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Abstract: Walking independently is essential to maintaining our quality of life but safe locomotion
depends on perceiving hazards in the everyday environment. To address this problem, there is an
increasing focus on developing assistive technologies that can alert the user to the risk destabilizing
foot contact with either the ground or obstacles, leading to a fall. Shoe-mounted sensor systems
designed to monitor foot-obstacle interaction are being employed to identify tripping risk and
provide corrective feedback. Advances in smart wearable technologies, integrating motion sensors
with machine learning algorithms, has led to developments in shoe-mounted obstacle detection. The
focus of this review is gait-assisting wearable sensors and hazard detection for pedestrians. This
literature represents a research front that is critically important in paving the way towards practical,
low-cost, wearable devices that can make walking safer and reduce the increasing financial and
human costs of fall injuries.

Keywords: obstacle detection; wearable sensors; smart shoes; assistive devices; gait biomechanics;
fall prevention

1. Introduction

Extensive epidemiological and medical research now shows that it is imperative
to prevent falls in older people and across a broad range of gait-impaired populations.
The World Health Organization (WHO) identified falling as the second highest cause of
unintentional death, after road accidents and approximately 37.3 million falls requiring
medical attention occur each year [1]. In Australia, the cost of treating injury is the third
highest category of healthcare spending after musculoskeletal disorders and cardiovascular
diseases and annually AUD 3.6 billion is spent by the Australian healthcare system on
fall-related physical injuries [2]. Many falls do not cause serious injuries, but one out
of every five falls cause significant injury, with annually approximately 3 million older
people treated in emergency departments due to a fall [3,4]. WHO statistics show that
globally at least 2.2 billion people have a visual impairment, which in the case of older
adults contributes to social isolation and walking difficulties, increasing their risk of falling
and consequent likelihood of entering residential care [5]. Fear of falling also affects an
individual’s quality of life by restricting everyday mobility and decreasing opportunities
for recreation and social connection [6].

Biomechanically, falls result from any balance perturbations that cannot be restored [7]
but tripping over obstacles is the principal cause of balance loss, accounting for more than
53% of falls [8]. Tripping can be defined as forceful, unanticipated contact with obstacles
or the irregularities in the walking surface and reduced foot-ground clearance during
the mid-swing phase of a gait cycle is highly hazardous [9]. The ability to continuously
adapt foot trajectory to clear obstacles, such as roadside curbs or steps is critical to safe
locomotion. In order to detect environmental hazards in the path of the user, obstacle
detection technologies that perceive the environment, utilising sensors such as ultrasound,
camera, infrared, radar, and laser range finder, have been extensively investigated in
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different domains [10–13]. Effective sensor integration with computational vision and
environmental scanning is facilitating developments in real-time motion monitoring and
effective interventions for fall prevention [14].

As the interface between the ground and foot, research in shoe-integrated technology
began more than three decades ago, incorporating comfort and convenience into the de-
sign [15]. Technological transformations to the ‘smart shoe’ began with variables associated
with walking speed and calorie consumption [16,17], advancing to rehabilitation applica-
tions [18]. Progress in wearable sensors, microfabrication, data acquisition, and processing
combined with low-power, portable, wireless systems led to assistive footwear designed
for individuals with visual or physical impairments.

Previous reviews have summarized the application and functionality of assistive
devices, including shoe-based systems. Gokalgandhi, Kamdar [19] provided a review of
smart technologies embedded in shoes, including electronic, mechanical, and electrome-
chanical devices. Hegde, Bries [20] also summarized advances in footwear-based wearable
systems, with applications in gait monitoring, plantar pressure measurement, posture
and activity classification, body weight and energy expenditure estimation, biofeedback,
navigation, and fall risk. Assistive technologies developed for visually impaired users
have also been described [13,21,22]. Our aim here was to outline and critically evaluate
shoe-integrated systems that incorporate obstacle detection to identify environmental haz-
ards that pose a tripping risk. Despite technological advancements in assistive devices for
collision avoidance in visually impaired individuals, the long cane and guide dog remain
most commonly used. The white cane is preferred due to its reliability, simplicity, low
cost, and minimal maintenance [22] but it does not entirely protect against collisions and
guide dogs only provide support on familiar routes. There have, therefore, been develop-
ments in smart sensor-incorporated adaptations to assist navigation, including electronic
canes/sticks [23,24], glasses [25], belts [26], caps [27], bracelets [28], and gloves [29]. Despite
these advances, designers have not adapted them to the user’s gait characteristics [30] and
thus people with navigational difficulties still remain less active.

Obstacle Detection Smart Shoe System

As shown in Figure 1 the fundamental requirements for an obstacle detection smart
shoe are sensing, processing, and alerting. The sensing system has active or passive sensors
to detect obstacles, while the processing unit for portable devices includes a microcontroller
to trigger the sensor for perceiving, processing the data and analysing the risk of object
contact. When an obstacle is detected the alerting system triggers an auditory or vibrotactile
stimulus for an avoiding action. Selection of the hardware for each of these three principal
units determines the effectiveness, reliability, and acceptance of the shoe system. Selected
state-of-the-art shoe obstacle-detection systems are shown in Table 1 for illustration.
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Table 1. Examples of smart shoe systems selected from the reviewed articles. Only the sensors used
for obstacle detection by the shoe systems are listed in this table.
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Obstacle Detection Sensor: Ultrasound
Processing Board: Customized Microcontroller
Feedback: Audio, Vibration
Functionality:
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Obstacle Detection Sensor: Ultrasound
Processing Board: Node MCU
Feedback: Smartphone, Piezo buzzer
Functionality:

• Detect obstacles in the path and detect insects in the
shoe while shoe is not in use

• Fall detection and notifying the parent/caretaker
through smartphone

• Location tracking through Google’s Geolocation API
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Processing Board: Arduino Atmega328
Feedback: Audio
Functionality:

• Obstacle detection to identify obstacles
• Navigation and location tracking
• Pothole detection, slippery surface detection and hot

objects or fire detection
• Emergency SOS to family members
• Electricity generation while walking
• Health and Fitness tracking
• Alerting through voice instructions
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Table 1. Cont.
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2. Sensor Technology in Obstacle Detection Systems

Obstacle detection and avoidance systems are widely prevalent in robotics and au-
tonomous vehicles [39–41], to detect hazards in the environment. Sensors form an integral
part of an obstacle detection system by perceiving the surroundings and converting that
information into real-time data for further processing. Sensors can be classified as active or
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passive. Active sensors emit a signal and receive a distorted copy of the same signal, while
passive sensors pickup an external signal to provide a corresponding output [42]. Active
sensors for obstacle detection include radar (radio detection and ranging), lidar (light
imaging detection and ranging), and sonar (sound navigation and ranging). Cameras that
mimic the human eye(vision), are the most commonly used passive sensor. Table 2 provides
an overview of sensors commonly employed in obstacle detection, and their characteristics.

Table 2. A Summary table of Sensor Features [40,42–44].

SENSOR PERCEIVED
ENERGY ADVANTAGES DISADVANTAGES

LIDAR
(3D)

Laser Signal
[emitted]

• Accurate distance measurement
• Wide field of view
• Precise measurement of depth
• 360◦ high-resolution mapping
• Can measure outlines of objects
• Unaffected by lighting conditions

• Expensive
• Affected by dust, rain, and snowy conditions
• Only objects in the scanning plane

are detected
• 3D point cloud storage requires

large memory
• The point cloud is sparse

RADAR
Millimeter wave
radio waves
[emitted]

• Reliable
• Accurate distance and relative

speed measurement
• Suitable for medium to long

distance range (200 m)
• 150◦ wide field of view
• Good Angular Resolution
• Robust in different weather and

environmental conditions

• Expensive
• Heterogenous reflectivity of materials

makes processing tricky
• Lower processing speed compared to

camera and lidar
• Lacks fine resolution needed for

obstacle detection

Camera Visible light
[ambient]

• Low cost, Compact size
• Rich Contextual information
• Vision similar to human eyes
• No interference problems with the

environment
• Estimate boundaries of objects

• Requires ambient light to illuminate the
field of view

• Susceptible to changes in light, dust, rain,
and snow

• High Computation cost
• No depth information provided

Ultrasound
Sound waves
above 20 kHz
[emitted]

• Low cost, simple to operate
• Lightweight, robustness, and fast

response time
• Good performance in poor lighting

and transparent objects
• Detect a wide range of materials

• Not suitable for medium to long distance
range, normally more than 5 m

• Affected by temperature, pressure, and
ambient noise in the environment

• Wide beam width and sensitivity to
mirror-like surfaces cause specular reflections

• Cannot distinguish shape and size
• Must be perpendicular to the target as

possible to receive the correct range data.

Infrared Infrared Light
[emitted]

• High-resolution, low-cost, and
light weight

• Faster response time than ultrasound
• Can measure temperature

• Sensitive to weather conditions
• Short detection range
• Affected by dim light conditions

Ultrasonic sensors, emitting high frequency sound waves above the range of human
hearing, measure the distance to an object using a time-of-flight (TOF) technique [45,46],
but they are limited by low angular resolution and cannot detect obstacle dimension.
Ultrasound sensors can provide accurate short-range obstacle distance measurements,
by emitting high-frequency (40 kHz) sound waves as a conical beam and detecting the
reflected pulses [47]. Ultrasound sensors are widely used for obstacle detection because
they are also compact and easily implemented in wearable assistive devices. To obtain a
more complete picture of the environment, multiple sensors may be required and they can
be confused by environmental noise and specular reflections [40].
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Radar sensors emit high-frequency electromagnetic radio waves and typically adopt
frequency-modulated continuous wave (FMCW) technology to estimate the target distance
using the round-trip time principle, i.e., measuring the frequency shift between emitted
and reflected signals [12]. Three types of radars employed in automotive systems are: long-
range radar (LRR) for cruise control and collision avoidance, medium-range radar (MRR)
for blind spot detection, and short-range radars (SRR) for parking assistance and proximity
detection [10]. Long-range radars measure the vehicle’s speed and obstacles up to 200 m
away using a 77 Ghz microwave radar but with low resolution. Short/medium range
radars in the 24 Ghz and 76 Ghz bands also measure velocity and distance, but with limited
resolution and complex return signals [10]. Despite limitations, radar sensors are employed
very effectively in autonomous systems due to their reliable, accurate performance both
day and night and in adverse weather conditions [48].

Lidar sensors have also been adopted in autonomous driving applications. They
utilise shorter wavelength light sources giving high resolution, a wide field of view and fast
sweep frequency [40,49,50]. Lidar sensors can be categorized as 1D, 2D, and 3D, differing
based on the number of laser beams used and whether it is a point beam or scanning
beam. Whereas 1D is range-only, 2D lidar has a single beam and spin, enabling 360◦

views and x and y axes data, the 3D lidar has several beams and 360◦ spin, providing
object’s x, y, and z coordinates [51]. With high accuracy and long-distance measurement,
3D Lidars play a central role in obstacle detection for autonomous vehicles [52]. The point
cloud obtained from Lidar has high processing requirements, is heavy and expensive,
there is, therefore, work in progress to reconstruct a 3D environment, using 2D Lidar,
reducing processing requirement and cost [53]. Lidars can also be either mechanical Lidar
or solid-state (SSL), with mechanical version the most popular, using high-grade optics
and rotary encoders driven by electric motors to capture 360◦ field of view. The SSLs uses
micro-structured waveguides to direct the laser beams, eliminating the rotating lenses and
reducing mechanical failures [48]. Even though the SSL has a narrower field of view than
mechanical Lidars, typically 120◦ or less, they have gained interest in recent years due to
being robust, reliable, and less expensive [54]. The higher frequency (10–20 Hz) and shorter
wavelength of Lidar enable a more accurate measurement compared to radar sensors, with
a typical accuracy of 1.5–10 cm, vertical angular resolution of 0.35–2 degrees, and horizontal
angular resolution of 0.2 degrees [54].

Low-cost vision-based sensors such as cameras have been developed as the primary
sensor for high-resolution obstacle detection. A camera detects the light emitted from
the surroundings on a photosensitive surface, and redirects it through a lens, producing
clear images [48]. Being relatively inexpensive, widely available, and providing rich
contextual information similar to human vision, several obstacle detection applications
have been developed using vision sensors. Passive cameras do not emit signals that may
cause interference [42] and information in the form of pixel intensities captured with high-
definition videos or images, can be used to extract shape, colour, and texture information,
providing considerable environmental detail [48,55]. The considerable computational
power demands of data processing is, however, a constraint, with the latest high-definition
cameras processing multi-megabytes of real-time data [10] and they are susceptible to
ambient light and weather conditions, with low illumination giving low quality images.
Conventional monochrome cameras lack depth information, required for accurate size and
position estimation of obstacles [42,55], although some applications can calculate depth
information using complex algorithms [56]. A stereo camera with two image sensors can
imitate 3D depth perception using epipolar geometry and triangulation methods [48] but
demands more processing power. Time-of-flight cameras use an active sensor to measure
the time taken for an infrared light beam to reach the object and reflect back to the camera,
giving pixel depth and intensity, but distance accuracy and image quality are relatively
low compared to other 3D sensors [57]. Microsoft Kinect is a popular range camera,
capturing images and depth at high frame rates using a combination of RGB camera and
infrared sensor. It has applications in mobile robotic mapping, navigation and localization,
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industrial robot collision avoidance, and human motion tracking [57], but it is too large for
most wearable systems.

Infrared (IR) sensors are also active and passive in design, the active sensors emit
infrared light to detect the reflections from the obstacles, the passive IR sensors detect
the changes in infrared radiation striking them and are used primarily for motion detec-
tion [42]. There are advantages and limitations associated with each sensor type and when
considering the applications to smart shoe systems, the size, weight, range, and real-time
performance are also important. Table 3 gives the detailed specifications for a common
sensor in each category taken from the literature and datasheets.
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Table 3. A Summary Table of Obstacle Detection Sensor Features [Lidar: [10,50,58–61], Radar: [62,63], Camera: [64–67], Ultrasound: [68], Infrared: [69].

SENSORS RANGE MASS OPERATING
TEMPERATURE FIELD OF VIEW ACCURACY RESOLUTION DIMENSION POWERS COST OUTPUT

3D LIDAR
[Velodyne VLP
16]
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(above 5 m) 
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(12 m ~16 m) 

76 mm diame-
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Current: 450 
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Power Con-
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with 10 Hz rotational 
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[TF Mini Lidar] 0.3–12 m 6.1 g −20°C to 60 °C  2.3° 1% (0.3 m–6 m),  

2% (6 m–12 m)  5 mm 42 × 15 × 16 
mm 

Voltage: 4.5 V–6 
V 
Power Con-
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AUD 75.36 Distance obtained at 
100 Hz 

Solid State Lidar  
[ibeo LUX 4L]  

 

Up to 50 m 998.7 g −40 °C to +85 °C 110° (H) × 
3.2° (V) 10 cm 

Angular Resolu-
tion (H × V): 0.25° 
× 0.8° 
Range Resolu-
tion: 4 cm 

164.5 × 93.2 × 
88 mm 

Voltage:  9–27 V 
Power Con-
sumption:7 W 

- Distance and echo 
pulse width 

30–100 m 830 g −10 ◦C to 60 ◦C 360◦ horizontal,
30 ◦ vertical ± 3 cm

Angular resolution:
2◦ vertical, 0.1–0.4◦
horizontal

103 mm diameter
× 72 mm

Voltage: 9 v–18 V
Power
Consumption: 8 W

AUD 5000+

•Up to 300,000
points per second
•100 Mbps
Ethernet
connection
•UDP packets
containing distances,
calibrated
reflectivities,
rotation angles,
synchronized time
stamps (µs
resolution)

2D LIDAR
[RPLIDAR
A2M8]

0.15–12 m 190 g 0 °C to 40 °C 360◦

1% of range
(</= 3 m),
2% of range (3–5 m),
2.5% of range
(above 5 m)

Angular: 0.45◦
Range: </= 1% of
range (below 12),
</= 2% of range
(12 m ~16 m)

76 mm diameter ×
41 mm

Voltage: 5 V
Current:
450 mA–600 mA
Power
Consumption:
2.25–3 W

AUD 640

8000 points
obtained with
10 Hz rotational
speed

1D LIDAR
[TF Mini Lidar] 0.3–12 m 6.1 g −20◦C to 60 ◦C 2.3◦ 1% (0.3 m–6 m),

2% (6 m–12 m) 5 mm 42 × 15 × 16 mm
Voltage: 4.5 V–6 V
Power
Consumption:
0.12 W

AUD 75.36 Distance obtained
at 100 Hz

Solid State Lidar
[ibeo LUX 4L]
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mm 
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Solid State Lidar  
[ibeo LUX 4L]  

 

Up to 50 m 998.7 g −40 °C to +85 °C 110° (H) × 
3.2° (V) 10 cm 

Angular Resolu-
tion (H × V): 0.25° 
× 0.8° 
Range Resolu-
tion: 4 cm 

164.5 × 93.2 × 
88 mm 

Voltage:  9–27 V 
Power Con-
sumption:7 W 

- Distance and echo 
pulse width Up to 50 m 998.7 g −40 ◦C to +85 ◦C 110◦ (H) ×
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Angular Resolution
(H × V):
0.25◦ × 0.8◦
Range Resolution:
4 cm
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88 mm

Voltage: 9–27 V
Power
Consumption:7 W

- Distance and echo
pulse width

Radar
[Delphi ESR]
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which includes the
range to the
centroid, its
bearing angle, its
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the power of the
returned signal (Φ).

Camera
[Raspberry pi
camera]

- 3 g −30 ◦C to 70 ◦C 53.50 ± 0.13◦ (H),
41.41 ± 0.11◦ (V) -

Still resolution:
5 MP
Sensor resolution:
2592 × 1944 pixels

25 × 24 × 9 mm
Power
Consumption:
325 mW

AUD 25

Images: 1080 p @
30 fps, 720 p @
60 fps, 480 p @
90 fps
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Table 3. Cont.

SENSORS RANGE MASS OPERATING
TEMPERATURE FIELD OF VIEW ACCURACY RESOLUTION DIMENSION POWERS COST OUTPUT

Stereo Camera
[Roboreception
RC Visard 160]

Depth Range:
0.5–3 m 850 g 0 ◦C to 50 °C Horizontal 61◦ ,

Vertical 48◦
Depth Accuracy:
0.4–13 mm

Image resolution:
1280 × 960 pixels,
1.2 MP
Lateral Resolution:
0.5–2.8 mm
Depth Resolution:
0.1–3.3 mm

230 × 75 × 84 mm
Voltage: 18–30 V
Power
Consumption:
25 W

-

Right and left
rectified image,
depth image,
confidence image
at 0.8–25 Hz frames
per second

TOF Camera
[IFM O3D03] 3–8 m 766.95 g −10 ◦C to +50 ◦C 60◦ × 45◦ - Image Resolution:

352 × 264 pixels 72 × 65 × 82.6 mm

Voltage:
20.4–28.8 V
Current: <2400 mA
Power
consumption: 10 W

AUD 3000

3D image data
obtained with a
reading rate of
25 HZ

Ultrasound
[HC SR04]
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Sensor Fusion

A single sensor may not provide sufficient information to measure the exact shoe-object
distance and object size (height and width). Combining the information from multiple
sensors, known as sensor fusion, provides a more veridical pictures of the environment,
and this technique has also been demonstrated to be effective for obstacle detection in
autonomous cars and mobile robots [44,70–73]. Integrating the acquired data from multiple
modalities reduces the detection uncertainties and overcome the shortcoming of individual
sensors operating independently [48]. A highly effective approach is to combine infor-
mation from different types of sensors. In general, a passive sensor such as a camera,
cloning human vision, will give richer information regarding the obstacle features and
appearance, while active sensors e.g., ultrasound, lidar, and radar will be more accurate
in estimating obstacle distance. Shahdib, Bhuiyan [74] used both ultrasonic sensor and a
Canon 550 DSLR camera to guide an autonomous mobile robot, detecting obstacles and
estimating their distance and dimensions. The advantages of data integration from multiple
sensors are summarized below:

• Information obtained through fusion has a richer semantic and higher resolution than
from a single sensor measurement.

• Joint information from multiple sources reduces the ambiguity and uncertainty with
the measured values.

• Comprehensive coverage from multiple sensors gives extended spatial and temporal
coverage.

• Increased confidence due to the availability of redundant information from many
sensors scanning the same environment, and improved reliability due to sufficient
information even if there is a partial failure.

• Reduce noise and errors through the fusion of multiple data, thus improving the
accuracy [75,76].

The advantages of sensor fusion make it the optimal choice for a complex system,
but the number and the type of sensor must consider their cost, size, and system’s appli-
cation. In addition, the factors considered for a wearable system are different to those in
autonomous cars and robots. Considerations for shoe-integrated obstacle detection are
whether sensors can provide environmental data for safe navigation but also be compact,
lightweight, and portable. In addition, fast, reliable data processing is required to alert the
user of hazards in their walking path. The following section examines sensors used for
obstacle detection while walking.

3. Walking with Obstacle Detection

Walking safely through the everyday environment is essential to healthy, productive
lives and developments in gait assisting technologies incorporating wearable sensors are
progressing rapidly [21]. Assistive technology encompasses devices, services, systems,
and environmental modifications to enable individuals with locomotor impairments to
overcome barriers to independence [77]. Research into the navigational aids and obstacle
detection systems in assistive technologies is quite extensive. Portable assistive devices can
be moved from place to place providing safer navigation for independent living and reha-
bilitation. Wearable assistive devices can be attached to wristbands [78], eyeglasses [79,80],
head-mounted devices [81], vests [82], belts [83], shoes [34], and any other practical point
of attachment, allowing hands-free interaction. Smartphones provide portability and con-
venience and have become a core assistive tool in supporting navigation by obtaining
information and interacting with the user’s environment [84]. Microsoft Kinect, initially
developed for gaming, has become popular among vision researchers and assistive tech-
nologies due to the cost, detection capability, and data acquisition software [85]. With the
miniaturization of the electronics devices and advancements in computer vision and ma-
chine learning algorithms, research in wearable navigation devices have also incorporated
these techniques and sensor fusion methods [86]. Figure 2 illustrates some of the wearable
assistive devices developed for a safe navigation of the visually impaired. Some commonly
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used obstacle detection sensors in wearable assistive device and their specifications and
feedback mechanisms are presented in Table 4.
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Table 4. Selected obstacle detection sensors, type of wearables, sensor specifications, and feedback
for assistive devices.

Obstacle
Detection Sensor

Number of
Sensors Device Type of Obstacle Mass Range Feedback Cost Reference

Ultrasound

5 Wearable jacket Path obstacles 3 g 2 cm–400 cm Buzzer,
Vibrator Low [82]

2 Belt Near object,
distant object Light 2 cm–400 cm Vibration Low [92]
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Table 4. Cont.

Obstacle
Detection Sensor

Number of
Sensors Device Type of Obstacle Mass Range Feedback Cost Reference

Camera 2 Bicycle Helmet Foreground object Light 10–20 m Acoustic
Feedback Low [81]

Microwave radar 1 Cane Floor/suspended
obstacles Light 1 m–5 m Acoustic,

Vibration Low [93]

Infrared sensor 2 Foldable Stick
High-level /floor

level obstacle,
staircases

Light Up to 200 cm
Audio

through
earphone

Low [94]

ToF Distance
sensor 7 Belt Low and High

Obstacle 8 g 0–14 m Vibration
belt High [83]

Tfmini Lidar and
Ultrasound 1 each Smart Glasses

Obstacles within
the 1.7 m height,
descending stairs

Light

10 cm–12 m
(Lidar),

2 cm–300 cm
(ultrasound)

Buzzer,
Audio Low [79]

Lidar and Web
Camera 1 each Haptic Strap Chair, person,

bottle, bicycle Light Not given Vibration
and Audio Low [95]

Asus Xtion Pro
camera 1 Strap on chest,

Handcuff Path Obstacles Medium 0.8–3.5 m Vibration High [96]

Microsoft Kinect 1 Strap on neck Path Obstacles Medium Not given Audio Medium [85]

Despite progress in the design of obstacle detection devices their acceptance by users
in daily life is limited. Many navigation systems have been proposed for the visually
impaired but few allow successful dynamic interactions and adaptability to changes and
none can work seamlessly indoors and outdoors [97]. Poor user interface, functional
complexity, weight, size, and cost have been identified as contributing to the low acceptance
of electronic travel aids [31]. For these systems to meet user requirements, clear and precise
object detection from close proximity to a minimum of 3 m are necessary. The section below
outlines developments in shoe integrated assistive systems.

4. Obstacle Detection in Shoe-Based Assistive Devices

Incorporating technological features into a shoe avoids having an additional item to
be worn or carried and with optimal design can be lightweight, affordable and comfortable.
In addition to obstacle detection, smart shoe systems have incorporated features such as
live location tracking, heat sensing, slippery surface detection, fall detection, electricity
generation while walking for an alternate power source, health and fitness tracking, and
pothole detection [33,98,99]. Table 5 highlights the main features of smart shoes with
obstacle-detection technology, collected from the reviewed papers.
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Table 5. Main features of the obstacle detection shoe systems taken from the reviewed literature.

Shoe Name Application Sensors Processor
Board

Additional
Device in

Overall System

Additional
Sensing Accuracy Alerting

Technique Battery Life Detection
Range

Smart-Alert
Walker [91]

Visually
Impaired

Ultrasound on shoes
(obstacle),

Camera on the cane
(obstacle),

Water Sensor (Moisture)

Arduino Smart-fold cane Water sensing
95.54% for
common
obstacles

Vibration Alert
in leg,

Audio output
for the detected

obstacles

- -

Smart
Bottine [32] Autistic People

Ultrasonic sensor HC
SR04 (obstacle)
Infrared(insect)

IMU MPU6050 (fall)

NodeMCU
(ESP8266) Smart Phone

Insect/Reptile
Detection,

Fall Detection,
Location Tracking

- Smartphone,
Piezo buzzer - -

Smart Shoe
[33]

Visually
Impaired

Ultrasonic sensor
HCSR04(obstacle)

Infrared sensor(pothole)
Moisture sensor (water)

Temperature sensor
LM35 (Fire)

Arduino Nano Smart Phone

Location tracking,
Pothole Detection,

Hot object detection,
Slippery Surface,
health tracking

-
Voice sent to

user’s
headphone

3–4 Hrs 20 cm–4 m

Smart Shoe
[34]

Visually
Impaired

Ultrasonic Sensor
HCSR04 (obstacle),

Accelerometer
ADXL335 (Foot motion)

STM32L432KC Smartphone Gait sensing, Fall
detection - Vibration Motor - -

Smart Shoe
system [36]

Visually
Impaired

Ultrasonic Sensor,
Fisheye camera

Raspberry pi
Zero (streaming,

actuation),
Smart-

phone(detection)

Smart phone Navigation - Vibration Motor - -

Shoe System
[38,100]

Visually
Impaired

Ultrasonic (obstacle),
Infrared sensor

(obstacle),
Force sensitive resistor

(Shoe wearing)

ARM cortex M3
LPC1768 -

Detect whether the
shoe is worn by

user
- Buzzer - -
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Table 5. Cont.

Shoe Name Application Sensors Processor
Board

Additional
Device in

Overall System

Additional
Sensing Accuracy Alerting

Technique Battery Life Detection
Range

Real Time
Assistive
Shoe [35]

Visually
Impaired

Ultrasonic sensor
(obstacle),

Moisture sensor
(soil moisture)

Renesas
RL78/G13 Smartphone Moisture Detection,

Navigation - Audio output - 2 cm–80 cm

Clear Vision-
Smart Shoes

[101]

Visually
Impaired Ultrasound HCSR04 Arduino Nano

(ATMEGA328) Knee Band Height Detection - Vibration - -

Smart
Assistive
shoe [102]

Visually
Impaired Ultrasound HCSR04 NodeMCU Smartphone Shoe Position

Finder - Vibration - -

Smart Shoe
[103]

Visually
Impaired Ultrasound Arduino UNO Smart glasses - - Vibration - -

Smart Shoe
[104]

Visually
Impaired Ultrasound HCSR04 Arduino Nano - - - Buzzer - -

Obstacle
Detection
Shoe [30]

Visually
Impaired

Infrared sensor
(obstacle,

Accelerometer (Shoe
direction)

Arduino 101
board - Shoe Direction - Piezoelectric

Buzzer - -

Smart Shoe
[98]

Visually
Impaired

Ultrasound HCSR04,
Water Sensor (wet),

MPU6050 sensor(fall)
Arduino Mega - Wet detection, Fall

detection

Overall
accuracy-
95.33%,

Sensitivity of
98% and false

detection rate of
5.3%.

Audible
notification and
vibration motors

2 h 2 cm–300 cm

COMPASS
[105]

Visually
Impaired

Ultrasound (obstacle),
Raspberry Pi camera

(text)

ESP32
development
board(shoe)

Raspberry Pi
(bracelet)

Smart Bracelet,
Smartphone Text Detection - Beeper - -
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Table 5. Cont.

Shoe Name Application Sensors Processor
Board

Additional
Device in

Overall System

Additional
Sensing Accuracy Alerting

Technique Battery Life Detection
Range

Blind Shoe
[37]

Visually
Impaired

Ultrasonic sensor
(obstacle),

Water level
sensor(water)

Arduino UNO Smartphone Slippery or
wet surface 97.33% Buzzer, Audio - 2 cm–4 m,

15 degree

BUZZFEET
[99]

Visually
Impaired

Ultrasound (obstacle),
Infrared (pit)

Arduino
Lilypad

Audio processor
module Pit detection - Audio - -

NavGuide
[31]

Visually
Impaired

Ultrasound(obstacle),
Liquid Detector Sensors

(wet floor)

Customized
microcontroller - Wet floor Detection - Audio,

Vibration 850–1000 min -

Fall
Prevention

Shoes
Elderly Line laser (obstacle),

Camera (obstacle, gait) - - Gait detection - Alarm message - 0.5–1 m

IPrevent
Shoes

[106,107]
Senior People Radar Laptop - - - - - -

Smart Shoes
[108]

Visually
challenged Ultrasonic sensor - - - 89.5% Tapping at the

foot arch 5 h

0–2 m
(regular)

0–1 m
(crowd)
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The most frequently targeted application for obstacle detection in smart shoes is
visual impairment [30,31,33–38,91,98–105,108], with less work on obstacle detection for
the physically challenged, where the gait impairments must also be considered. With the
elderly population expected to almost double from 15% of the total population in 2015
to 22% by 2050 [109], there is a need for continuing research into devices that can detect
hazards and prevent falls in individuals with walking impairments.

Smart shoe systems designed primarily for obstacle detection may have additional
features, such as communication with a smartphone allowing location tracking and contact-
ing someone for emergency assistance [34]. As well as smart shoes for obstacle detection,
the Smart Bottine, designed to help individuals with autism, incorporates an android
smartphone with the Blynk application for notifying the caregiver in case of emergency [32].
Additional features to provide support for the visually impaired include location tracking
service using GPS-GSM, android application for locating missing persons and emergency
calls(SOS) with location tracking using Google Maps [33]. Navigational guidance has also
been facilitated with a Bluetooth transceiver mounted on the shoes, synchronized to a smart-
phone application using Google Maps [35]. COMPASS [105], an indoor position system,
is targeted towards visually impaired university students, with the smart shoes detecting
obstacles and an additional smart bracelet with a camera to verify the correct classroom.

Smart shoe systems can work well on their own [30,31,33–38,91,98–102,104–108], but
some researchers have used it in conjunction with other obstacle-detection devices [91,103].
Chava, Srinivas [103] incorporated smart glass with smart shoes, with sensors attached
to the spectacles to detect head level objects and integrated to Bluetooth hearing device
for voice commands. ‘Vision Navigator’ [91] was designed as an assistive interface for
users with low or fluctuating vision for indoor and outdoor navigation. The Smart alert
walker consists of sensor-equipped sneakers with two built-in ultrasonic sensors to identify
short-range obstacles. It is used only as an emergency backup with the Smart-fold cane
as the primary system for detecting obstacles and containing all the major hardware
components. The intelligent obstacle detection model was deployed for the image obtained
from the camera-in-cane, using the SSD-RNN (single shot detection- recurrent neural
network) approach, computing with an optimum accuracy of 95.06% and 87.68% indoors
and outdoors, respectively [91]. A considerably different approach uses a thin, flexible
metal wire antenna running along the shoelace for collision avoidance in the front, but
without feedback to alert the user [110].

4.1. Sensors in Obsctale Detection Shoes

Of 20 reviewed papers 17 reported using high-frequency ultrasound sensors utilizing
echolocation principle to transmit and receive sound waves for detecting and locating
obstacles [32–36,91,98–105,108]. Objects must be either directly in front or at a minimum
angle to the transmitter, to be reflected and received by the ultrasonic receiver [31], as
shown in Figure 3. Accurate ultrasound detection of up to 4 m allows the detection of the
obstacles accurately, and to avoid false detection in crowdy scenarios, a customizable mode
with a range of 0 to 1 m has also been deployed [108]. With a wide field-of-view ultrasound
sensors are efficient in detecting the distance to an obstacle but lack the ability to accurately
determine the direction of the obstacle.
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Rather than mounting a single ultrasound sensor on the shoe, multiple units can alert
to obstacle in the direction of attachment [37,103], due to small size, low cost, and high
reliability [98]. NavGuide [31] uses six ultrasonic sensors, to identify obstacles in their
respective scanning fields and map the position of each obstacle in front, on both sides of
the shoe, detecting floor-level obstacles, knee-level obstacles, and the risers of an ascending
staircase [31].

While most shoe-based systems have utilised ultrasound, the feasibility of wearable
radar sensors for detecting non-conductive obstacles and floor/wall surfaces has been
demonstrated using a 60 GHz System-on-chip mm-wave radar, and a Texas Instruments
IWR684ISK and MMWAVEICBOOST, connected to a laptop via USB port [111]. A novel
frequency-modulated continuous wave (FMCW) radar transmits a linear chirp signal and
calculates object distance based on round-trip time delay. The shoe prototype consists of
two wearable K-band radars mounted on shoes (see Figure 4) to detect the absolute distance
to an object and the shoe-ground clearance [107]. In another approach, Yang, Jung [30]
utilised direction controlled infrared sensors with a narrow detection range to distinguish
the object direction.
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Figure 4. Using an FMCW radar for fall prevention. Reprinted with permission from Ref. [107].
Copyright 2016, IEEE.

Lin, Yang [112], proposed a camera-based line-laser obstacle detection system, using
a Logitech C310 webcam operating at 29 frames per second with 640 × 480 resolution,
and a 405 nm wavelength laser. A fall prevention strategy was implemented with a
Sum of Absolute Difference threshold to trigger the obstacle detection event, line-laser
pattern segmentation, homography transformation, and obstacle danger-level, showing the
possibility for installation on shoes. Staircases, potholes, and ditches can also be predicted
using a Yolov3 model from the video output of a simple 5MP fish eye camera with a
120-degree field of view [36], as illustrated in Figure 5.
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While a camera can provide reliable obstacle information, the need for a high-performing
processor remains a problem when deployed as a vision sensor [30]. The implementation
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practicalities and accuracy of compact cameras for image capture in other assistive de-
vices [91,103], shows potential for smart shoe applications. The SSD-RNN model, based
on the input from the camera deployed in the walking cane system described earlier gave
optimum performance, generating 95.54% recognition accuracy for common obstacles [91].
Compact, lightweight cameras, such as the Raspberry Pi camera, and high-performing
microcontrollers could be deployed in the shoe systems, avoiding the requirement for
a walking cane. Many other sensors also have potential for implementation in shoes,
outlined below.

4.2. Additional Sensing Deployed

Along with obstacle detection, additional sensing methods are also deployed in the
obstacle detection system, considering further safety features.

• Pothole Detection: Potholes can be detected with infrared sensors [33,99].
• Water Detection: When the surface of a water sensor comes into contact with water, it

returns a non-zero value, indicating any water source including wet floors [31,33,37,91].
Soil dampness sensors measure the volumetric water content in soil [33,113].

• Heat Sensing: The LM35 temperature sensor detects fire or a hot object near the user
and the information can be relayed using voice commands [33].

• Insect Detection: The movement of insects/reptiles in a shoe triggers the infrared
sensors in the shoe, notifying the user via the Blynk app in a smartphone or through
email [32]. This insect detection is activated when the user is not using the shoes.

• Fall Detection: Foot motion data detected with motion sensors can be used to recognise
a fall and alert an emergency contact via smartphone [32,34].

• Location Tracking: Whether the location is tracked for safety or when a person is miss-
ing, the use of smartphones ensures reliability and portability. Google’s Geolocation
API makes use of Wi-Fi to determine the coordinates of the device and with a request to
Google Maps, the user’s location can be mapped [32]. Bhongade, Girhay [33] reported
on a system that tracks the location by sending a SMS code to receive the coordinates
and navigate to the location using Google Maps.

• Height Detection: The height of the distant object in the frontal plane can be detected
with a sensor integrated knee band [101].

• Text Detection: Verification of the classroom number utilizing a raspberry pi with
an 8 MP Sony IMX219 image sensor to capture the images of the classroom tags and
covert it to the desired form using OpenCV and Tesseract [105].

• Gait Detection: To detect the gait phases, based on which the obstacle detection could
be triggered, motion data from an accelerometer [34] and the difference between two
successive frames of a camera [112], were utilized.

• Health Tracking: Daily activity such as the number of footsteps, distance travelled and
burned calories can be recorded for one week and accessed by the user [33].

4.3. Microcontroller Unit

A microcontroller unit is the core of a wireless obstacle detection system, consisting
of a processing unit, memory and input/output peripherals. It receives an input signal
from the sensor(s), process the input data, estimate the target parameters, and makes a
prediction. The desired features such as low cost, power efficiency, and small size, make
microcontrollers with arm processors a suitable option for a wide number of portable
applications. Table 6 shows the technical features of microcontrollers used in the reviewed
obstacle detection shoes, when unreported the principal features were obtained from the
corresponding datasheets issued by the manufacturers.
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Table 6. Microcontroller boards used for obstacle detection shoes. The features are taken from the
papers and datasheets.

Microcontroller
Board Description Reference

Arduino

Controls, processes, and generates all inputs and outputs. It receives the echo
signals from the ultrasonic sensor that trigger it to take further actions and
checks if the obstacle is there. It generates an immediate alert using a buzzer. It
also generates a caption for the image captured by a camera and later converts
that caption into speech that is played through an audio device.

[91]

Arduino Nano—small, complete, breadboard-friendly board based on
ATmega328 CPU clocked at 16 MHZ, 2 KB SRAM, 32 KB flash, 22 digital I/o
pins, 8 analog pins and mini-USB port.

[33,101,104,114]

Arduino UNO-equipped with the well-known ATmega328 P and the Atmega
16U2 Processor. [37,103]

Arduino 101 Board—To adjust the detection range of the sensor according to
the walking direction, Arduino 101 boards, which contain Bluetooth, a six-axis
accelerometer, and a gyrometer, were utilized.

[30]

Arduino Mega—Atmega 2560-based with 54 digital input/output pins (of
which 15 can be used as PWM outputs), 16 analog inputs, 4 UARTs (hardware
serial ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an
ICSP header, and a reset button.

[98,115]

Arduino Lilypad
Atmega 328 V, 1 KB SRAM,512 bytes EEPROM, 8 MHZ clock speed,
The Arduino Lilypad is attached with APR Module, GSM Module and Sensors.
This Lilypad recognize the instructions sent by the Ultrasonic and IR sensors
and works accordingly. It operates on 5v and is programmed by using Arduino
IDE simulation platform. It receives and sends instructions accordingly.

[99]

NODE MCU

3.3 V operating voltage, 80 MHZ clock speed, 4 MB flash memory, 64 KB RAM,
11 digital pins, 1 analogue pin on this board and built-in Wi-Fi 802.11 b/g/n.
The ESP8266 LX106 microcontroller on the NodeMCU receives data from
attached sensors, process the data, and use the uploaded code such as SSID of
the Wi- Fi network, the password for the Wi-Fi network, to communicate
with smartphone.

[32,102]

STM32L432KC
Ultra-low-power microcontrollers based on the high-performance Arm®

Cortex®-M4 32-bit RISC core operating at a frequency of up to 80 MHz with
floating point unit, 1.71 V to 3.6 V power supply.

[34,116]

Raspberry Pi Zero

The board incorporates a quad-core 64-bit Arm Cortex-A53 CPU, clocked at
1 GHz, 512 MB LPDDR2, 2.4 GHz 802.11 b/g/n wireless LAN and Bluetooth 4.2.
The streaming of sensors data and actuation on shoe will be performed by the
raspberry pi, while the obstacle detection is performed by smartphone.

[36,117]

ARM cortex M3 LPC1768

A flash memory of 512 KB, 64 KB data memory, a processor frequency of
100 Hz, 13 general purpose input-output (GPIO) registers _ 6 pulse width
modulation (PWM) pins, 8 channel 12-bit analog to digital converter (ADC).
The ultrasonic and infrared data given to the ARM cortex M3 microcontroller
which determines if an obstacle is present or not.

[38]

Renesas microcontroller

Low level power consumption with supply voltage varying from 1.6–5.5 volts,
the execution time can be varied from 32 Mhz–32 kHz, consists of 64 pins
which include code flash memory, DMA controller, high-speed on-chip
oscillator, serial interface, data flash memory.

[35]

ESP32 Development Board

ESP32 is a development board that incorporates both Wi-Fi and Bluetooth,
which makes it a good choice to be utilized in projects related to embedded
systems. It has Tensilica Xtensa Dual-Core 32-bit LX6 microprocessor which
operates at either 160 or 240 MHz.

[105]
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Other high-performing microcontroller boards in the market such as Google Coral
Board [118], Raspberry pi 4B [119], and Jetson Nano [120], with specifications showing
the possibility of implementing in obstacle detection shoes with high performing sen-
sors and machine learning algorithms for reliable and accurate fall prevention systems.
Google Coral development board [118] is a single board computer that has an NXP i.MX
8M SoC processor based on Arm Cortex-A53 and an Edge TPU co-processor, providing
accelerated machine learning processing. It includes all peripheral connections such as
USB 2.0/3.0 ports, DSI display interface, CSI-2 camera interface, Ethernet port, speaker
terminals, and a 40-pin GPIO header, all useful in developing a prototype smart shoe
system. The NXP’s iMX8M system-on-chip (SOC) and the Edge TPU coprocessor together
with LPDDR4 memory, eMMC storage, and dual-band Wi-Fi, form a removable system-on-
module (SOM), enabling prototype development on the Google Coral development board
and then combining SOM with a custom baseboard. The Google Dev board mini [121]
also provides fast machine learning (ML) inferencing in a small form factor. The Coral
USB accelerator [122] can be added as an Edge TPU co-processor to a computer system to
perform accelerated ML inferencing. It is capable of performing 4 trillion operations per
second, with 2 watts of power, USB 3.0, enabling on-device machine learning processing.

While the specification of the google coral devices shows the possibility of implement-
ing machine learning algorithms in embedded devices, the support and guide provided by
Raspberry pi make it easier to use and more convenient. The latest Raspberry pi 4 Model
B [119] includes a high-performance 64-bit quad-core processor, dual-display support at
resolutions up to 4K via a pair of micro-HDMI ports, up to 8GB of RAM, dual-band 2.4/5.0
GHz wireless LAN, Bluetooth 5.0, Gigabit Ethernet, USB 3.0. For additional performance,
it can also be used with the Coral USB accelerator. The Jetson nano Developer Kit [120], is a
small powerful computer, with 64-bit Quad-core ARM A57 @ 1.43GHz, 128-core NVIDIA
Maxwell @ 921MHz, 4GB 64-bit LPDDR4, four high-speed USB 3.0 ports, MIPI CSI-2
camera connector, HDMI 2.0 and DisplayPort 1.3, Gigabit Ethernet, M.2 Key-E module,
MicroSD card slot, and 40-pin GPIO header capable of running multiple neural networks
in parallel for applications such as image classification, object detection, segmentation, and
speech processing.

Researchers have evaluated these hardware developments for their capability in em-
bedded object detection [123–126]. Real-time implementations of edge-based obstacle detec-
tion models in advanced processors for robotics [127,128], autonomous vehicles [129,130],
wheels chairs [131,132], and visually impaired [133–135] calls for investigations of the same
processors for shoe-based detection systems. Even with these high specifications, when
selecting a microcontroller for a wearable system, along with the performance, the size,
and weight are also important determinants of acceptance by a user.

4.4. Feedback/Alerting Technique

Acoustic and vibrotactile feedback are the most common methods to alert the user to
obstacles. Acoustic feedback uses sound to capture the user’s attention, while in tactile or
haptic feedback, embedded vibrators use the pressure on the skin. Auditory warnings can
be a tone, buzzer or audio messages. Piezo buzzers are output devices, containing piezo
crystals that expand and contract proportional to the applied voltage, producing sounds to
alert the user [32,37]. Based on the proximity signal intensity can be controlled using pulse
width modulation to produce a louder noise for closer obstacles [38]. Audio messages
are either synthesized or digitized. Bhongade, Girhay [33] used an android text-to-speech
application to alert the user to obstacles and provide date and time via headphones. A
difficulty with audio outputs is interference with environmental information and they may
be aversive for some individuals.

Vibrotactile warning mechanism, such as used in smartphone alerts, can be embedded
insole or on the shoe, and sometimes combined with actuators. A signal enabling the
vibration to alert the user is sent from the microcontroller when an obstacle is detected [34].
A coin vibrator alerts with a vibration amplitude proportional to the distance to the obsta-
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cle [98]. Feedback of obstacle direction can be achieved using four vibrators, i.e., each for
right, left, and forward and all four to signal stopping [103].

With the implementation of features additional to obstacle detection, other feedback
mechanisms have been employed. NavGuide [31] alerts with audio and tactile output,
with the audio feedback playing an audio file corresponding to the detection and tactile
feedback involving vibration motors front, left, and right corresponding to the direction
and the fourth for wet surface detection. Smartphone-based voice guidance and vibrational
feedback are implemented with vibrations motors in the both shoe insoles alerting the
user to potholes and pedestrians with their directions and simultaneous activation of both
indicating staircase detection [36]. Appropriate choice of feedback method affects the
implementation of the system in real world. While incorporating all feedback methods in
a single system might not be fruitful, restricting with one feedback method, can be also
challenging in some situations, for example, audio feedback might not be suitable for noisy
environments but preferred in other situations [21].

4.5. Analysis of Obstacle Detection Techniques

Ultrasound being the most common obstacle detection sensor used, time-of-flight
technique have been utilized to sense obstacles in the path [32–36,91,98–105,108]. A micro-
controller triggers the ultrasound to emit waves at short intervals and the obstacles reflect
these waves back to the sensors [31]. The object distance was computed from the period
between emission and reception of ultrasound waves, D = 1

2 C × T, where C is the speed
of the sound in air and T is the measured time of flight taken by the sound wave [105].
Distance information is passed on to the processor, to alert the user about the presence of
an obstacle. A comparison between the ultrasound measured distance and actual distance
showed an accuracy of 98% which decreased with increase in distance, showing 94.78% at
300 cm [37].

Detection of obstacles at different levels was achieved with multiple ultrasound
sensors and appropriate calculations. In NavGuide [31] a logical map of the surrounding
environment was constructed with six ultrasonic sensors, divided into two groups-Group
1 (S1, S2, S3) for floor level obstacles and Group 2 (S4, S5, S6) for knee level obstacles.
Front facing S1 and S4, left facing S2 and S5, and right facing S3 and S6 detect obstacles
in the corresponding direction in which they are placed. Obstacle x-coordinate value was
calculated from the measured distance for all sensors.xcoordinate = cos θ × Di. Here, Di is
distance calculated by ith ultrasonic sensor (i = 1, 2,..., 6) and θ is angle of the sensor with the
horizontal. The presence of knee level obstacles was determined with the below equations.

[(S1x < S4x)&&((S4x − S1x) ≤ δ)] (1)

[(S2x < S5x)&&((S5x − S2x) ≤ δ)] (2)

[(S3x < S6x)&&((S6x − S3x) ≤ δ)] (3)

where S1x represents x-coordinate value calculated by S1, δ is the width difference between
S1 and S4 and γ the height difference.

Additionally, ascending staircase was detected in the front, left and right using the
below equations.

[((S1x < S4x)&&((S4x − (S1x + δ)) ≥ Td))] (4)

[((S2x < S5x)&&((S5x − (S2x + δ)) ≥ Td))]. (5)

[((S3x < S6x)&&((S6x − (S3x + δ)) ≥ Td))]. (6)

Td represents tread depth (25 cm) and Rh is the value of the riser height (19.6 cm) [31].
Additional sensing techniques such as wet surface detection, pothole detection etc.,

running in parallel to obstacle detection and custom smartphone applications communicat-
ing with the smart shoe processor [32,33,35] extends capabilities of the shoe system. For
COMPASS [105], in addition to, an ultrasound-based obstacle detection, a computer vision
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coupled with indoor position system solution was used for the independent navigation of
the visually impaired students in university campus. An android application reminded
the student on class timings while also providing navigational assistance. Shoe-mounted
sensors detected obstacles and Bluetooth beacons tracked user’s location. At destination,
for verifying the classroom number, image captured with a camera on smart bracelet is
converted to text using OpenCV and Tesseract. After text-to-voice conversion with Google
library, the audio output confirms the classroom number to user [105].

Vision navigator [91] uses the ultrasound in the shoe system (Smart-alert walker) in
conjunction with a Smart-fold cane. An Arduino embedded with a Raspberry Pi camera
act as the heart of the system. These were attached to the Smart cane to take live camera
feed and utilized a SSD algorithm trained with MS COCO dataset to detect the potential
obstacles. This was validated with trained deep learning model and transferred to RNN
for sentence generation. Appropriate sentences were framed by interacting with Flickr30k
dataset, which was then forwarded to text-to-speech application interface for audio alert
through earpiece. Two ultrasonic sensors in Smart-alert Walker served as emergency alert
provision, by detecting any obstacles that are too close, enhancing the accuracy of the
system [91].

Though ultrasound was used in most systems, two other sensors have also used the
signal round trip travelling technique for obstacle distance. Yang, Jung [30] used infrared
sensors and six-axis motion sensors mounted on shoe to estimate the obstacle distance and
direction. Corresponding to the foot angle, the direction of infrared sensor was adapted, to
detect and alert to presence of obstacles in corridor environment. Tang, Peng [107] proposed
a radar-based fall prevention approach that constantly measures distance information
between surrounding objects and user’s feet. While the measurement of radar sensors
showed same spectrum characteristics in normal walking scenario, appearance of obstacle
in the radar detection range was captured as fragmented distance decrease. Comparison of
the distance results measured by a prototype K-band FMCW radar and the ground truth
value showed 1.76 cm average error and 4.5 cm worst-case error.

Rao and Singh [36] implemented a computer vision approach for obstacle detection
and avoidance, guiding the user with appropriate haptic feedback and navigational support
with smartphone voice assistance. The image captured with a fisheye camera on the shoe
was streamed to an android application in smartphone. Obstacle detection was performed
with a YOLOv3 model, trained with Darknet suit, converted into TensorFlow lite file, and
integrated into the smartphone application. The application detected potholes, ditches,
staircases, and people to understand crowded places. The distance to the object was
estimated with the principle of triangle similarity represented with F = P × D/W, where
W is the actual width, P is the perceived width, and D is the distance from the camera. F
remains constant and was calculated for some standard examples, from which the distance
was estimated D = W × F/P. A haptic alert was initiated whenever the obstacle distance
falls below certain threshold, informing the user next direction to move [36].

It is clear from the review that in shoe-based obstacle detection systems, there is a gap
in using advanced sensing and detection techniques. The implementation of deep learning
and machine learning algorithms in other wearable assistive devices [86,136], shows a
scope for the same in shoe-based systems.

4.6. Communication

Communication between the sensors, microcontroller boards and other devices can
be achieved via wired or wireless protocols. With advances in wireless protocols, micro-
controllers are now available with in-built wireless systems, or separate wireless modules
can be used. Bluetooth short-range wireless transmission between 2.4 GHz and 2.485 GHz
enables low cost communication with minimal power consumption [137]. The HC-05 Blue-
tooth module is ideal for transferring real-time shoe data between the microcontroller and
the smartphone [33,35,37] but they must be within a specified range to function effectively.
Kamaruddin, Mahmood [102] controlled a buzzer from the microcontroller through the
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internet using Wi-Fi module. Using internet communications location information from the
user can also be made available to supervising personnel [38]. Wireless communication be-
tween smartphones and smart shoes has, therefore, paved the way for safety interventions
using shoe system, such as location tracking and navigation [32,33,35].

4.7. Power Supply

Hardware components including processors and sensors demand a portable power
supply of sufficient duration. In NavGuide [31], with power consumption between 48 mA
and 120 mA, and changing surroundings, a compact battery enabled 850–1000 min of
operation [31]. A Li-ion rechargeable 12 volts battery with sleep mode consumption of less
than 2 mA, can support sensors and other hardware components [35]. Daou, Chehade [98]
used two batteries to power up their system, by switching from the main battery to the
second, when the former battery level reached 10%. With a power consumption of 708.9 mA
the average life cycle of a 600 mA, 9 V battery is about 40 min [98].

While a lithium polymer battery powers the system, piezoelectric plates in the shoe sole
are used to generate and store backup power from foot pressure applied when walking and
running [33] allowing the wearer to maintain power to the sensors and smart phone [113].
Piezoelectric sensors convert applied pressure into electrical energy, filter AC content to
produce DC and store generated power in a rechargeable battery [138] (see Figure 6). For
powering AC systems, an inverter can convert the stored energy, thus showing possibility
to support both DC and AC loads. With a 100% capacity a rechargeable battery was
observed to support the shoe system for 3–4 h, and piezoelectric plates produced addition
power but less current [33]. The Walking energy module of a Smart shoes [34] consists
of a MAX17710 energy harvesting charger and protector, collecting the electricity power
from the Piezoelectric transducer with Polyvinylidene Fluoride (PVDF) thin film, under
the heel. Energy harvesting from human locomotion promises to be a convenient way to
power versatile smart shoe systems.
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4.8. Experimental Evaluation with Human Participants

Performance of wearable shoe systems should be confirmed in trials with human
participants to ensure effectiveness in detecting the obstacles. Daou, Chehade [98] tested a
system with five participants, for an average duration of 2 h per user, obtaining an accuracy
of 95.33% with a sensitivity of 98% and a false detection rate of 5.3%; most errors occurred
when the battery level was low. In another study, the effectiveness of smart shoes in gait
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event recognition and obstacle detection was assessed using six participants, with the gait
event showing an overall accuracy of 90.9% and low variability in real-time, with high
detection accuracy and low false-alarm rate [34].

Two shoe systems have tested the shoe-based obstacle detection systems and com-
pared it along with a white cane system, the most commonly used assistance for the visually
impaired. For testing NavGuide [31] experiments were conducted in a controlled environ-
ment with 70 participants. Following a training trial, performance was measured using the
number of obstacles contacted, time, and speed to complete walking task, and success in
wet floor detection. Results showed that the NavGuide assistance reduced both collisions
and completion time compared to the white cane. Yang, Jung [30] also compared the shoe
performance with white cane walking in 12 participants. Their results generally supported
the earlier test results, but time to pass increased using the obstacle detection footwear,
while more collisions were avoided and plantar pressure distribution and muscle activity
improved. In summary, limited research has experimentally evaluated the performance of
the developed shoe systems. While bench testing can estimate reliability, it is critical to find
out how the system performs in simulated and real-world environments.

5. Conclusions

This review has described recent developments in portable and wearable obstacle-
detection shoe systems to detect hazards and to reduce accidents while walking. The
sensors used for detecting the hazards were examined, with the major advantages and
disadvantages of each, and a detailed analysis provided of the sensors and hardware
components used in obstacle detection shoes. Wearable sensors have the potential to
improve the quality of life for individuals with locomotor deficits and enabling new
scientific concepts in hazard detection and gait monitoring. Audio or tactile stimuli are the
most common feedback methods used to alert the user of hazards. Integration of additional
safety features, for example, the detection of wet surfaces, potholes, and heat, in addition
to location tracking and navigation, promise more secure and safe independent mobility.

Our review of shoe-based obstacle detection systems reveals that while research has
progressed, more advanced motion prediction algorithms and techniques are required.
Despite technological advancements in sensors suitable for obstacle detection, most smart
shoe systems have used only ultrasound-based sensors, with major application in visual
impairment. Adopting more advanced sensor technologies and data processing may
help in designing more efficient diagnostic methods, leading to practical, cost-effective,
technology-based fall prevention interventions.

To pave the way for high-quality, efficient, reliable obstacle detection on shoes in real time,
bridging the gap between research and practice, we make the following recommendations:

• Design sensor systems that reliably detect obstacles using multiple data sources and
only those that pose a hazard to the user, i.e., few false positives.

• Implementation of advanced wearable sensors and fast processing boards on the shoe
while not compromising user comfort and ease of use.

• For prototype development, microcontrollers such as Arduino may be suitable but
for real world applications smaller processors/boards with equivalent or advanced
processing capabilities are needed.

• Ensure the additional hardware and weight, do not interfere with the gait and normal
locomotion of the user.

• Examine temperature ranges for sensors (see Table 3) and other hardware components
to determine the performance in extreme weather conditions.

• Evaluate prototypes in the real world to ensure comfort and acceptance for everyday use.

Application of properly developed smart shoes can be envisioned in any discipline
promoting independence, convenience, individualized comfort, and healthy living. Inno-
vative smart shoes have the potential to revolutionize the footwear industry and create a
new interdisciplinary science of sensor technology, computing, and gait biomechanics.
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