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Abstract: The rapidly changing climate affects an extensive spectrum of human-centered environ-
ments. The food industry is one of the affected industries due to rapid climate change. Rice is a staple
food and an important cultural key point for Japanese people. As Japan is a country in which natural
disasters continuously occur, using aged seeds for cultivation has become a regular practice. It is a
well-known truth that seed quality and age highly impact germination rate and successful cultivation.
However, a considerable research gap exists in the identification of seeds according to age. Hence,
this study aims to implement a machine-learning model to identify Japanese rice seeds according to
their age. Since agewise datasets are unavailable in the literature, this research implements a novel
rice seed dataset with six rice varieties and three age variations. The rice seed dataset was created
using a combination of RGB images. Image features were extracted using six feature descriptors.
The proposed algorithm used in this study is called Cascaded-ANFIS. A novel structure for this
algorithm is proposed in this work, combining several gradient-boosting algorithms such as XGBoost,
CatBoost, and LightGBM. The classification was conducted in two steps. First, the seed variety was
identified. Then, the age was predicted. As a result, seven classification models were implemented.
The performance of the proposed algorithm was evaluated against 13 state-of-the-art algorithms.
Overall, the proposed algorithm has a higher accuracy, precision, recall, and F1-score than the others.
For the classification of variety, the proposed algorithm scored 0.7697, 0.7949, 0.7707, and 0.7862,
respectively. The results of this study confirm that the proposed algorithm can be employed in the
successful age classification of seeds.

Keywords: Japanese rice; age classification; machine learning; ANFIS; cascaded-ANFIS; XGBoost;
CatBoost; LightGBM

1. Introduction

Japan is a country with a population of 127 million people. For over 2000 years, rice
has been a significant staple in Japan. Around 300 of the 40,000 or so distinct types of
rice produced worldwide can be found in Japan [1]. A tendency toward sustainable rice
production through technical advancements has emerged, particularly in light of the rising
scarcity of resources such as water and land. Researchers are driven to find new solutions
to the declining or stagnant yields brought on by poor grain quality and rising production
costs due to a significant reliance on agricultural inputs.

Nevertheless, despite these limitations, rice output needs to dramatically increase
in the following generation to meet the global food demand, especially for the poor. To
ensure the food supply and social, economic, and water sustainability of Asia, a region in
which rice is deeply culturally ingrained, it is crucial to produce more rice with a restricted
or controlled flow of resources [2]. According to previous research, the quality of rice
seeds used primarily for rice cultivation is mainly determined by the age of the rice seeds
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after harvest. Therefore, this research aims to create a method that can more accurately
determine or validate the word-of-mouth age of rice seeds, which might be one factor in
assessing the overall quality of rice seeds.

Due to its climate and topography, Japan is particularly susceptible to natural disasters,
including earthquakes, storms, and flooding. Unfavorable weather conditions may result
in crop failure or harvest loss. Hence, using old rice seeds for cultivation is a common
practice. By more accurately determining the age of rice seeds, care necessary for treatment
might be taken.

In [3], the germination rate behavior of Portulaca oleracea L. seeds was examined in
relation to their place of origin, seed maturation period, and seed age. Three geographical
areas representing three different climates were used to gather seeds; then, they were
cultured under diverse light and temperature conditions. Compared to seeds from the
Canadian site, the results showed that seeds from the United Arab Emirates location
exhibited less dormancy and germinated more quickly under a wider variety of incubation
conditions. At the Canadian location, seed age substantially impacted germination rate
but not for seeds from the Egyptian or United Arab Emirates sites. Overall, the study
emphasizes the significance of considering environmental factors when determining how
seeds adapt to dormancy and germination rate. In [4], the authors looked at how alfalfa’s
tolerance to salt during germination rate changed with natural and artificial aging. The
findings demonstrated that different aged seed lots had considerably varying salt tolerances
and that seed age enhanced the amount of solute leakage that occurred after ingestion.

Moreover, ref. [5] examined the relationship between seed age and seedling vigor and
competitiveness in populations of Bromus tectorum, an annual grass found in meadows
and sagebrush steppes. When grown in competition, old seeds from the meadow steppe
population displayed germination rate delays, which lowered plant growth and biomass,
whereas aged seeds from the sagebrush steppe population did not. According to the
study, physiological expenses related to seed age may impact aboveground competitive
interactions and the relative fitness of older cohorts in the soil seed bank.

Although the relationship between seed age and germination rate is well established
in the literature, to our knowledge, no research has been conducted on age-based rice
seed categorization. The relevant works on the correlation between germination rate and
rice seed age and the classification of seeds are introduced in the following paragraphs.
However, these are not restricted to rice.

According to the above-stated literature, there are several reasons why a machine
would be necessary to develop a real-time application for classifying rice seed varieties and
identifying their harvested age:

• Speed:
Machines can process and analyze large amounts of data much faster than humans,
making it possible to classify and identify rice seed varieties in real-time.

• Accuracy:
Machines can analyze data with a high level of accuracy, reducing the chances of
errors in classification and identification.

• Consistency:
Machines can perform tasks consistently and accurately, ensuring that the classification
and identification of rice seed varieties are consistent across different batches.

• Efficiency:
Machines can work continuously without breaking, allowing for more efficient and
cost-effective data processing.

• Cost:
Using machines can reduce labor costs, as they can perform tasks that would otherwise
require human labor. This can make the development of a real-time application more
cost-effective.
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Therefore, this study aims to implement a machine learning model that can be em-
ployed to develop a real-time application to classify rice seed varieties and identify their
harvested age. The following points are introduced as the research outcomes of this study.

1. Implementation of rice seeds dataset based on varieties and harvested age:
Developing a dataset from scratch when working with AI and machine learning can
be challenging, especially if you do not have access to a large and diverse dataset. This
is because the performance of a machine learning model is heavily dependent on the
quality and quantity of the data on which it is trained. When a dataset is undersized
or generated using an artificial method, this can lead to an unsatisfactory performance
when using a machine learning algorithm. One solution is to consider whether it
is necessary to use a machine learning model. Sometimes, a more straightforward
approach, such as a rule-based system or a decision tree, can be used to solve the
problem. Here, a dataset was developed from scratch due to the lack of age-based
seed image data. This study introduces a rice seed dataset with six different seed
varieties and three age categories for the classification task. To our knowledge, this
dataset is the only one labeled based on the harvested age of the seeds.

2. Investigation of Red, Green, and Blue (RGB) features for accurate classification: Var-
ious features were comprehensively evaluated due to the use of RGB images. The
feature descriptors used in this study can be introduced as follows.

• Color structure;
• Edge histogram;
• Region shape;
• Gray-level co-occurrence matrix (GLCM);
• Mean value of RGB spaces;
• Column layout.

3. Implementation of a novel machine-learning model for the cost-effective and efficient
identification of the rice seeds’ variety and age: the proposed algorithm is a combina-
tion of the gradient-boosting algorithm and cascaded adaptive network-based fuzzy
inference system (Cascaded-ANFIS) algorithms. The performances of the proposed
algorithm were compared with several feature-based machine learning algorithms.

2. Related Works

In-depth research on the correlation between germination rate and rice seed age was
conducted by Jones et al. in 1926 [6]. For the majority of rice types, seed age was suggested
to be inversely correlated with the germination rate. Eight different types of rice were
employed in the study, and age intervals of six years were investigated. According to a
survey, the association between germination rate and wheat seed age was the same as in
the prior study. According to them, the germination rate declines at a rate of 0.243% h−1

as people age [7]. Canola seeds were studied by Yun et al. to determine how much seed
aging affects the germination rate [8]. They also showed that older seeds have a lower
germination rate than fresh ones.

Additionally, Ibrahim et al. in 2013 [9] and Tabatabaei in 2014 [10] reported results
from two different studies on seed germination rate with aging and reached the same
conclusions. These signs play a significant role in the age-based categorization of seeds.
Wu and Tsai presented a leaf image noise reduction. They were able to achieve 92.13%
accuracy using background removal and ROI extraction approaches as the innovative
forms of implementation [11].

For various tasks assessing food quality, machine vision systems have been devel-
oped [12–15]. Research has concentrated on fusing image analysis with machine learning
techniques to create new automatic inspection and certification approaches. The quality
control or cultivar categorization tasks primarily examined in [16] for rice seeds (polished)
are pertinent to the work presented here. Y. Ogawa provides a thorough overview of
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computer vision methods, measurements of physical properties, chemical content, and
distributions of rice grains for seed quality management in [16].

Using an automated machine vision system to classify rice seeds often involves many
steps. Collecting picture data and feature extraction are among the most crucial examples.
Morphological, color, and textural qualities, individually or in combination, are frequently
used in appearance-based techniques. Lai et al. [17] proposed using image analysis to
detect the physical parameters of and manually categorize wheat grains, a proposal that
dates back to 1986. Two-dimensional image analysis is used by Sakai et al. [18] to manually
categorize four different species of polished rice grains by extracting their dimensions
and form parameters. It is common practice to extract the form descriptors from the seed
samples and train classifiers such as random forests (RF) [19], neural networks (NN) [20],
or a Cubic B-Splines shape model [21].

In contrast to characteristics that are more frequently employed in the literature, such
as the chaff tip and depth of concavities of rice kernels, Huang et al. [22] conducted an
extensive examination of shape descriptors. While just three kinds of rice were evaluated,
their study demonstrates encouraging results in the separation of superficially similar
species. With a standard derivation of 7.0%, Kuo et al. [23] investigated 30 types of rice
seeds using sparse representation classification with an accuracy of 89.1%. The bulk of
the literature employs a small number of species, which the writers briefly acknowledged.
However, they did not show how this may affect the reader’s capacity to discriminate
between different species. They used a systematic approach, concentrating on the grains’
specific regions of interest.

HSI approaches have recently been used in food and agricultural engineering.
Wang et al. [24], using VIS/NIR spectral data, distinguished three different rice culti-
vars. The authors combined several features from the obtained HSI pictures, including the
degree of chalkiness, form features, and spectral properties. Principle component analysis
(PCA) was utilized to decrease the dimensionality of the spectral data. The principal
components were then used to train an artificial neural network, yielding a classification
accuracy of 94.45%. The authors of [25] found a practical way to monitor the nitrogen
status in rice using a combination of the least squares support vector machine (LS-SVM)
regression algorithm and VIS/NIR spectroscopy within a range of 325–1075 nm. Four rice
seed varieties were recently identified using an HSI technique in [26]. The authors [26]
achieved up to 100% accuracy in their findings using a random forest (RF) classifier and the
whole spectral range of their system, 1039–1612 nm. It is uncertain how the inter/intra-class
changed over the four cultivars in [26] because they were crossbred with different species.

The studies in [27,28] investigated several feature combination techniques to find the
best feature combination. When combining spectral, texture characteristics, and morphol-
ogy, the best accuracy (91.67%) was attained in [28]. Using a dataset containing six different
rice seed types and a mix of spectral and spatial information, the authors of [27] reported a
classification accuracy of 84%.

The previous studies on this subject do not provide sufficient information on the age
classification of seeds. Therefore, this study is novel to the best of the authors’ knowledge.
There are several methods of seed variety classification based on hyperspectral images.
However, a hyperspectral dataset does not provide a convenient environment to implement
a system that farmers and other interested parties can use. Hence, the main focus of this
study is to implement a comparatively effective and efficient rice seed classification system
based on harvested age.

3. Methodology
3.1. Dataset Construction and Preprocessing

The rice seed dataset was newly constructed. This study was conducted with six rice
varieties of different harvest ages. Initially, the rice seeds were collected with the help of
Prof Akira Miyazaki from the Agriculture Faculty at Kochi University, Japan. Figure 1
shows that the dataset was constructed using a conveyer belt setup. The ultimate objective
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of this study is to implement a mobile application that can be used in real-time with a
smartphone camera. Therefore, as shown in the figure, a smartphone camera was used for
data acquisition.

Seed Feeder

FLOW

Smart Phone Camera

Rice Seeds

Figure 1. Rice seeds dataset construction setup.

The smartphone that we used was Xiaomi 11T Pro. The macro-lens was used in the
camera configuration to obtain feature-rich images. The specifications of the macro-lens
are as follows: a 5 Megapixel 1/5′′ sensor with an f/2.4 aperture lens. A controller was
developed to synchronize the conveyor belt movements and camera shuttle speed. The
images were obtained at five-second intervals. Each time, the conveyor belt stopped and
obtained a macro-image of the rice seed. The images were saved in JPEG format.

The dataset was preprocessed in three steps: (a) the images were captured using the
smartphone camera; (b) the backgrounds were removed from the raw dataset; (c) seeds
were cropped and isolated. The background was removed using the rembg library in
python, and segmentation was carried out using the OpenCV4 platform. The outputs of
each process are shown in Figure 2.

(a) (b) (c)

Figure 2. Image preprocessing steps. (a) The images were captured using a smartphone camera.
(b) The backgrounds were removed from the raw dataset. (c) Seeds were cropped and isolated.

Table 1 shows the completed dataset’s descriptive information. Six rice varieties were
used to develop the dataset, namely, Akitakomachi, Fusaotome, Hatsuboshi, Koshihikari,
Okiniiri, and Yang DAO-8 (Figure 3). These rice varieties originated in Japan, except
Yang DAO-8. Yang DAO-8 originated in China. The harvest ages of these rice samples
were 2012, 2016, and 2020. However, Okiniiri seeds comprised only samples from 2012 and
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2016, while Yang DAO-8 contained samples from 2012 and 2020. Hence, the total number
of classes could be calculated as 16. The completed dataset was uploaded and is publicly
available in the Kaggle data repository under Japanese rice seeds agewise classification.

(a) (b) (c) (d) (e) (f)

Figure 3. Rice Varieties (harvested in 2012). (a) Akitakomachi. (b) Fusaotome (c) Hatsuboshi.
(d) Koshihikari. (e) Okiniiri. (f) Yang Dao-8.

Table 1. Rice seed dataset sample count.

Rice Variety 2012 2016 2020

Akitakomachi 306 279 366
Fusaotome 325 416 482
Hatsuboshi 376 495 499
Koshihikari 340 348 509

Okiniiri 345 292 N/A
Yang DAO-8 343 N/A 261

The dataset was divided at a ratio of 7:3 for training and testing, and the same datasets
were employed for all algorithms used in this study.

3.2. Feature Extraction

The main component in classifier implementation is feature extraction. As a result, six
feature descriptors were used to extract various features from the rice seed dataset. Each of
these feature extraction techniques is briefly described in this section. The Color Structure
descriptor is the first technique. Although it is based on histogram equalization, it aims
to differentiate localized color differences for each color and provides a comprehensive
explanation [29]. The Region Shape is the following feature description. Due to the inherent
challenges in depicting forms, the shape features are less developed than their color and
textural equivalents [30]. It is not feasible to precisely segment an image into meaningful
regions using low-level features because of the variety of ways in which a 3D object can
be projected into 2D shapes, the complexity of each object’s shape, and the presence of
shadows, occlusions, non-uniform illumination, and varying surface reflectivity. As a result,
the third feature extraction technique employed the column layout feature descriptor.

The edge histogram (EDH) descriptor was used to show how local edges are dis-
tributed throughout images [31]. As a result, this study’s fourth feature extraction tech-
nique was the EDH descriptor. The histogram was used to describe edges, a crucial aspect
for visualizing picture data. The EDH-described characteristics of a picture cannot be
replicated by the uniform color histogram and texture features [32,33]. The gray level
co-occurrence matrix is the fifth characteristic descriptor (GLCM). Given a picture made up
of pixels, each with a certain intensity, it calculates how frequently particular pairings of
gray levels co-occur in an image or part of an image (a specific gray level). The change in
intensity at the pixel of interest is measured using the GLCM contents in texture feature
computations [34]. Moreover, the sixth feature descriptor was the mean values of red,
green, and blue channels.
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3.3. Machine Learning Algorithm Development
3.3.1. Gradient-Boosting Algorithms

Gradient-boosting algorithms are used in most literature studies due to their easy
implementation, low computational cost and efficiency. This study proposes a novel
machine-learning method for rice seed classification, and gradient-boosting algorithms are
one of its key components. Gradient-boosting algorithms are based on the suspicion that
the overall prediction error is minimized when previous models are combined with the
best possible forthcoming model. Setting the expected outcomes for this following model
is crucial to minimizing errors. Each case’s target outcome will differ depending on how
changing a case’s forecast impacts the overall prediction error. This technique is referred to
as “gradient boosting” because target outcomes are defined for each case depending on
the gradient of the inaccuracy of the prediction. Each new model advances in a way that
minimizes prediction error in the potential predictions for each training instance [35].

• XGBoost: eXtreme Gradient Boosting.
Chen et al. [36] invented the XGBoost algorithm. Gradient-boosting machines are
used in a novel and extensible way that has been found to increase the computational
efficiency of boosted tree algorithms. They were developed specifically to boost model
performance and computational effectiveness.
In an ensemble strategy known as “boosting”, adding more models fixes the errors
introduced by previous models. The gradient-boosting approach involves the creation
of new models that predict the residuals of previous models, which are then integrated
to obtain the conclusive prediction. The model addition process is repeated until there
is no observable improvement. A gradient descent method reduces the loss when
adding new models.
A total of 17 of the 29 machine learning (ML) projects posted on Kaggle were success-
fully completed by XGBoost by 2015. Speed was significantly boosted by using many
CPU cores, reducing the look-up times of individual trees created with XGBoost. This
method was constructed in R and Python using the SciKit-Learn [37] package and
uses unique regularization approaches.

• CatBoost: Categorical Boosting.
Diverse characteristics, noisy data, and complex connections can be dealt with using
a powerful machine-learning technique called gradient boosting. In 2017, CatBoost,
a machine learning method based on gradient-boosting decision trees (GBDT), was
introduced by Yandex engineers [38]. CatBoost has the following advantages over
other GBDT algorithms:

1. The algorithm effectively handles category features. Using traditional GBDT
methods, categorical traits can be substituted by suitable average label values.

2. In CatBoost, many category traits are blended. CatBoost uses a greedy approach
to integrate all categorical features from the dataset with all categorical traits and
combinations in the current tree.

3. CatBoost can be used to alleviate gradient bias. Each iteration of GBDT generates
a weak learner, and each learner is taught using the gradient of the preceding
learner. The total findings from each learner’s categorization comprise the
output [39].

• LightGBM: Light Gradient Boosting.
The LightGBM [40] algorithm from Microsoft is an open-source GBDT. The histogram-
based approach provides the foundation for the parallel voting decision tree technique,
which speeds up training, uses less memory, and integrates complex network con-
nections to maximize parallel learning [41,42]. In each iteration, the local voting
decision is made, selecting the top k characteristics and the global voting choice to
receive the top attributes. The training data are distributed among many computers.
LightGBM uses the leaf-wise method to determine which leaf has the most significant
splitter gain.



Sensors 2023, 23, 2828 8 of 18

3.3.2. Adaptive Network-based Fuzzy Inference System (ANFIS)

A multi-layer adaptive network-based fuzzy inference system called ANFIS was sug-
gested by Jang [43]. When learning and fine-tuning fuzzy inference system (FIS) parameters
using a hybrid learning mode, an ANFIS consists of five layers that implement various
node functions. The following parameters are updated, and the errors are transferred to
the backward pass using the least squared error estimation approach in the forward pass
with fixed premise parameters. While fixing the subsequent parameters, the backward pass
changes the premise parameters using the gradient descent method. The assumption and
associated parameters for membership functions (MF) and fussy inference system (FIS)
will be revealed by repeatedly performing forward and backward passes. In automation
control [44] and other domains, ANIFS is frequently used.

3.4. Cascaded-ANFIS

Cascaded-ANFIS is an extension of the ANFIS algorithm. The Cascaded-ANFIS
was introduced in 2021 and showed several benefits compared to the traditional ANFIS
algorithm. ANFIS has two significant limitations, such as the curse of dimensionality and
higher computational power consumption. The Cascaded-ANFIS removes these limitations
using a simple ANFIS algorithm in different configurations.

Figure 4 illustrates the Cascaded-ANFIS algorithm’s creation.

Figure 4. Construction of the Cascaded-ANFIS algorithm.

As shown in the figure, there are two primary components: (1) pair selection and
(2) train model. Generally, the Cascaded-ANFIS algorithm selects the best pairs and trains
them individually using a two-input–one-output ANFIS model. Then, the output of each
node is transferred to the next level as the input.

The pair selection module uses the sequential feature selection (SFS) procedure. The
novel aspect of the method is identifying the best fit for each input variable using a
two-input–one-output ANFIS model. A nested loop cycles through all potential pair
combinations to achieve this. The two-input ANFIS model is then used with these as inputs.
Then, the root means square error (RMSE) is calculated, recorded, and compared to the
previous RMSE. Finding the lowest RMSE value at the end of the second loop will reveal
the matched pair. The training phase can start after the pairings are chosen.

In the training instance, a two-input ANFIS model is also used. The input can be
directly sent to the ANFIS module, which can produce current outputs and RMSE for each
data pair, as the input variables are paired with the best match from the previous module.
There is also a target error in place at this point. As a result, the goal error and RMSE
are contrasted. If the desired error is achieved, the process may be terminated. If not, the
algorithm moves on to the second iteration.

Rathnayake et al. [45,46] provide further information and technical specifics regarding
Cascaded-ANFIS. The novel Cascaded-ANFIS method is capable of handling computational
complexity with ease. The distinctive methods created by Cascaded-ANFIS can also manage
noisy datasets.
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3.5. Proposed Approach

One of the crucial benefits of the Cascaded-ANFIS algorithm is that it can be restruc-
tured according to the problem statement. The present study is based on image data, and
features are extracted from the images. This method provides an extensive number of
feature dimensions. Therefore, this study proposes combining selected gradient-boosting
algorithms (XGBoost, CatBoost, and LightGBM) in a Cascaded-ANFIS structure. The
proposed approach is illustrated in Figure 5.

As shown in the figure, the image data extracted features employing six feature
descriptors. The total number of features that were used in this study is 159. Then, the
extracted features were fed to the gradient-boosting algorithms to predict the output. These
outputs were then used to train the Cascaded-ANFIS algorithm. The figure shows that the
pairs were pre-assigned as XGBoost-CatBoost and CatBoost-LightGBM. This combination
was selected based on the testing results of all pairs. The proposed novel structure of the
Cascaded-ANFIS algorithm has two levels.

The parameter tuning of each algorithm was performed using the GridSearchCV
method of the sci-kit-learn library. The tuned parameters and their values are presented
in Table 2 below. This study was conducted purely in a CPU-based environment. The
experimental platform information is presented in Table 3.

Table 2. Machine learning algorithm parameters tuned using the GridSearchCV.

Algorithm Parameter Value

XGBOOST

objective multi:softmax
colsample_bytree 0.5

learning_rate 0.3
max_depth 6

Alpha 10
n_estimators 750
subsample 0.7

CatBoost

Iterations 90
learning_rate 0.04
eval_metric MultiClass

sampling_frequency PerTree
penalties_coefficient 1

max_leaves 64
permutation_count 4

Depth 4

LightGBM

num_leaves 31
objective binary

learning_rate 0.1
boosting_type gbdt

Cascaded-ANFIS

Membership_Function Gaussian
Number_of_MFs 3

Number_of_Inputs 2
Iterations 100

Table 3. Operating system specifications.

Processor Intel(R) Core(TM) i9-10900K
CPU Frequency 3.70GHz

RAM 64.0 GB (63.9 GB usable)
Operating System Windows 10 Education

Version 22H2
System Type 64-bit, x64-based processor

Programming Language Python 3
Programming Environment Anaconda
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Figure 5. Construction of the novel proposed algorithm.

4. Experimental Results
4.1. Evaluation Criteria

Using a confusion matrix, the proposed model’s performance was examined. Classi-
fication matrices were computed and illustrated in Equations (1)–(4) to comprehend the
confusion matrix.

AccuracyAvg =
∑l

i=1
tpi+tpi

tpi+ f ni+ f pi+tni

l
(1)

Precisionµ =
∑l

i=1 tpi

∑l
i=1(tpi + f pi)

(2)

Recallµ =
∑l

i=1 tpi

∑l
i=1(tpi + f ni)

(3)

F1-Scoreµ =
(β2 + 1)PrecisionµRecallµ

β2Precisionµ + Recallµ
(4)

True Positive, False Positive, True Negative and False Negative are denoted as
tpi, f pi, tni, and f ni, respectively. Moreover, l and µ indicate the number of classes and
micro-average. When the problem is multiclass, each of these factors offers essential
information about the effectiveness of the classification [47].

Moreover, the experiment was conducted in several steps. The planned identification
process has two steps: (1) identifying the rice variety; (2) identifying the rice seed age.
Hence, this study contains seven classification tasks (i.e., classification between the six rice
varieties and age classification models of six rice varieties).

Nevertheless, the performances of the proposed algorithm were comprehensively
evaluated with 13 other algorithms. These are as follows.

1. Nearest neighbors;
2. Linear support vector machines (Linear SVM);
3. Radial basis function kernel SVM (RBF SVM);
4. Gaussian process;
5. Decision tree;
6. Random forest;
7. Neural net;
8. Adaptive boosting (AdaBoost);
9. Naive Bayes;
10. Quadratic discriminant analysis (QDA);
11. XGBoost;
12. CatBoost;
13. LightGBM.
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4.2. Rice Variety Classification

Table 4 shows the performance in terms of rice variety classification. The table shows
that the proposed model achieved a maximum accuracy, precision, recall, and F1-score of
0.7697, 0.7949, 0.7707, and 0.7862.

Table 4. Rice seed variety classification results.

Algorithm Accuracy Precision µ Recall µ F1-Score µ

Nearest Neighbors 0.5011 0.5789 0.5102 0.5316
Linear SVM 0.7133 0.7542 0.7218 0.7338

RBF SVM 0.1333 0.0222 0.1667 0.0392
Gaussian Process 0.1378 0.1890 0.1722 0.0501

Decision Tree 0.4922 0.5579 0.5074 0.4871
Random Forest 0.3356 0.4797 0.3324 0.3303

Neural Net 0.7478 0.7686 0.7546 0.7601
AdaBoost 0.5344 0.5793 0.5546 0.5622

Naive Bayes 0.4122 0.5024 0.4435 0.3383
QDA 0.4022 0.5099 0.399 0.3854

XGBoost 0.7633 0.7918 0.7685 0.7769
CatBoost 0.6288 0.6818 0.6351 0.6501

LightGBM 0.7366 0.7716 0.7412 0.7517
Proposed model 0.7697 0.7949 0.7707 0.7862

4.3. Age Classification of Each Variety

Once the classification of the rice variety is completed, the age of the rice has to be
identified. Therefore, several classifiers were trained to evaluate the classification results.

4.3.1. Akitakomachi

Table 5 shows the Akitakomachi rice seed age classification. The results are promising.
The proposed model performed better than other algorithms. However, the XGBoost
algorithm performance was significantly similar to that of the proposed model. The table
shows that the proposed model achieved a maximum accuracy, precision, recall, and
F1-score of 0.7551, 0.7579, 0.7552, and 0.7556.

Table 5. Age classification of Akitakomachi rice seeds.

Algorithm Accuracy Precision µ Recallµ F1-Score µ

Nearest Neighbors 0.5556 0.5595 0.5556 0.5569
Linear SVM 0.6667 0.6676 0.6667 0.6651

RBF SVM 0.3333 0.1111 0.3333 0.1667
Gaussian Process 0.3500 0.4470 0.3500 0.2012

Decision Tree 0.6500 0.6588 0.6500 0.6498
Random Forest 0.5500 0.5595 0.5500 0.5490

Neural Net 0.6667 0.6682 0.6667 0.6656
AdaBoost 0.6333 0.6297 0.6333 0.6283

Naive Bayes 0.5444 0.5918 0.5444 0.5234
QDA 0.4444 0.6389 0.4444 0.3605

XGBoost 0.7500 0.7507 0.7500 0.7483
CatBoost 0.6722 0.6728 0.6722 0.6686

LightGBM 0.7111 0.7124 0.7111 0.7087
Proposed model 0.7551 0.7579 0.7552 0.7556

4.3.2. Fusaotome

Table 6 shows the Fusaotome rice seed age classification. The results were the same as
those of the Akitakomachi. The proposed model performed better than other algorithms.
However, the CatBoost algorithm performance was significantly similar to that of the
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proposed model. The table shows that the proposed model achieved a maximum accuracy,
precision, recall, and F1-score of 0.8612, 0.8720, 0.8618, and 0.8616.

Table 6. Age classification of Fusaotome rice seeds.

Algorithm Accuracy Precision µ Recall µ F1-Score µ

Nearest Neighbors 0.7278 0.7232 0.7278 0.7224
Linear SVM 0.8278 0.8275 0.8278 0.8266

RBF SVM 0.3333 0.1111 0.3333 0.1667
Gaussian Process 0.3444 0.7790 0.3444 0.1899

Decision Tree 0.6556 0.6510 0.6556 0.6505
Random Forest 0.6222 0.6617 0.6222 0.6157

Neural Net 0.8222 0.8212 0.8222 0.8209
AdaBoost 0.7944 0.7960 0.7944 0.7930

Naive Bayes 0.5556 0.7108 0.5556 0.4528
QDA 0.5056 0.7193 0.5056 0.4715

XGBoost 0.8611 0.8622 0.8611 0.8608
CatBoost 0.8611 0.8643 0.8611 0.8615

LightGBM 0.8556 0.8563 0.8556 0.8556
Proposed model 0.8612 0.8720 0.8618 0.8616

4.3.3. Hatsuboshi

Table 7 shows the Hatsuboshi rice seed age classification. The classification results
indicated that the neural nets achieved better results than other algorithms. The proposed
model shows the second-best performance. However, the results were significantly similar
to those of the neural nets. The table shows that the proposed model achieved a maximum
accuracy, precision, recall, and F1-score of 0.7989, 0.8193, 0.7976, and 0.7912.

Table 7. Age classification of Hatsuboshi rice seeds.

Algorithm Accuracy Precision µ Recall µ F1-Score µ

Nearest Neighbors 0.6167 0.6181 0.6167 0.5947
Linear SVM 0.8056 0.8213 0.8056 0.7957

RBF SVM 0.3333 0.1111 0.3333 0.1667
Gaussian Process 0.8111 0.8232 0.8111 0.8031

Decision Tree 0.7056 0.7084 0.7056 0.6929
Random Forest 0.5722 0.6676 0.5722 0.5174

Neural Net 0.8167 0.8256 0.8167 0.8090
AdaBoost 0.7556 0.7636 0.7556 0.7577

Naive Bayes 0.6000 0.6178 0.6000 0.5562
QDA 0.4611 0.6769 0.4611 0.3608

XGBoost 0.7944 0.8172 0.7944 0.7838
CatBoost 0.7611 0.7906 0.7611 0.7458

LightGBM 0.7778 0.7902 0.7778 0.7650
Proposed model 0.7989 0.8193 0.7976 0.7912

4.3.4. Koshihikari

Table 8 shows the Koshihikari rice seed age classification. The results are promising.
The proposed model performed better than other algorithms. However, the XGBoost
algorithm performance was significantly similar to that of the proposed model. The table
shows that the proposed model achieved a maximum accuracy, precision, recall, and
F1-score of 0.8815, 0.8806, 0.8810, and 0.8693.
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Table 8. Age classification of Koshihikari rice seeds.

Algorithm Accuracy Precision µ Recall µ F1-Score µ

Nearest Neighbors 0.6000 0.5960 0.6000 0.5882
Linear SVM 0.8167 0.8131 0.8167 0.8118

RBF SVM 0.3333 0.1111 0.3333 0.1667
Gaussian Process 0.8278 0.8380 0.8278 0.8227

Decision Tree 0.6833 0.6759 0.6833 0.6772
Random Forest 0.6167 0.6681 0.6167 0.5673

Neural Net 0.8556 0.8590 0.8556 0.8525
AdaBoost 0.7278 0.7332 0.7278 0.7302

Naive Bayes 0.4611 0.5158 0.4611 0.3832
QDA 0.5556 0.3812 0.5556 0.4479

XGBoost 0.8722 0.8729 0.8722 0.8692
CatBoost 0.7278 0.7451 0.7278 0.6904

LightGBM 0.8556 0.8551 0.8556 0.8511
Proposed model 0.8815 0.8806 0.8810 0.8693

4.3.5. Okiniiri

Table 9 shows the Okiniiri rice seed age classification. The proposed model perfor-
mance did not achieve the best results. The LightGBM model showed the best results
in terms of Okiniiri rice seed age classification. However, the proposed algorithm’s per-
formance was significantly similar to that of the LightGBM model. The table shows that
the proposed model achieved a maximum accuracy, precision, recall, and F1-score of
0.9512, 0.9521, 0.9514, and 0.9512, while LightGBM poses 0.9583, 0.9585, 0.9583, and 0.9583,
respectively.

Table 9. Age classification of Okiniiri rice seeds.

Algorithm Accuracy Precision µ Recall µ F1-Score µ

Nearest Neighbors 0.8917 0.9053 0.8917 0.8907
Linear SVM 0.9500 0.9500 0.9500 0.9500

RBF SVM 0.5000 0.2500 0.5000 0.3333
Gaussian Process 0.8917 0.9053 0.8917 0.8907

Decision Tree 0.9000 0.9000 0.9000 0.9000
Random Forest 0.9000 0.9072 0.9000 0.8996

Neural Net 0.9500 0.9520 0.9500 0.9499
AdaBoost 0.9583 0.9585 0.9583 0.9583

Naive Bayes 0.8917 0.9053 0.8917 0.8907
QDA 0.5083 0.7521 0.5083 0.3516

XGBoost 0.9500 0.9505 0.9500 0.9500
CatBoost 0.9417 0.9428 0.9417 0.9416

LightGBM 0.9583 0.9585 0.9583 0.9583
Proposed model 0.9512 0.9521 0.9514 0.9512

4.3.6. Yang DAO-8

Table 10 shows the Yang DAO-8 rice seed age classification. The proposed algorithm
achieved the best results in terms accuracy and recall, and F1-score, i.e., 0.7639, 0.7665,
and 0.7479. The precision of the proposed algorithm is second to the LightGBM, which is
0.8196, while the proposed algorithm achieved a score of 0.8062. The difference between
the precision values is 0.01. Hence, the proposed algorithm can also be selected as the best
approach for this classification task.
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Table 10. Age classification of Yang DAO-8 rice seeds.

Algorithm Accuracy Precision µ Recall µ F1-Score µ

Nearest Neighbors 0.6167 0.6630 0.6167 0.5873
Linear SVM 0.7250 0.7723 0.7250 0.7125

RBF SVM 0.5000 0.2500 0.5000 0.3333
Gaussian Process 0.6500 0.6918 0.6500 0.6298

Decision Tree 0.6333 0.6778 0.6333 0.6089
Random Forest 0.5417 0.6502 0.5417 0.4406

Neural Net 0.7500 0.7813 0.7500 0.7429
AdaBoost 0.7083 0.7718 0.7083 0.6902

Naive Bayes 0.5167 0.5404 0.5167 0.4334
QDA 0.5000 0.2500 0.5000 0.3333

XGBoost 0.7500 0.7976 0.7500 0.7396
CatBoost 0.6750 0.7824 0.6750 0.6409

LightGBM 0.7500 0.8196 0.7500 0.7356
Proposed model 0.7639 0.8062 0.7665 0.7479

5. Discussion

Most of the experiment results showed that the proposed algorithm outperformed
the other algorithms used in this study. In terms of rice variety classification, the pro-
posed algorithm showed an accuracy of 0.7697, while the second-best algorithm XGBoost
achieved an accuracy of 0.7633. The LightGBM and CatBoost algorithm achieved 0.7366
and 0.6288 accuracies, respectively. The rice varieties used in this study are very similar
in shape, except for the Yang Dao-8. As shown in Figure 3, Akitakomachi, Fusaotome,
Hatuboshi, Koshihikari, and Okiniiri rice seeds are similar in shape. However, the Yang
Dao-8 rice seed is longer than the other seeds. This structure similarity impacted the rice
seeds’ classification due to the use of Edge Histogram Features.

The results of the age classification of each variety mainly depend on the texture
changes due to the aging of the seeds. The Akitakomachi, Fusaotome, Koshihikari, and Yang
Dao-8 seed age-based classification was dominated by the proposed model, which achieved
the best accuracies. However, the neural nets gave the best results for the Hatsuboshi rice
seed age classification, with an accuracy of 0.8167, while the proposed model showed a
0.7989 accuracy. The difference between the accuracies of neural nets and the proposed
model is 0.0178, which is significantly small. The best Okiniiri rice age classification
accuracy was achieved by the LightGBM model, while the proposed model showed the
second-best results, with accuracies of 0.9583 and 0.9512, respectively. The difference
between these two models is 0.0071.

Overall, it can be stated that the proposed algorithm showed the best results in all
experiments. There are several reasons for the proposed algorithm’s obtaining the best
results. Considering each experiment and gradient-boosting model result, it can be seen
that each experiment has a different best form: XGBoost, CatBoost and LightGBM. For
example, the XGBoost algorithm performed well in the Koshihikari age classification, while
in the Okiniiri classification, the LightGBM outperformed XGBoost. As shown in Figure 5,
the proposed algorithm is a combination of these three gradient-boosting algorithm results.
In other words, the Cascaded-ANFIS section of the proposed algorithm does not depend
on the features of the image dataset but on the results of the gradient-boosting models.
Therefore, the fuzzy-based ANFIS algorithm calculates the reasoning by mixing the three
gradient-boosting models to enhance the performance. This can be clearly seen in each
experiment as the algorithm outperformed the gradient-boosting model accuracies. The
two-input–one-output ANFIS models generate precise membership functions to deal with
the outputs of the gradient-boosting algorithms and enhance the overall accuracy.
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6. Conclusions

Identifying seeds by their age is a challenging task. To the best of our knowledge,
there are zero studies in the literature on this subject. Therefore, this study aimed to design
and develop a machine learning algorithm to classify seeds by age. Due to the lack of
data availability, the main objective of this work was to construct a novel dataset using
six varieties of Japanese rice. Each rice variety included three harvesting ages, except
for Okiniiri and Yang DAO-8. The harvested ages of these rice varieties were 2012, 2016,
and 2020.

The rice seed dataset was implemented by constructing a conveyor belt system to
automatically acquire the seed images. A smartphone camera with a macro-lens captured
many surface features and the system’s real-time flexibility. The dataset was divided
into a training set and a testing set at a ratio of 7:3, and the same datasets were used to
model the classifiers. Six feature-extractors were used to find the critical points of the RGB
image dataset. The features were selected based on the success rate and popularity of
previous research.

The proposed algorithm is a combination of four unique machine-learning algorithms.
XGBoost, CatBoost, and LightGBM gradient-boosting algorithms were the base classifiers
of the proposed algorithm, and the secondary output was tuned using the Cascaded-ANFIS
algorithm. The Cascaded-ANFIS can change the structure depending on the problem
statement. This study has a high feature dimension, and using the Cascaded-ANFIS as
the base classifier could rapidly increase the time consumption and computational power.
Therefore, gradient-boosting algorithms were initially appointed to predict the classification
outputs, while the Cascaded-ANFIS evaluated the base results.

The experiment was conducted using two steps: classification based on the rice variety
and identifying the age of the seed. Since six rice varieties were available, seven classifiers
were trained accordingly. Each classification task was evaluated using the confusion matrix
parameters: accuracy, precision, recall, and F1-score. Moreover, the performances of the
proposed algorithm were comprehensively assessed by training 13 other machine learning
algorithms. The results indicate that the proposed algorithm is more capable of identifying
the seed variety and age. Although other algorithms obtained better results for some
occurrences, the differences in the results between other algorithms and the proposed
algorithm were insignificant.

According to the results of this study, the proposed algorithm can identify the variety
of the seed and age with higher efficiency and effectiveness. The algorithms were trained
using only the CPU power. Therefore, this study can be considered as a solution to replace
black box algorithms that require higher complexity and increased power consumption.
How to implement the machine learning model as a server and introduce it as a mobile
phone application can comprise future study objectives. Improving the dataset density
could also be a future research goal.
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The following abbreviations are used in this manuscript:

AdaBoost adaptive boosting
CPU central processing unit
CatBoost categorical boosting
Cascaded-ANFIS cascaded adaptive network-based fuzzy inference system
DOAJ directory of open access journals
FIS fuzzy inference system
GBDT gradient-boosting decision trees
GLCM gray level co-occurrence matrix
HSI hyper-spectral images
XGBoost eXtreme gradient boosting
LS-SVM least squares support vector machines
LightGBM light gradient boosting
MF membership function
MDPI multidisciplinary digital publishing institute
ML machine learning
NN neural networks
PCA principle component analysis
RGB red, green, and blue
ROI region of interest
RF random forests
RBF radial basis function
QDA quadratic discriminant analysis
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