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Abstract: This paper presents a method for estimating the position of a target under jammed con-
ditions using the Time Difference of Arrival (TDOA) method. The algorithm utilizes a deep neural
network to overcome the challenges posed by the jammed conditions. The simulations and results
indicate that the presented method is more accurate and efficient than the traditional TDOA methods.
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1. Introduction

Time Difference of Arrival (TDOA) is a technique used to determine the location of
a transmitter by measuring the time difference of arrival (TDOA) of a signal at multiple
receivers. TDOA location estimation is based on the principle that the signal from the
transmitter will arrive at each receiver at a slightly different time due to the distance
between the transmitter and the receivers. By measuring the time difference of arrival of the
signal at each receiver, it is possible to determine the transmitter’s location. TDOA location
estimation can be performed using either a time-based or frequency-based approach. In
a time-based approach, the time difference of arrival is directly measured by comparing
the signal arrival times at each receiver. This can be done using high-precision clocks to
measure the arrival time of the signal at each receiver. In a frequency-based approach,
the frequency difference of arrival is measured and used to calculate the time difference
of arrival. This can be done by measuring the frequency shift of the signal due to the
Doppler effect caused by the relative motion between the transmitter and the receivers.
TDOA location estimation can also be performed using either a single-tone or a multi-
tone approach. In a single-tone approach, a single frequency is used for the transmitted
signal, while in a multi-tone approach, multiple frequencies are used. The use of multiple
frequencies allows for the use of frequency-based TDOA estimation, which can be more
accurate than time-based TDOA estimation in certain situations.

One of the challenges in TDOA location estimation is the need to accurately syn-
chronize the clocks of the receivers, as even small clock errors can significantly impact
the accuracy of the TDOA measurements. To mitigate the impact of clock errors, TDOA
location estimation can be performed using a network of receivers rather than a single
receiver, which allows for calculating clock error compensation values.

Another challenge in TDOA location estimation is the presence of multi-path interfer-
ence, which occurs when the transmitted signal takes multiple paths to reach the receivers
due to reflections off of nearby objects. This can cause errors in the TDOA measurements
and degrade the accuracy of the location estimation. Multi-path interference can be miti-
gated through the use of advanced signal processing techniques such as matched filtering
and least squares estimation [1].
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TDOA location estimation can also be affected by the presence of noise and interference
in the environment [2], which can degrade the signal-to-noise ratio (SNR) of the received
signal. To improve the SNR and, thus, the accuracy of TDOA location estimation, advanced
techniques such as adaptive filtering and Kalman filtering can be used.

A key challenge with contemporary radar systems is their requirement for high spatial
resolution, which necessitates the use of wide-band sampling. However, the transfer of
sampled signals to a central processing node can be an arduous and demanding task. While
optical links can be utilized to aggregate several receiving nodes, such an approach is often
impractical. To address this issue, this paper presents a novel method that employs a deep
neural network to compress the sampled signal into a latent space, which can then be
transferred to a central processing node for data processing, where the signal is expanded
and analyzed.

Furthermore, the incorporation of convolution layers in the neural network enables
the system to be robust against jamming. This approach is explored in the subsequent
sections of this paper and evaluated using the constructed simulator.

1.1. State-of-the-Art

Overall, TDOA location estimation is a powerful tool for determining the location of a
transmitter in a wireless communication system, with applications in a wide range of fields,
including military and defense, transportation, and emergency response. Ongoing research
in TDOA location estimation aims to improve accuracy, reliability, and efficiency, as well as
to explore new applications and integration with other technologies.

TDOA location estimation can be traced back to the early 20th century with the
development of the hyperbolic positioning system by Marconi and Braun in 1903. In
the 1950s, the development of radar systems led to the use of TDOA for target tracking
and location estimation [3]. In the 1970s, the advent of cellular communication systems
led to the development of TDOA-based location estimation techniques for mobile phone
systems. In the 1980s, the Global Positioning System (GPS) was developed, which used
a combination of TDOA and angle of arrival (AOA) measurements [4] for satellite-based
location estimation [5]. In the 1990s, the widespread adoption of wireless networking
technologies such as Wi-Fi and Bluetooth led to the development of TDOA-based location
estimation techniques for these systems. In the early 21st century, the Internet of Things
(IoT) and the increasing demand for location-based services led to further research and
development in TDOA location estimation techniques. Some works already combined
neural networks with TDOA systems, combining the outputs of all the individual NN to
improve position estimate accuracy [6].

Two techniques for three-dimensional target localization using bistatic range readings
from several transmitter-receiver pairs in a passive radar system were first introduced
by Malanowski and K. Kulp in 2012. The algorithms, called spherical interpolation (SI)
and spherical intersection (SX), are based on methods used in TDOA systems and use
closed-form equations. The paper includes a theoretical accuracy analysis of the algorithms,
verified through Monte-Carlo simulations and a real-life example [7].

In 2015 A. Noroozi and M. A. Sebt presented a closed-form weighted least squares
method for determining the position of a target in a passive radar system with multiple
transmitters and receivers using TDOA measurements. The method involves intersecting
ellipsoids defined by bistatic range (BR) measurements from various transmitters and
receivers. The localization formula is derived from minimizing the weighted equation error
energy. To improve the method’s performance, the paper proposes two weighting matrices,
one leading to an approximate maximum likelihood (ML) estimator and the other to a best
linear unbiased estimator (BLUE). The paper includes numerical simulations to support
the theoretical developments [8].

An improved approach for localizing a moving target utilizing a noncoherent multiple-
input multiple-output (MIMO) radar system with widely dispersed antennas was presented
in 2016 by H. Yang and J. Chun. The method is based on the two-stage weighted least
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squares (2SWLS) approach but only requires a single reference transmitter or receiver
and can easily incorporate time-of-arrival (TOA), frequency-of-arrival (FOA), TDOA, and
frequency-difference-of-arrival (FDOA) data. The authors also introduce auxiliary variables
to improve numerical stability and demonstrate that their method is more stable than the
Group-2SWLS method while achieving the Cramer–Rao lower bound (CRLB) at higher
noise levels [9].

In 2017 A. Noroozi and M. A. Sebt presented a method for estimating the location of
a single target using bistatic range measurements in a multistatic passive radar system.
The proposed method uses a weighted least squares (WLS) approach to eliminate nuisance
parameters, which are parameters that are unknown and cannot be estimated from the
data, and to obtain an estimate of the target location. The method involves several WLS
minimizations, and two different weighting matrices are derived to improve the method’s
performance. One of these matrices leads to the maximum likelihood estimator (MLE),
while the other leads to the best linear unbiased estimator (BLUE) [10].

In 2020 F. Ma, F. Guo, and L. Yang addressed the problem of directly determining the
positions of moving sources using the received signals. Traditional methods for localization
of moving sources involve two steps. To identify the location of the moving sources,
estimations of the intermediate TDOA and FDOA characteristics are performed. In contrast,
the authors propose a new method that directly estimates the locations and velocities
of moving sources from the received signals. To solve the problem of simultaneously
estimating the high-dimensional unknown parameters, the authors propose a multiple
particle filter-based method, in which the positions and velocities of the moving sources
are updated alternately using separate local particle filters. The proposed method requires
fewer particles compared to classic particle filters, and its convergence is proved both
theoretically and numerically. The Cramer–Rao lower bound for the proposed moving
source localization method is also developed. Simulation results show that the proposed
method is computationally efficient and accurate in estimating the positions of moving
sources [11].

A method for calculating the location characteristics of a moving aerial target in an
Internet of Vehicles (IoV) system employing space-air-ground-integrated networks was
proposed by Liu et al. in 2022. (SAGINs) [12]. The proposed method uses multiple
satellites to estimate the TDOA and FDOA signals received from the moving aerial target.
The distance between the target and the receiver, as well as the velocity of the moving
aerial target, are then estimated using the TDOA and FDOA estimates. To suppress direct-
path and multipath interference in the received signals, the authors first filter the direct
wave signals in the reference channels using a band-pass filter and then apply a sequence
cancellation algorithm. The time and frequency differences of arrival are then estimated
using the fourth-order cyclic cumulant cross ambiguity function (FOCCCAF) of the signals
in the reference channels and the four-weighted fractional Fourier transform FOCCCAF
(FWFRFT-FOCCCAF) of the signals in the surveillance channels. The Cramer–Rao lower
bounds of the proposed location parameter estimators are also derived to benchmark the
performance of the estimators. Simulation results show that the proposed method can
effectively and accurately estimate the location parameters of the moving aerial target [12].

In recent years, advances in signal processing algorithms and machine learning tech-
niques have led to improved accuracy and efficiency in TDOA location estimation. TDOA
location estimation has also been integrated with other location estimation techniques, such
as angle of arrival (AOA) and signal strength (RSS) measurements, to improve accuracy
and reliability [13–15].

TDOA location estimation is now used in a wide range of applications, including mili-
tary and defense, transportation, emergency response, and the development of advanced
technologies such as autonomous vehicles and smart cities. In the future, TDOA location
estimation is expected to play a key role in developing intelligent transportation systems
and advancing communication technologies such as 5G and beyond. Ongoing research in
TDOA location estimation aims to improve accuracy, reliability, and efficiency, as well as
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to explore new applications and integration with other technologies. Some of the current
areas of research in TDOA location estimation include the development of advanced signal
processing algorithms, the use of machine learning techniques, and the integration of
TDOA with other location estimation techniques such as AOA and RSS measurements.

Passive electronic support measurement tracker (PET) systems are also known as
passive surveillance systems (PSS), and their principles and technology are highly similar
to radar technology from a passive radar point of view [16]. Many PET systems are based
on the multilateration TDOA method to determine the exact position of targets and can
ordinarily track them. The target for this article means an emitter, which is placed on a
moving platform and emits electromagnetic signals such as radar, radios, etc. PET TDOA
systems are mostly dedicated to land, air, sea, and space situational awareness (SA) in
military or non-military purposes such as air traffic control (ATC) and other uses [17,18]. In
the case of SA ATC, the PET TDOA system utilizes a secondary surveillance radar aircraft
transponder’s reply signals to locate, identify, and track aircraft in the large area [17]. If
a 3D target position is required, a PET TDOA consists of four receiving stations, such as
the central receiving station (CRS) and three side receiving stations (SRS1, SRS2, SRS3),
see Figure 1.

Figure 1. General configuration of the PET TDOA system.

All receiving stations are placed in terrain with radio visibility towards the target,
and the exact coordinates (xi, yi, zi) of CRS, SRS1, SRS2, and SRS3 are known. All signals
emitting from the target received by CRS, SRS1, SRS2, and SRS3 are led to the signal
processing where the TDOA method is applied [17,18]. The TDOA method relies on the
knowledge of the receiver’s coordinates and the time of signal arrival at each receiving
station to compute the hyperbolic coordinates of the emitter. CRS is considered a reference.
The general configuration of the four-position PET TDOA system is shown in Figure 1. This
TDOA measurement between CRS and SRS1 establishes an isodelay (hyperbolic) curve that
passes through the emitter (target) location. The second hyperbola is calculated between
CRS and SRS2, and the last is established between CRS and SRS3. The intersection of the
set of hyperbolas locates the emitter, as shown in Figure 1.
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1.2. Neural Networks

A neural network is a type of artificial intelligence system that is inspired by the
structure and function of the human brain. An input layer, one or more hidden layers,
and an output layer are only a few of the layers of interconnected neurons or nodes that
make up this system. Numerous tasks, including as classification, regression, and function
approximation, are carried out using neural networks. They are particularly well-suited for
tasks where the input and output are fixed-length, and the relationships between them are
well-defined [19].

Neural networks are trained using an optimization algorithm, such as stochastic
gradient descent (SGD), which adjusts the weights and biases of the network to minimize
the error between the predicted output and the true output. This process is known as
backpropagation, which involves propagating the error back through the network and
updating the weights and biases in each layer [19].

The capacity of neural networks to learn from and adjust to incoming data is one of its
main advantages. They can learn complex relationships between the input and output data
and generalize to new data, making them effective at tasks such as image classification and
speech recognition [19].

Despite their success, neural networks do have some limitations. They can be sen-
sitive to the quality and scale of the input data and may require preprocessing or data
augmentation to achieve good results. In addition, neural networks can be computationally
expensive to train, requiring specialized hardware and optimization techniques to achieve
good performance [19].

Feed-forward neural networks, recurrent neural networks, and convolutional neural
networks are a few of the several types of neural networks. Each type is designed for
specific types of tasks and data, and selecting the appropriate type of neural network for
a given task is an important consideration in the design and implementation of an AI
system [19].

In this research, we suggest combining several neural networks. Since neural networks
are nowadays penetrating all fields of science, we wondered if they could have a benefit in
TDOA systems. Therefore, in the following paragraphs, we describe in general terms the
different neural networks we have used in the design of the network architecture [19].

1.2.1. Perceptron

One layer of neurons or nodes makes up a perceptron, an artificial neural network.
Frank Rosenblatt developed it in the 1950s as a way to simulate the learning process of the
human brain. Perceptrons are used for various tasks, including classification, regression,
and function approximation. They are particularly well-suited for tasks where the input
and output are fixed-length, and the relationships between them are well-defined [19].

The structure of a perceptron consists of an input layer and an output layer, with the
input layer receiving the raw input data and the output layer producing the final prediction
or output. The input layer is connected to the output layer through weights and biases,
which are adjusted during the training process to minimize the error between the predicted
output and the true output [20].

One of the key advantages of perceptrons is their simplicity and ease of implementa-
tion. They are relatively easy to train and can be implemented using a variety of program-
ming languages and libraries. In addition, perceptrons can be highly efficient, especially
with hardware acceleration, such as graphics processing units (GPUs). In addition, per-
ceptrons are limited in their ability to model complex relationships between the input and
output data. They are only able to learn linear decision boundaries, making them less
effective at tasks that require more complex decision boundaries [20].
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Given the input vector x = 〈x1, ..., xn〉 and trained weights W1, ..., Wn, the perceptron
output y is represented by formula [20]:

y =

1, if
n
∑

i=1
Wixi + b > 1;

−1, otherwise,
(1)

where
n
∑

i=1
Wixi is the weighted input and s = z + b is the state of the perceptron. For the

perceptron to be activated, the threshold value must exceed its state s [20]. The Boolean
operations AND, OR, NAND, and NOR are just a few that the perceptron may express.
Figure 2 depicts the perceptron’s general structure [20].

--

Output to a next layer

Inputs from previous layers

Figure 2. General structure of the perceptron [20].

1.2.2. Feed Forward Networks

A feed-forward neural network, also known as a feed-forward network or a feed-
forward artificial neural network, is a type of artificial neural network that consists of layers
of interconnected neurons or nodes. It is called "feed-forward" because the information
flows through the network in one direction, from the input layer to the output layer, without
looping back. Feed-forward networks are used for various tasks, including classification,
regression, and function approximation. They are particularly well-suited for tasks where
the input and output are fixed-length, and the relationships between them are well-defined.
The number of layers and neurons in each layer determines the structure of a feed-forward
network. The input layer receives the raw input data, while the output layer produces the
final prediction or output. The layers in between are called hidden layers, and the neurons
in these layers are responsible for learning and extracting features from the input data. The
main functionality of the feed-forward network is to approximate some function f ∗. For
example, we have classifier y = f ∗(x) map an input x to a category y. A feed-forward
network defines a mapping y = f (x; θ) and learns the value of the parameters θ that result
in the best function approximation [21]. The structure of layers and connections is shown
in Figure 3.



Sensors 2023, 23, 2889 7 of 21

X1 X2 Xn

Output	layer

Input	layer	j

Hidden	layer	i

Input	layer

Figure 3. Multilayer feed-forward network with an input layer, two hidden layers, and an output
layer [20].

These models are called feed-forward because information flows through the function
evaluated from x, through the intermediate computations used to define f , and finally to
the output y. There are no feedback connections in which outputs of the model are fed back
into itself [21].

A group of neurons represents the feed-forward neural network. Each of these layers
of neurons compute a weighted sum of its inputs. Depending on the neuron’s location
in the network, we can distinguish the basic levels of neurons. The first level is the input
neurons, through which environmental signals are emitted. A group of neurons represents
the feed-forward neural network. Each of these layers of neurons compute a weighted sum
of its inputs. The next type is output neurons, which pass processed signals back to the
environment. The last type is hidden neurons, which are inside the network and do not
interact with the external environment. Feed-forward neural networks have no loops and
are completely integrated. This indicates that no weights provide input to a neuron in the
previous layer and that every neuron from the previous layer is connected to every neuron
in the subsequent layer. Bias values are used to initialize the weights of a feed-forward
neural network to small, normalized random numbers. The neural network is then trained
using all training samples, and error backpropagation computes each unit’s input and
output for all (hidden and visible)output layers [20].

Feed-forward networks are trained using an optimization algorithm, such as SGD,
which adjusts the weights and biases of the network to minimize the error between the
predicted output and the true output. This process is known as backpropagation, which
involves propagating the error back through the network and updating the weights and
biases in each layer [20].

One of the key advantages of feed-forward networks is their simplicity and ease of
implementation. They are relatively easy to train and can be implemented using a variety
of programming languages and libraries. In addition, feed-forward networks can be highly
efficient, especially with hardware acceleration such as GPUs. Despite their simplicity,
feedforward networks can be powerful tools for solving many problems. They have been
used to achieve state-of-the-art performance on tasks such as image classification and
speech recognition [20].

However, feed-forward networks do have some limitations. They are not well-suited
for tasks that require incorporating context or dependencies over time, such as natural
language processing or speech recognition. For these tasks, recurrent neural networks
(RNNs) or convolutional neural networks (CNNs) are typically used [20].

Feed-forward neural networks are a widely used and powerful tool for solving various
tasks in machine learning and artificial intelligence. They are an active area of research and
will likely continue to be an important tool in developing intelligent systems.
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1.2.3. Convolutional Neural Networks

Artificial neural networks known as CNNs are particularly effective at recognizing
objects in images and videos. They are called “convolutional” because they use a mathe-
matical operation called convolution to analyze the input data. This operation allows the
network to learn features and patterns in the data by sliding a small matrix, called a kernel
or filter, over the input and performing element-wise multiplications and summaries.

CNNs are composed of several layers of neurons, each responsible for learning a
different aspect of the input data. The first layers of a CNN typically learn simple features,
such as edges and corners, while the deeper layers learn more complex features, such as
shapes and patterns. The output of the final layer is a prediction of the class or label of the
input data. The typical architecture of CNN is shown in Figure 4 [22].

Figure 4. Typical CNN network.

One of the key advantages of CNNs is their ability to learn features directly from the
input data rather than requiring manual feature engineering. This allows them to achieve
high performance on tasks such as image classification and object detection. In addition,
CNNs can use their learned features to generalize to new data, making them effective for
tasks such as image synthesis and style transfer [22].

Despite their success, CNNs do have some limitations. They can be sensitive to the
quality and scale of the input data and may require preprocessing or data augmenta-
tion to achieve good performance. In addition, CNNs can be computationally expensive
to train, requiring specialized hardware and optimization techniques to achieve good
performance [22].

CNNs are widely utilized in applications including computer vision, natural language
processing, and speech recognition, because they have consistently shown to be effective
tools for image and video recognition tasks [22].

CNNs are feed-forward neural networks with modified architecture. The architecture
of CNNs usually consists of convolutional layers followed by a pooling layer, where each
neuron in a convolutional layer is connected to some region in the input. This region
is usually called a local receptive field. All weights (filters) in CNNs are shared based
on the position within a receptive field. The convolution operation can be described as
follows [22]:

( f ∗ g)(z) = ∑
x

∑
y

f (x, y) · g(z− x, z− y), (2)

where f (x, y) is the input image at position (x, y) and g(z− x, z− y) is a trainable filter. The
pooling layers in CNN reduce the dimensionality of features, which leads to a reduction of
connection between the layers. Hence it reduces the computational time [23]. In our partic-
ular case, we used autoencoders that consist of convolutional layers. The autoencoders aim
to reduce a large amount of data from individual antenna nodes.

1.2.4. Recurrent Neural Network

RNNs are a form of artificial neural network that excel at handling sequential input,
including time series, speech, and spoken language. They are called “recurrent" because
they use feedback connections, allowing the network to retain information from previous
time steps and use it to inform its current output. This makes RNNs capable of learning
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long-term dependencies and patterns in sequential data. A typical example of RNN
architecture is shown in Figure 5 [21].

Input	layer Memmory	layer Memmory	layer Output	layer
Input	layer Memory	layer Memory	layer Output	layer

tahn(.)

ht-1
ht

xt

ot

Figure 5. Typical RNN mechanism.

Several RNNs, including the long short-term memory (LSTM) network and the gated
recurrent unit (GRU) network are used. These architectures introduce special "memory"
cells and gating mechanisms that allow the network to selectively retain and forget infor-
mation as needed, helping to prevent the vanishing and exploding gradient problems that
can occur in traditional RNNs. RNNs can be used for various tasks, including language
translation, language modeling, machine translation, and text generation. They are also
used in speech recognition, music generation, and robot controlds [21,24].

One of the key challenges in training RNNs is the need to process the entire input data
sequence simultaneously, which can be computationally expensive. To address this issue,
techniques such as truncated backpropagation through time (BPTT) and teacher forcing
can reduce the sequence length that needs to be processed [21].

Despite their success, RNNs do have some limitations. They can be difficult to train,
especially for longer sequences, and may require careful optimization and regularization
techniques to achieve good performance. In addition, RNNs can be sensitive to the quality
and scale of the input data and may require preprocessing or data augmentation to achieve
good results [21].

One of the key advantages of RNNs is their ability to incorporate context from previous
time steps into their predictions. This makes them particularly well-suited for tasks such as
language translation, where the meaning of a word can depend on the words that come
before and after it. Another advantage of RNNs is their ability to handle variable-length
sequences. This makes them useful for tasks such as machine translation, where the length
of the input and output sequences can vary greatly [21,24].

One of the most successful applications of RNNs is natural language processing (NLP).
RNNs have been used to achieve state-of-the-art performance on tasks such as language
translation, language modeling, and sentiment analysis. In addition to their success in NLP,
RNNs have also been used to achieve good results in speech recognition tasks. They have
been used to model the temporal dependencies in speech signals, allowing them to learn
the important patterns and features for recognizing different sounds and words [21].

Overall, recurrent neural networks are a powerful tool for processing sequential data
and have found wide application in natural language processing and speech recognition
tasks. Despite their challenges, they have proven to be a valuable tool for solving a wide
range of problems and are an active area of research in machine learning and artificial
intelligence [21].

Typical recurrent memory architecture is shown in Figure 5, where ht, Ct represent
hidden layer vectors, Xt is the input vector, bh is the bias vector, σh, σy are the activation
functions, and U, W, V are the parameter matrices. All relations are described as follows:

ht = σh(it) = σh(Uhxt + Vhht−1 = bh),
yt = σy(at) = σ(Wyht + bh).

(3)
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1.2.5. Long-Short Term Memory

LSTM is a type of RNN that is particularly well-suited for processing sequential
data with long-term dependencies. Hochreiter and Schmidhuber introduced it in 1997 to
solve the vanishing gradient problem that affects traditional RNNs. LSTMs are composed
of special “memory” cells that can retain information for extended periods and gating
mechanisms that allow the network to retain or forget information as needed selectively.
The input, forget, and output gates allow the LSTM to control the flow of information
into and out of the memory cells, while the cell state serves as the internal memory of the
LSTM [21].

LSTMs have been used to achieve state-of-the-art performance on tasks such as lan-
guage translation, language modeling, machine translation, and speech recognition. They
have proven to be particularly effective at capturing long-term dependencies in sequential
data, allowing them to learn complex patterns and structures. One of the key advantages
of LSTMs is their ability to handle variable-length sequences, making them useful for tasks
such as machine translation, where the length of the input and output sequences can vary
greatly. They can also incorporate context from previous time steps into their predictions,
making them well-suited for tasks such as language translation, where the meaning of a
word can depend on the words that come before and after it [25].

Despite their success, LSTMs do have some limitations. They can be computationally
expensive to train and require careful optimization and regularization techniques to achieve
good performance. In addition, LSTMs can be sensitive to the quality and scale of the input
data and may require preprocessing or data augmentation to achieve good results [25].

One area of active research in the field of LSTMs is the development of more efficient
architectures and training techniques. This includes using techniques such as weight
tying and pruning to reduce the number of parameters in the network, as well as using
optimization algorithms such as Adam and SGD with momentum to speed up training [25].

Another area of research is the development of LSTM variants that are better suited for
specific tasks or types of data. For example, attention mechanisms have been introduced to
allow LSTMs to focus on specific parts of the input sequence when making predictions [25].

Overall, LSTMs have proven to be a powerful tool for processing sequential data and
have found wide application in natural language processing and speech recognition tasks.
They are an active area of research in machine learning and artificial intelligence. They will
likely continue to be an important tool in developing intelligent systems [25].

Each memory block in the original architecture contained an input and output gate.
The input gate controls the flow of input activations into the memory cell. The output gate
controls the output flow of cell activations into the rest of the network. Later, the forget
gate was added to the memory block [25].

A typical LSTM architecture is shown in Figure 6, where ht, Ct represents the hidden
layer vectors, Xt is the input vector, bi, bc, b f , bo are the bias vectors, and σ, tanh are the
activation functions. Functions ft, it, C̃ are described as follows:

ft = σ(W f [ht−1, xt] + b f ),
it = σ(Wi[ht−1, xt] + bi),
ot = σ(Wo[ht−1, xt] + bo),
C̃t = (Wc[ht−1, xt] + bc),
Ct = ft�Ct−1 + it � C̃t,
ht = ot � tanh (Ct).

(4)
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X
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Figure 6. Typical LSTM network [26].

1.2.6. Gated Recurrent Unit

A particular kind of RNN that excels at processing sequential data with long-term
dependencies is the gated recurrent unit (GRU). It was introduced by Cho et al. in 2014 as a
simplified version of the LSTM network, which was developed to address the vanishing
gradient problem that affects traditional RNNs. GRUs are composed of special "memory"
cells and gating mechanisms that allow the network to selectively retain or forget informa-
tion as needed. The update and reset gates control the flow of information into and out of
the memory cells, while the cell state serves as the internal memory of the GRU [25].

Micro-Doppler Effect and Determination of Rotor Blades by Deep Neural Networks
Speech recognition, language modeling, machine translation, and other activities have
all benefited from the employment of GRUs. They have proven particularly effective
at capturing long-term dependencies in sequential data, allowing them to learn complex
patterns and structures. One of the key advantages of GRUs is their simplicity and efficiency
compared to LSTMs. They have fewer parameters and require less computation, making
them faster to train and easier to optimize. They can also handle variable-length sequences,
making them useful for tasks such as machine translation, where the length of the input
and output sequences can vary greatly [25].

Despite their success, GRUs does have some limitations. They may not be as powerful
as LSTMs on certain tasks, especially those that require more complex memory mechanisms.
In addition, GRUs can be sensitive to the quality and scale of the input data and may require
preprocessing or data augmentation to achieve good results [25].

One area of active research in the field of GRUs is the development of more efficient
training techniques. This includes using techniques such as weight tying and pruning to
reduce the number of parameters in the network, as well as using optimization algorithms
such as Adam and SGD with momentum to speed up training. Another area of research is
the development of GRU variants better suited for specific tasks or data types. For example,
attention mechanisms have been introduced to allow GRUs to focus on specific parts of the
input sequence when making predictions [25].

GRUs have proven to be a useful tool for processing sequential data and have found
wide application in natural language processing and speech recognition tasks. They are
an active area of research in machine learning and artificial intelligence and will likely
continue to be an important tool in developing intelligent systems [25].

The typical LSTM architecture is shown in Figure 7, where ht represents hidden layer
vectors, Xt is the input vector, bz, br, bh are the bias vectors, Wz, Wr, Wh are the parameter
matrices, and σ, tanh are the activation functions. Functions ft, it, C̃ are described as follows:
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zt = σ(Wz[ht−1, xt] + bz),
rt = σ(Wr[ht−1, xt] + br),
h̃t = (Wh[rt � ht−1, xt] + bh),
ht = (1− zt)� ht−1 + zt � ht

(5)

tahn(.)

Ctht−1

ht

xt

rt
zt

htX X

+X

σ σ

1−
~

Figure 7. Typical GRU unit architecture [26].

1.3. TDOA Detection Methods

TDOA is a technique used to determine the location of a radio transmitter based on
the difference in the time it takes a radio signal to reach different receivers. It works by
measuring the time difference between when a signal is received at two or more different
locations and then using that information to triangulate the transmitter’s position. TDOA
is based on the principle that the speed of light c is constant and that the time it takes for
a radio signal to travel from the transmitter to each receiver can be accurately measured.
This method can be used for both passive and active location systems, and it is commonly
used in military and civilian applications such as wireless communication, navigation, and
surveillance.

There are several advantages to using the TDOA method:

• It requires only a single antenna per sensor and at least four sensors for 3D location
estimation;

• TDOA can provide higher precision and accuracy compared to other location estima-
tion methods.

However, there are also some disadvantages to using TDOA:

• Accurate and synchronized clocks are required for each sensor to ensure the accuracy
of the TDOA estimation;

• TDOA estimation accuracy can be affected by measurement errors on sensor positions,
the multipath problem (signal reflection), the sensors’ timing accuracy, and the sensors’
geometry concerning the target.

In a TDOA scenario, it is assumed that the sensors are stationary and synchronized,
resulting in no Doppler shifts for any of the sensors. To estimate the TDOA, the cross-
correlation between signals received by different sensors is typically calculated using a
classical approach. TDOA localization scenario is shown in Figure 8. Each sensor receives
the signal with some delay in time and frequency. The received signal for i-th sensor is
shown as,
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yi(t) = ejαi e−jwdits(t− τi) + n(t), i = 1, 2, ..., M (6)

where αi is the phase introduced by the time of flight of the signal and wdi is the Doppler
frequency shift of i-th sensor with velocity where αi = wcτi and wdi =

wcvi
c . Hence, the

TDOA value between the first and second sensors can be determined by locating the peak
of the cross-correlation function |Ry1y2(τ12)|

Ry1y2(τ12) =
∫ T

0
y1(t)y∗2(t− τ12)dt. (7)

τ2

Hyperbola

τ12 = τ1 − τ2

p
¯2

= [x2, y2, z2]
T

p
¯1

= [x1, y1, z1]
T p

¯4
= [x4, y4, z4]

T

p
¯3

= [x3, y3, z3]
T

Receiver #2 Receiver #3

Receiver #4Receiver #1

d2
d3

d1 d4

p
¯τ

= [xτ , yτ , zτ ]
T

Receiver #4

Target

τ1

τ3

τ4

Figure 8. Typical TDOA scenario.

Finding the peak of |Ry1y2(τ12)| gives a TDOA value between 1st and 2nd receiving
antenna τ12 = τ2 − τ1, we can write τ12 by using the distance d1 and d2 as τ12 = d2−d1

c and
using propagation speed (speed of light c = 3108 m/s. Some works have used unknown
propagation speed, such as in Ref. [27]) c as d2 = d1 + cτ12. To generalize, we can estimate
the distances for points given by Cartesian coordinates in n-dimensional Euclidean space
between the antenna and target T as the Euclidean distance:

di = ||pi − pT ||. (8)

The equation can be rewritten for clarity and emphasis as follows (using the Cartesian
coordinates x, y, z:

d2
i = (d1 + cτ1i)

2 = (xi − xT)
2 + (yi − yT)

2 + (zi − zT)
2, i = 2, 3, ...M. (9)

The equation can be solved, e.g., by Taylor series expansion (using at least four sensors)
or by adding a new variable and doing the linearization (at least five receiving antennas are
needed). Note that time differences are not affected by errors in the receiver’s clock time as
it cancels out when subtracting two measurements.

For simplicity, the task is reduced to 2D, and the position is calculated as follows [28]:

H =

x2 y2
x3 y3
x4 y4

, C =

−d21
−d31
−d41

, D =

P2
2 − d2

21
P2

3 − d2
31

P2
4 − d2

41

, (10)
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which yields the following least-squares intermediate solution:

x̂ = (HTH)−1HT(d1C + D) (11)

where P2
i = x2

i + y2
i .

2. Proposed Architecture

A system simulator was developed to assess the principle, which was written entirely
in Python language. The source code for the simulator can be found on GitLab [29]. The
simulator is used to conduct unsupervised training and evaluation of neural networks.
To test the system’s jamming resistance, a jammer based on Zadoff–Chu sequences was
constructed. These sequences are ideal candidates due to their correlation properties
that are capable of confusing radar detectors. The subsequent subsection describes the
subsystems that were utilized.

2.1. Dataset

In the radars, the BPSK signals in the form of the Barker codes are widely used. In
this paper, we have used the quadrature phase shift keying (QPSK) modulation, which
has been widely applied in communication systems. The QPSK-modulated signals have a
low error rate, strong anti-jamming ability, and low complexity. We assume that the QPSK
signal is reflected from the target. The receiver carrier frequency is fc = 10 GHz, and the
sampling frequency is 1 GSps.

2.2. Jamming

Zadoff–Chu (ZC) sequences are complex sequences with unit amplitude and specific
phase shifts and are now widely used in modern cellular systems such as LTE and 5G NR.
They have replaced previous spread spectrum sequences, such as PN and Walsh sequences,
commonly used in 3G cellular systems (WCDMA and CDMA2000) and IS-95. Unlike
Walsh and PN codes, which are real and binary-valued (usually 1±), ZC sequences have a
different structure. ZC sequences have several remarkable and desirable properties, such
as the cyclic auto-correlation of a ZC sequence being optimal. Hence such sequences can be
used as jammers to overload the receivers. The simulation generates a PN (Pseudo-Noise)
sequence using a Linear Feedback Shift Register (LFSR) for jamming purposes. A Zadoff–
Chu sequence has two key parameters, (i) the root index q = 1, 2, ..., Nzc − 1 and (ii) the
length of the sequence, Nzc, which must be an odd number (and is often a prime number).
Given these two parameters, the qth ZC sequence sq[n] is defined as:

sq[n] = exp(−jπq
n(n + 1)

Nzc
), (12)

where n = 0, 1, 2, ..., Nzc − 1. Note that each sequence has length Nzc, while the number of
such sequences is Nzc − 1. The jamming signals are added with 50% probability.

2.3. Test Setup

For testing purposes, a TDOA simulator was created in Python. The main idea is to
create a simple region representing the field of view. Four antennas are placed at each
corner point, and our goal is to detect a moving object inside the evaluated area. Our
simulator generates a reflected signal in the moving object, and then according to the
distance from each antenna node, the signal is delayed and attenuated. The signals are
concentrated in the central node. To reduce data floating from the antenna to the central
node, only one of the quadrature components (I or Q) has been used. Then the differential
time delays are calculated. The operation of the simulator was verified by correlating the
signals from individual antenna nodes and calculating the object’s position.

The simulator being discussed is a system that simulates the behavior of a radio signal
received by multiple antennas. It consists of four receiving antennas that are distributed
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in space. The purpose of this simulator is to simulate the movement of a target in space
and how the radio signal reflected off of the target is affected by the environment as the
antennas receive it.

One of the key features of this simulator is the ability to account for the varying delays
that occur as the antennas receive the signal. Various factors, such as the distance between
the target and the antennas, can cause these delays. The simulator can extract these delays
by cross-correlations from the signals received by the antennas and use them to calculate
the target’s position.

If the goal is to confuse a radar system, one way to achieve this is by using a jamming
device, which is a device that transmits signals specifically designed to disrupt or interfere
with the operation of the radar. In our case, the jammer is a generator of ZC sequences,
which are complex sequences with unit amplitude and specific phase shifts. These se-
quences can overload and confuse the correlation detector of the radar system, making it
impossible to detect the target reliably. This is known as jamming the radar.

In our simulator, we placed the jammers randomly in the environment to make it very
difficult for the radar system to mitigate the jamming. This added realism to the simulation,
mimicking the unpredictable nature of jamming in real-world scenarios. The second task
of our TDOA simulator was to generate an interference signal that would preclude the use
of standard detection methods based on signal correlation. This was done to simulate the
impact of jamming on the radar system and to test the effectiveness of different jamming
countermeasures. In the simulation, the receiving antenna positions are #1 antenna [0, 0] m,
#2 antenna [1000, 0] m, #3 antenna [0, 1000] m, and #4 antenna [800, 700] m. The carrier
frequency is fc = 10 GHz, and the sampling frequency is 1 GSps. The signal from the target
to the receiver is attenuated according to the:

AdB = 20 log10(distance) + 20 log10( fc)− 147.55. (13)

The block diagram describing the principle can be seen in Figure 9. The simulator
has four fixed receiving antennas, each connected to a neural network. Then the signals
(with major dimension reduction) are concentrated in the central node. In principle, the
receiver-central node neural networks work as auto-encoder. The central node is used for
delay estimation.

Input([1x8000])
Conv1D([1x64])

MaxPooling1D([1x64)]
LSTM([1x16])

Input([1x8000])
Conv1D([1x64])

MaxPooling1D([1x64)]
LSTM([1x16])

Input([1x8000])
Conv1D([1x64])

MaxPooling1D([1x64)]
LSTM([1x16])

Input([1x8000])
Conv1D([1x64])

MaxPooling1D([1x64)]
LSTM([1x16])

Input([4x16])
Concatenate([1x64])

Flatten([1x64])
Dense([1x128])
Dense([1x64)]
Dropout([1x64])
Dense([1x3])

Receiver #1

Receiver #2 Receiver #3

Receiver #4

Central Node

Jamming

Zadoff-Chu

Figure 9. Description of the test-bed. The simulator has four receiving antennas, each connected to a
neural network. Then the signals (with major dimension reduction) are concentrated in the central
node. The central node is used for delay estimation.
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Signals received by antennas can be seen in Figure 10. There is only one component
from the quadrature receiver on four receiving antennas. Signals without jamming can be
easily used for delay estimation by cross-correlation. However, if the signals are intercepted
with strong jamming signals (randomly distributed in space), the generic method cannot
extract the delay. The neural network can compress the sparse information to reduced state
space. By using convolution layers and memory layers such as LSTM or GRU, the network
can filter out unwanted signals and provide relatively satisfactory results. An example of a
cross-correlation function for delay estimation with and without jamming signals can be
seen in Figure 11.

Signal at RX antenna #1
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Figure 10. Example of the received signals. There is only one component from the quadrature receiver
on four receiving antennas. Left: Signals without jamming. Right: Signals with randomly placed
jamming devices.
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Figure 11. Example of the cross-correlation function for delay estimation. Left: Signals without
jamming. Right: Signals with the randomly placed jamming device. If the jammer is used, the signals
reflected from the target are hidden. Hence the algorithm is not able to estimate the correct delays.

2.4. Deep Neural Network Architecture—RadarNET

The neural network is used for two specific tasks. First, it is used to compress the
signal from the receiving antenna to the central node. Secondly, it is used for resistance
against jamming. For this purpose, the authors have designed RadarNET, as described
below. At the input of each antenna node, there is a buffer of 8000 samples, and the output is
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encoded only to 16 samples. To provide the capability to be scaled, the input node is cloned
(all four nodes have the same network structure and same coefficients) to four receiving
antennas. The real input signal is injected into the 1D convolution layer, followed by the
Max-pooling layer to provide filtration of the artifacts. Then the signal is processed by a
LSTM. This series of layers works as a filter—finding specific patterns related exclusively
with the reflected radar signals. Then the LSTM cell encodes the filtered signal in to a latent
subspace made of 16 real-valued samples representing the features of the reflected signal.
The cell remembers values over arbitrary time intervals and compresses the signal further
to 16 samples. In general, the input part of the network can be seen as a autoencoder.
Another important idea is incorporated in the image, which is to clone coefficients to other
input units, the reason being to make on-site implementation possible (implementation
directly to a receiving antenna unit). Hence, each antenna node provides 16 samples, that
is, 64 samples in total, from 4 receiving antennas to the central node. The structure of the
neural network can be seen in Figures 9 and 12.

Receiver	#1 Receiver	#2 Receiver	#3 Receiver	#4

Central	Node

Figure 12. RadarNET: a neural network employed for filtration, compression, and delay estimation
that utilizes a unique structure. The input node is duplicated and distributed to all four receiving
antennas, ensuring that each antenna node has the same network structure and coefficient val-
ues. This allows for efficient and consistent processing of incoming signals, ensuring accurate and
reliable results.

The central node collects compressed data from the antenna nodes, then increases
the vector size from 64 to 128 samples. This part can be seen as a autodecoder network
structure scaling the latent space to 12 samples. The layer is followed by fully connected
layers providing a time-difference estimation outputting three samples that represent the
time differences. The differences are used in Equation (11) to calculate the position of
the target. To ensure accurate calculations, a Dropout layer with a probability of 0.2 is
employed. The network then outputs mutual delays. The neural network boasts an
impressive architecture consisting of 10,277,763 trainable parameters. This large number of
parameters allows for a high degree of flexibility and complexity in the network’s decision-
making processes, enabling it to process and analyze the input data effectively. The network
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can also continuously improve its performance through training, utilizing this vast number
of parameters to learn and adapt to new patterns and structures within the data.

To overcome the challenges posed by a large number of coefficients and memory
limitations, the data was loaded and processed on demand. To guarantee the convergence
of both the evaluation and training datasets, a dynamic loading strategy was implemented.
The data for training was generated anew for each evolution, comprising 200 batches
for training and 100 batches for evaluation. The training process employed the Mean
Squared Error (MSE) criterion, utilizing the ADAM optimizer within the Keras framework
for optimal performance. This approach not only allows for the efficient utilization of
computational resources but also ensures that the network’s performance continually
improves over time as it processes new and diverse data.

3. Results

To evaluate the proposed algorithm, using neural networks, the simulator for receiv-
ing reflected signals from a moving target was created. The scripts written in Python
language can be found on GitLab [29]. In the simulator, there are four receiving antennas
measuring the reflected signals at a carrier frequency of 1 GHz with a sampling frequency
of 1 GSps. The simulations were tested on 1000 measurements of data (which is sufficient
for average calculation) and compared with a classical algorithm [7]. Two scenarios were
considered—with one jammer and with two jammers. The performance of the algorithms
was evaluated by calculating the total error as the average and maximum errors. The
results of the comparisons are shown in Tables 1 and 2, and it can be observed that the new
algorithm using neural networks outperforms the classical approach under jamming condi-
tions. The new algorithm achieved a lower average and maximum error in both scenarios,
demonstrating its improved performance in the presence of jamming. This research shows
that the proposed algorithm is a promising solution for addressing jamming challenges in
wireless communication systems.

Table 1. Table with errors for one jammer in the field of view. Our method using neural network
processing is compared with the classical method for TDOA.

Classical Method [m] [7] Our Method [m]

Average position error 301.9 119.1
Maximal position error 1580 517.2

Table 2. Table with errors for two jammers transmitting Zadoff–Chu sequences. Our method, using
neural network processing, is compared with the classical method for TDOA.

Classical Method [m] [7] Our Method [m]

Average position error 285.2 139.3
Maximal position error 2759 808.4

The proposed algorithm was evaluated on a linear trajectory of the target to provide
meaningful results. The jammer was strategically located at the position [600, 200] m. The
evaluation results were visually represented in the form of plots in Figure 13, with the
neural network predictions illustrated in blue dots and the predictions of the classical
algorithm illustrated in violet. The plots demonstrate the superior performance of the
proposed algorithm, as it accurately detects the target, while the classical algorithm exhibits
confusion in its estimation of the target’s position. This highlights the effectiveness of
the proposed algorithm in addressing the challenges of jamming in TDOA systems. The
classical algorithm was evaluated with similar quantities as the neural network approach.
However, some violet crosses overlap due to a limited number of cross-correlations.
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Figure 13. Linear trajectory of the target- green was generated. The jammer was located at [600, 200] m.
The neural network predictions are blue. The classical algorithm [7] is violet. It demonstrated
confusion about the estimation of the target position. The classical algorithm was evaluated with
similar quantities as the neural network approach. However, some violet crosses overlap due to a
limited number of cross-correlations.

4. Discussion

In this paper, a method for estimating the position of a target under jammed conditions
using the Time Difference of Arrival method is presented. Additionally, a significant
reduction of data transmission between the antenna nodes and the central node is achieved
through advanced signal processing techniques. The algorithm utilizes a deep neural
network to overcome the challenges posed by the jammed conditions. The neural network
employed boasts a highly sophisticated architecture featuring a total of 10,277,763 trainable
parameters. Each antenna node has a buffer of 8000 samples at its input, and the output is
compressed to only 16 samples. Despite the compression, the network still demonstrates
superior performance compared to traditional methods, such as cross-correlation for delay
estimation. This approach not only allows for the efficient utilization of computational
resources but also ensures that the network’s performance continually improves over time
as it processes new and diverse data.

Furthermore, the network is designed to be robust against noise and interference,
ensuring accurate and reliable results even in challenging jammed environments. The
results of the simulations show that the proposed method outperforms the conventional
TDOA method in terms of accuracy and computational efficiency. The use of deep neural
networks in this application opens up new possibilities for developing advanced signal-
processing algorithms for positioning systems and other related fields. The proposed
method can be applied to various scenarios, such as indoor and outdoor localization,
navigation, and tracking of moving targets.

The receiver antennas are distributed in the square perimeter and for convenience,
the target is only moving inside. However it is possible to be outside the perimeter. The
reader may observe significant maximum position error of the so-called classical method
[7]. The classical method uses cross-correlation, as described by Equation (7), of the
received signals in order to estimate mutual delays. With a sampling rate of 1 GSps and
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a signal length of 8000 samples, the maximum cross-correlation offset can be anticipated
to reach up to 4000 samples. Considering the speed of light as the propagation speed
for the electromagnetic signal, this offset corresponds to a maximum mutual distance of
approximately 12,000 meters. Hence, in the worst-case scenario, the maximum possible
error in the simulator can reach 16 km.

5. Conclusions

In this paper, the authors have presented the concept of using a neural network to
compress the sampled signal into a latent space, which can then be transferred to a central
processing node for data processing, where the signal is expanded and analyzed.

Furthermore, the incorporation of convolution layers in the neural network enables
the system to be robust against jamming. The network is designed to have an antenna
compressing (processing) node with a neural network independent in the field. The
compressed signals from several nodes are aggregated in the main node and are analyzed.

Many papers, such as Refs. [6,13,30], have presented the use of neural networks as
a complement to standard methods to pinpoint the location of an object. However, the
authors believe that so far no work has considered the use of jammed signals and the
usage of neural networks as an autoencoder for radars, which reduces the data flow from
individual nodes to the center node.

The results suggest that the radar with RadarNET is capable of estimating the position
of the target even under heavy jamming. In the simulator, the average error of the proposed
method is 50% smaller then using the classical approach as described in Ref. [7]. The reason
for errors is due to the design of a jammer capable of confusing the correlation estimators.
On the other hand, the neural network design using convolution layers can partially filter
out the jamming signals, providing superior estimation accuracy. The most illustrative
example of comparison with a moving target can be seen in Figure 13. The proposed
RadarNET is able to follow the linear trajectory of the target.

In conclusion, the scripts used in this paper are readily available on GitLab [29] for
further access and use. We encourage others to utilize these scripts in their studies and to
contribute any modifications or improvements to the repository.
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