different sources based on
excavation evidence to accurately detect the presence of some hidden tombs. In this respect,
Elfadaly et al. [77] are in agreement with Deiana et al. [76], as they also integrated the
analysis of excavation and GPR with magnetic and aerial images of the Northern Nile
Delta, Egypt to create an archaeological map that includes all the recorded and detected
features/artifacts. Additionally, integrating radar data, topographic maps, and optical
satellite imagery were applied to discover possible ancient settlement areas.

In terms of integrating LiDAR and photogrammetry, Holata et al. [3] created an
integrated 2.5D model of the archaeological site (the deserted medieval settlement, Hound
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Tor, in south-west England) to digitally preserve the structure of the site, e.g., stone walls,
the field remains (field enclosures, ridge, debris of constructions, and furrow). GCPs were
established to georeference both datasets. Holata et al. [3] processed LiDAR point clouds to
generate DSMs; unwanted points were removed (such as those captured by more than one
flight line) in LAStools. They also generated a photogrammetric model of the AOI through
the SfM-MVS method. The photogrammetric models can be converted to point clouds by
applying the ‘Raster to point function’ in ArcMap [3]. The integrated DSM was achieved
after georeferencing the point clouds obtained from LiDAR and photogrammetry. The key
findings from previous studies are summarised in Table 3.

Table 3. A meta-analysis of some studies that applied Remote Sensing (RS) combination approaches—
Laser Scanning (LS) and image-based photogrammetry.

Study Archaeological Site Combination Approach Findings/Conclusion

[64]

The Lady of Hatra (indoor
statue), Al- Mustansiriya
School, and Baghdad
Qushla Tower (outdoor
statues) in Iraq

Fusing TLS and digital
aerial images

(I) 3D models of indoor and outdoor statues from TLS and photogrammetry.
(II) Photogrammetry provides a comparatively denser, smoother, as well as
more detailed model of the indoor statue than TLS.
(III) The TLS model of the outdoor statues has a higher spatial resolution
model than photogrammetric data.
(IV) The Fusion of the two datasets has filled occlusions, produced more
details by improving data density, and reduced the level of TLS data
roughness.

[40] Historic Churches in
Georgia

Fusing TLS with
terrestrial and aerial
photogrammetry

(I) Both TLS and photogrammetry supply similar outcomes, but when both
datasets are fused, a more complete 3D model is generated.
(II) The aerial photogrammetry records the tower and roof of the construction
that did not cover by terrestrial photos, nor TLS.
(III) Applying the fusion approach through advanced software (e.g.,
RealityCapture) may save processing times and result in high-quality models.

[58]
Chactún area in Mexico,
Celtic fields in Netherlands,
and Julian Alps in Slovenia

Integrating VATs derived
from LiDAR (same
sensor)

(I) Combining visualization images can enhance the visibility and preserve
the physical characteristics of the individual images.
(II) The integrated outcome does not create artificial artifacts.
(III) Applying a single visualization image is likely to miss valuable traces in
the archaeological areas.

[3]
Hound Tor Deserted
Medieval Village in
south-west England

integrating LiDAR data
with photogrammetry

(I) 3D enhanced, detailed, and precise model is produced from the integration
approach.
(II) Integration enhances the quality of the DSM/DTM created from
low-resolution (1 pixel/m2) LiDAR data.
(III) Various types of remains are digitised, such as farm fences, debris of
buildings, ridges, and furrows in the study area.
(IV) The main limitation of the results is that some parts of the study area
have not been recorded by the SfM method due to the dense vegetation.

[75] Mount Cornello, Southern
Alps in Italy

Integrating aerial LiDAR
and photogrammetric
models

(I) Image point clouds achieved a relatively better 3D textured model than
LiDAR point clouds.
(II) Aerial LIDAR provides data of the flaws’ traces/geologic boundaries in
areas covered with vegetation.
(III) The integration of two models derived from airborne LiDAR and
photogrammetric data results in a complete 3D model.

[1]
The temple of Heliopolis,
Egypt and Hirsau Abbey in
Germany

TLS and terrestrial
photogrammetry

(I) The combination of synthetic images derived from TLS with digital images
is an effective solution to overcome the limitations of the standalone data.
(II) The combination approach resolved several issues including occlusions in
TLS point clouds and providing 3D models with a higher level of detail.

[61] Villa Giovanelli Colonna: a
historical palace in Italy

Integrating TLS and
terrestrial
photogrammetric models

(I) The main structures of the palace (porch and façades) are modelled by
image-based photogrammetry, while fine detail (staircase, turrets, and statues)
are modelled by the TLS.
(II) TLS point clouds need to be optimised to create adequate dense datasets.
(III) Improper outcomes from image-based modelling were generated due to
vegetation and shadows.
(IV) A 3D complete and detailed model is generated from a combination of
two RS data.

Therefore, the combination of various RS data generated from multiple sensors plays
an important role in the interpretation and revealing of archaeological information. These
approaches (e.g., fusing TLS with photogrammetric data) are mostly applied to improve
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the quality of 3D models by filling data gaps and increasing data density. Choosing
appropriate combination approaches for a certain application relies on several factors, such
as the complexity of AOIs, data availability, and the aim of the study. In spite of the merits
acquired from the RS data in digital preservation, archaeological prospection, and detection,
Guyot et al. [80] claimed that such detection based mainly on the VATs is time-consuming.
Hence, DL algorithms could be used for automatic detection.

4. Object Detection with Deep Learning

With the considerable development of digital archaeology, several studies have fo-
cused on using DL Neural Networks (NN) to accelerate the object detection process and
exceed output potential [30,81–85]. DL-NN, and in particular, ANNs and Convolutional
Neural Networks (CNNs), are being used in pre-trained models and are being adopted
in the automated mapping processing of archaeological areas. It has been found that
applying DL algorithms in archaeology is likely to efficiently classify and identify ancient
objects/features (saving time and cost) [86].

Several archaeological studies have found that DL-based LiDAR data has made re-
markable contributions to digital archaeology. For instance, Somrak et al. [84] applied CNN
with six different VATs (e.g., SVF, slope, hillshade, and positive openness) derived from
LiDAR data to determine whether they can effectively classify archaeological structures
(ancient Maya structures of Chactún area in Mexico). The classification was based on the
Visual Geometry Group-19 (VGG-19) CNN and additional augmentation. VGG19 is an
advanced CNN architecture with pre-trained layers, which is often applied to interpret
the characterises of input data in terms of colour, form, and shape. Furthermore, [84]
found that DL models using LiDAR-derived VATs without hillshade performed compar-
atively better than the models with hillshade. The overall classification (e.g., platforms,
surrounding terrain, and constructions) of the LiDAR-derived VATs achieved 95% accuracy.
Consistent with the previous study, i.e., Somrak et al. [84] and Trier et al. [30] found that
DL had the potential for automatically mapping archaeological areas; they pre-trained
1.2 million images based on the LiDAR of the archaeological area in Arran, Scotland. The
VAT used in the DL pipeline of the Trier et al. [30] study was the Local Relief Model (LRM)
derived from LiDAR. The DL-NN was executed on the SLRM visualisations to classify
three archaeological monuments (cairns, shieling huts, and roundhouses).

The latter study led by Guyot et al. [80] also demonstrated that DL algorithms can make
significant contributions to archaeology, and they used them to reveal ancient structures of
Tumulus du Moustoir in France. They also noted, however, that a large amount of input data
is required to accurately train CNN models. With more training data, the more accurate the
predictions that could be achieved [30]; this might clarify why most archaeological studies,
as mentioned earlier, have applied LiDAR data on DL rather than aerial imagery [81].
LiDAR can be applied to capture raw data up to 300 m over AOIs, which means more
coverage of an area can be obtained by airborne LiDAR than by UAV photogrammetry.
Consequently, more datasets will be trained on the DL pipeline. LiDAR-derived VATs are
being widely used for classification and segmentation due to their capability to generate a
wealth of topographical information [87], specifically, in digital archaeology for large-scale
mapping (e.g., 1:2500) [84].

Researchers have demonstrated several factors that could contribute to improving the
accuracy of CNN models’ performance, such as the amount of training data, data augmen-
tation, normalisation, and epochs [80]. The number of training data directly impacts the
quality of DL functions; more training data are more likely to limit the overfitting of the
CNN models. Trier et al. [30] argued that applying a large set of labelled data to pre-train
the CNN models could potentially improve the identification of archaeological features.
This argument was also supported by archaeological studies, such as Guyot et al. [80];
Küçükdemirci and Sarris [83], Somrak et al. [84], and Davis et al. [85], who recommended
applying data augmentation in the DL pipeline to avoid adverse consequences (imprecise
results) of the small datasets (e.g., less than 500). Guyot et al. [80] and Somrak et al. [84]
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corroborates the ideas of Trier et al. [30] and Maxwell et al. [87], who suggested applying
data augmentation to enhance the performance of the CNN models and the ultimate re-
sults, even if a large number of datasets is used. Data augmentation has the capability to
artificially enhance and transform (rotations/zooming/flips/scaling) the existing train-
ing data [87], but it does not generate new data. In other words, the purpose of using
augmentation is to give a few other perspectives for individual datasets, consequently,
limiting overfitting and making relatively better predictions [87]. Additionally, increasing
the number of epochs, in some cases, leads to enhancing the validation accuracy, and thus,
generating fit models [80,87].

Enhancing the validation accuracy and predictions of the DL CNN cannot only be
achieved based on the augmentation number of epochs, but also on the normalisation
function [30]. This function is normally used in the CNN models to scale and normalise
outputs between 0 and 1 to rescale datasets without misshaping/deforming the variations
in a range of values [88]. Hence, it contributes to making the CNN process relatively more
effective and stable. Furthermore, Ioffe and Szegedy [89] found that Batch Normalisation
(BN) is another powerful procedure to normalise the stimulations in the layers of DL CNN,
Bjorck et al. [90] agreed and stated that the BN tends to speed up the CNN process and
enhance training accuracy, since this technique can be performed on the input and interme-
diate layers [90,91]. The BN has been adopted in DL studies due to its capability to stabilise
the CNN and simplify the optimisation process. Based on the arguments mentioned above,
several aspects (training data, augmentation, normalisation, and epochs) should be consid-
ered toward enhancing the validation accuracy and predictions, as well as speeding up the
DL-CNN performance. Previous archaeological studies are summarised in Table 4 using
DL-CNN models. The review of the literature indicates that the application of DL CNN
based on RS data, particularly photogrammetric data, in archaeology is still limited.

Table 4. Summarising some of the archaeological studies that applied Deep Learning—Convolutional
Neural Networks (DL-CNN) models.

Study Archaeological Site Data Source Findings/Conclusion

[30] Arran in Scotland, UK LiDAR
(I) Automatically mapping the archaeological area.
(II) Three archaeological monuments (roundhouses, cairns, and
shieling huts) were classified.

[83] Demetrias site, Greece GPR (I) Anomalies identified.

[92] Qanat systems of the Erbil,
Kurdistan Region of Iraq

CORONA Satellite
Imagery (I) The qanat shafts were detected.

[84] ancient Maya, Mexico LiDAR

(I) Various types of ancient structures (building, terrain, aguada,
and platform) were classified and distinguished. The overall
accuracy exceeded 95%.
(II) The performance of DL CNN models using VATs (without
the hillshad raster) perform relatively better than models with
the hillshade raster.
(III) VATs derived from LiDAR are effective datasets for
DL-based classification.

[80] Tumulus du Moustoir site,
France LiDAR (I) The DL-CNN accurately and semi-automatically identified

and characterized archaeological anomalies.

[85]
Beaufort, Charleston, and
George-town County in
South Carolina, USA

LiDAR, SAR,
multispectral

(I) The detection accuracy did not exceed 77%.
(II) Over 100 shell rings were detected.
(III) Preserving cultural deposits, as well as clarifying
archaeological records.

5. Conclusions and Future Work

The objective of this paper was to review and discuss the existing literature on the
adoption of advanced techniques in digital archaeology, including RS standalone, combina-
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tion approaches, and DL. This review provides an overview of how these approaches have
been applied, with a specific focus on digital preservation and archaeological detection.

Despite the significant number of archaeological studies that have applied digital
approaches, there are still knowledge gaps in investigating the application and accuracy of
approaches, such as RS standalone, combination, and DL. Specifically, the integration of
airborne LiDAR data with photogrammetric data is still not a commonly utilized method
in archaeology, and there is also limited evidence of the use of combined approaches in
detecting hidden remains. Furthermore, there has been a scarcity of research examining the
limitations of standalone, integration, and fusion approaches when applied in combination
to detect archaeological remains. This means that methods for applying standalone and
combination approaches together in the same archaeological study have not yet been
refined in an intensive and concentrated way. In addition, DL CNN models are still
not commonly used in detecting archaeological remains. Thus, further assessment and
articulation of various advanced approaches for the detection of archaeological features
and digital preservation are critically needed.

To fill the knowledge gaps, our recent study (2023) led by Kadhim et al. [19] demon-
strated a detailed workflow to investigate the potential of applying standalone, integration,
and fusion approaches in detecting and recording archaeological remains of Cahokia’s
Grand Plaza, Southwestern Illinois, based on aerial photogrammetry and LiDAR data. We
argue that there is a high possibility that this investigation could make considerable further
contributions to archaeological practice. In addition, various DL CNN models based on
the RS datasets generated from both standalone and combination approaches should also
be adopted in future archaeological studies. Improving the discovery of archaeological
areas/remains using DL algorithms based on RS data is the most sophisticated and effi-
cient way to identify possible new archaeological areas that have not been recorded in
archaeological and cultural documents/archives.
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