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Abstract: Therapeutic ultrasound waves are the main instruments used in many noninvasive clinical
procedures. They are continuously transforming medical treatments through mechanical and thermal
effects. To allow for effective and safe delivery of ultrasound waves, numerical modeling methods
such as the Finite Difference Method (FDM) and the Finite Element Method (FEM) are used. However,
modeling the acoustic wave equation can result in several computational complications. In this work,
we study the accuracy of using Physics-Informed Neural Networks (PINNs) to solve the wave
equation when applying different combinations of initial and boundary conditions (ICs and BCs)
constraints. By exploiting the mesh-free nature of PINNs and their prediction speed, we specifically
model the wave equation with a continuous time-dependent point source function. Four main models
are designed and studied to monitor the effects of soft or hard constraints on the prediction accuracy
and performance. The predicted solutions in all the models were compared to an FDM solution
for prediction error estimation. The trials of this work reveal that the wave equation modeled by a
PINN with soft IC and BC (soft–soft) constraints reflects the lowest prediction error among the four
combinations of constraints.

Keywords: numerical modeling; physics-informed neural networks; wave equation; ultrasound
therapeutics

1. Introduction

Partial differential equations (PDEs) are some of the most significant challenges in
the field of scientific computing, and they have been rigorously approached using dif-
ferent methods [1]. Numerical modeling is a powerful mathematical tool in medical,
industrial, and academic fields [2]. Regardless of the field of application, it is essential
to understand the system. Modeling a particular system can provide a clear view of its
momentous components and affecting factors. Thus, it unlocks development, control,
and maintenance insights [3].

In particular, numerical methods have a specific significance in modeling ultrasound
waves, characterizing the acoustic field, designing ultrasound transducers, and ultrasound
treatment planning [4–6]. Studying the physical nature of acoustics, especially in ultrasound
therapeutics, represents a substantial contribution to noninvasive medical procedures. The
ability to simulate the propagation of ultrasound waves within a domain in the human
body has an extensive impact on confidence and success prior to the initiation of therapy.
This reduces the possibility of erroneous setups, validates safety factors, reduces treatment
planning and patient waiting times, and eventually reduces the overall cost of the medical
procedure [4,7,8].
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Partial differential wave equations are traditionally modeled using tools such as the
Finite Difference Method (FDM) [9,10], Finite Element Method (FEM) [11,12], or spec-
tral methods [13]. These methods typically rely on polynomials, piecewise polynomials,
and other basic functions. Given the methodology of these approaches, the modeled prob-
lem must be set up on a mesh (grid) of finite points. Although they are considered elegant
and practical strategies, their applicability is easily hindered as the number of dimensions
increases. Owing to their mesh-based nature, the increase in dimensions is paired with
an increase in computational operations and resource allocation. This modeling compli-
cation is referred to as the Curse of Dimensionality (CoD) [14]. This is one of the most
common obstacles in PDE modeling. Another concern that accompanies mesh-based ap-
proaches is discretization. The PDE was discretized and then solved through time-stepping.
The discretization error when the grid size is not sufficiently small to capture the desired
resolution of the modeled system can reflect incorrect results [15]. The term “traditional
methods” here also covers methods that provide a solution in a converging series form,
such as the Taylor series [16]. This steers the process of solving PDEs into other lanes of
complexity, as the solution may require multiple series terms to ensure minimal error and
quick convergence.

Continuous research on artificial intelligence, along with advancements in comput-
ing power, has spawned a new field of modeling techniques utilizing Deep Learning
(DL) [17,18]. Neural Networks (NNs) have been considered universal PDE modeling tools
for an extended period of time that stretches back to the 1990s [19]. One popular option for
solving forward problems is Deep Neural Networks (DNNs), where they are trained to
predict the solution to a defined physics problem [20–22]. Despite their potential, being
a data-driven approach requires a relatively large number of training datasets. Sufficient
training datasets are commonly lacking for many specific problems. In addition, the DNN
training process can be challenging because of the difficulty in determining the optimal
hyperparameters for the NN.

A recently introduced class of DNNs was explicitly used for solving PDEs by exploiting
the physics of the problem. This class of DNNs is referred to as Physics-Informed Neural
Networks (PINNs) [23]. Unlike the normal DNN, which requires a previous solution of
the PDE to perform training with input and output pairs, PINNs account for the physical
concept of the problem by incorporating the formula of the governing physics law along
with its initial and boundary conditions into the loss function. The PINN is then trained
to minimize the loss value. During the training iterations, PINN efficiently employs the
feature of automatic differentiation to compute partial derivative terms with respect to
space or time. Therefore, PINNs are a mesh-free approach [24–27].

PINNs can overcome the CoD problem faced in traditional modeling methods by
predicting the PDE solution without the need to construct detailed grids. A few differences
between PINNs and traditional methods are highlighted here. Instead of using a mesh
for spatiotemporal stepping, PINNs rely on irregularly sampled points from the defined
domain via different sampling distributions [28]. To approximate the PDE solution, PINNs
use the nonlinear representation of the NN instead of the linear piecewise polynomials
used in traditional methods. The parameters to be optimized in PINNs are the NN weights
and biases, whereas in traditional methods, the optimization focus is on the point values on
the formed grid. The PDE is embedded in the form of a loss function in PINNs instead of as
an algebraic matrix (system) in traditional methods. In addition, gradient optimizers [29]
are error minimizers in PINNs, in contrast to the linear solvers in traditional methods.

Using the location of domain points as the training set, PINNs have the distinctive
feature of not requiring a previously computed solution for the training process. However,
like any other NN used for modeling forward problems, the training process can be a
strenuous task for problems exhibiting high-frequency or multiscale features. Designing
PINNs, although conceptually simple, requires significant trial and testing to determine
the best PINN model for the PDE problem, especially because PINN models are highly
problem-dependent [28].
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The wave equation has been modeled by PINNs previously in [30], showing the
possibility of accurately modeling the wave equation in 2D and in an inhomogeneous
domain. However, the PINN model conditions the initial state as a single-pulse source point.
Hence, the model focused on the propagation of a single wave rather than a continuous
or periodic time-dependent wave source. The wave equation was also solved with a
PINN-based model to complement the limited available data in [31], where, similar to
the previous approach, the source was implemented as a perturbation captured in the
initial condition. This implementation of the wave source is simpler than our focus on
periodically generating waves from a time-dependent function. In ref. [32], the wave
equation was modeled using PINNs and compared to the solution of the Gaussian Process
(GP). The focus of that work was mainly on exploring the accuracy and noise tolerance of
the two approaches instead of the setup of the problem constraints.

PINN has also been used to solve the wave equation in the frequency domain [33];
assuming the wave is propagating in an infinite domain, the PINN-based model did not
use boundary conditions. Therefore, no particular significance has been dedicated to es-
tablishing this condition. In ref. [34], the effects of enlarging the PINN architecture and
increasing randomly selected training points on the loss value were discussed. In that
work, an extension to the PINN architecture was implemented to correspond to a per-
fectly matched layer at the boundaries, which reportedly increases the cost of training.
The PINN model studied there has demonstrated reasonable predictions for the real and
imaginary parts of the wavefield in different media. However, the solution is studied in the
frequency domain, and no particular attention was dedicated to the implementation of the
constraints’ statuses.

In the observed previous literature on using PINNs to solve the wave equation, albeit
using different successful approaches of this tool to model wave propagation, there is still a
lack of specialized studies on the best PINN IC and BC constraint implementations for the
wave equation. Moreover, the available literature has yet to touch on implementations of
the continuous (periodically generated) wave from a time-dependent point source function
for some ultrasound therapeutic applications.

Since the initial and boundary conditions of a PDE problem can be implemented in
PINNs as soft or hard constraints, the primary question we would like to answer in this
research is: How can we achieve the most accurate prediction of the forward wave equation, given
the options of soft or hard constraint implementations of the initial and boundary conditions (ICs
and BCs)? In this work, we introduce a comprehensive comparison of different combina-
tions of soft and hard constraints to implement ICs and BCs in a homogeneous domain.
The wavefield model considered a single sinusoidal time-dependent function as the source
point. Each PINN prediction was compared to the FDM solution. A series of experiments
was performed to compare the performance of PINNs using different constraint statuses
while applying the most suitable tested hyperparameters for each experiment. We then
provide the average L2 relative error values to compare each case with its peer constraint
combinations. To the best of our knowledge, we propose the first study on the differences
between using soft and hard constraints to implement the ICs and BCs of the wave equa-
tion. In addition, instead of using the common PINN implementation of the source point
in the initial state of the problem as sin(2πx), we employ the boundary condition as a
time-dependent point source function (i.e., sin(2π f t)). Using the results in our work, we
demonstrate the flexibility of using soft constraints, the forcing effect of hard constraints,
their effects on the average error values, and the trade-offs of each.

For the remainder of this article, Section 2 presents the significance of the wave
equation and PINN design for the wave equation forward model along with the studied
constraint statuses. Section 3 exhibits the performance of using different constraint com-
binations when using PINNs and reveals the best constraint implementation. Section 4
presents concluding remarks and future directions of this work.
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2. Materials and Methods

Modeling ultrasound waves requires an understanding of the physical nature of
the waves and their propagation through a medium. In this section, we discuss the wave
equation and provide an overview of the PINNs. We utilize the concept of physics-informed
deep learning to address the challenges of modeling wave equations.

2.1. The Wave Equation Model

The noninvasiveness, portability, and affordability of medical ultrasound procedures
in clinical applications have led to much research investment [4]. Ultrasound waves can
be utilized for various purposes in medical ultrasounds [35]. However, the delivery of
ultrasound waves through different regions of the human body can significantly affect
wave transmission. To account for such challenges, numerical modeling methods have
been extensively used to predict wave propagation in a medium. We discuss the physical
significance and importance of the wave PDE. One of the most commonly studied second-
order hyperbolic PDEs for ultrasound applications is the wave equation. Wave propagation,
compression, and expansion, possibly through different regions of a medium, can create a
complex wavefield domain for modelling [30]. This makes wave propagation a substantial
area of interest in ultrasound therapeutics and imaging, as it aidsin procedure planning
and execution [7,36,37]. Equation (1) shows the lossless 1D wave equation [38],

∂2u(x, t)
∂t2 = c2

(
∂2u(x, t)

∂x2

)
, (1)

where u(x, t) denotes the displacement of point x at time instance t. We assume that
c is a constant that represents the speed of sound in the medium [39]. The absence of
nonlinear terms in this particular equation makes it the simplest form of wave equation [4].
Nevertheless, modeling such an equation is considered a computational challenge in
high-dimensional representation because of the oscillatory and multi-scale tendency of
its solution. To guarantee a unique solution to this second-order PDE, strict initial and
boundary conditions must be defined while constructing the problem domain [30].

Generally, modeling the wave equation requires four main steps [37]. The first step is
to define the geometry of the domain and its properties. In this work, we use a constant
value of c over a spatial vector x and the temporal range t to represent a homogeneous one-
dimensional domain. The second step was to determine the transducer (source) function
and its position. In our setup, the source point is placed on the left boundary of the
domain and assigned a time-dependent continuous sinusoidal function S(x, t) as shown
in Equation (2),

S(x, t) = sin(aπ f t), (2)

where a is a constant value that affects the period of the wave and f is the frequency.
The third step was to set the model parameters, including the initial and boundary condi-
tions of the modeled domain, as shown in Equations (3) and (4). This is normally the step
in which the mesh size is specified in traditional numerical modeling methods. As we use
PINNs to model the wave equation, this is not considered a concern given the mesh-free
nature of this approach. Finally, the results obtained after applying the numerical method
are processed.

fi(x, t) = 0 (3)

flb(x = 0, t) = S(x, t), frb(x = 1, t) = 0 (4)

2.2. Physics-Informed Neural Networks (PINNs)

PINNs are a class of DNNs that function as PDE approximation tools. Contrary to
the default functionality of a regular NN, where it fits itself to the solution data pairs of
state and value in a supervised training process, the general idea in PINN is to train the
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NN by considering the physics of the problem. This is achieved by involving physics,
normally a PDE, in the loss function. The training process then minimizes this loss function.
The data for training is a set of points randomly selected from a defined domain, such as
a 1D line, a 2D rectangular area, or a higher-dimensional geometry. Consequently, once
the training is completed, the PINN can predict the physical behavior of any given point
within that domain throughout a defined time interval. During the training process, no
previous solution to the PDE is required; however, PINN learns the solution of the PDE
while attempting to minimize its loss value. Randomly selected points from the domain
are irregularly sampled using a specified distribution scheme (Sobol, uniform, pseudo-
random, etc. [40]). These points are referred to as the collocation points [41]. Given the
boundary conditions and the initial state of that particular system, PINN predicts the
estimated PDE solution at the collocation points within the defined spatial and temporal
windows. The nomenclature of combining informative physics laws with deep learning as
a concept can be recognized under multiple titles such as physics “-informed,” “-guided,”
or “-constrained” NNs.

As previously stated, PINNs have the ability to solve a PDE without the need for prior
solutions, linearization, or local time-stepping [23]. The main feature of PINNs is their
ability to predict the solution of linear or nonlinear PDEs in a mesh-free setup, without the
prerequisite of a known solution for training. This classifies PINNs as unsupervised
learning methods for forward problems. Given that it requires a relatively low number of
training points [28], it is also an efficient tool for modeling multidimensional domains [23],
such as an ultrasound transducer that transmits waves into a domain in the human body.
PINNs involve the physics of a system in their loss function. This forces the NN to
consider the PDE, boundary, and initial conditions of the wavefield as it optimizes the loss
value [23,28]. Although the inclusion of prior knowledge (ICs and BCs) in the training
process of NNs to enable prediction of the PDE solution is an approach that has been
previously demonstrated in the DL literature [42], PINNs not only include this idea in their
framework, but they also advantageously build upon it by utilizing discrete time-stepping
while incorporating the physics of the problem in the loss function as they train to predict
the PDE solution [23]. Hence, PINNs accomplish a more accurate inference of the PDE
solution, while providing a measurement of uncertainty [43]. Following these contributions,
the general concept of PINNs was methodically presented in [23] and implemented in [28]
to handle the two types of problems, where the governing physics PDE parameters are
known. Thus, PINN infers the PDE solution and inverse problems where the solution is
known and then uses this to learn the governing physics parameters. In our work, we
specifically focused on solving the forward problem of the wave equation.

f (x, t) =
∂2u
∂t2 − c2

(
∂2u
∂x2

)
= 0 (5)

To formulate the wave equation (Equation (1)) using PINNs, we rewrite the PDE to
comply with the PINNs framework [23]. The input is represented by x = x1, x2, x3, ..., xd,
where d is the highest dimension. Variable xd, which is the last vector of dimensions, can
also represent the time variable in a multidimensional physical system simulated through a
time range expressed by a t vector. Function u(x, t) indicates the solution, and λ is the set of
coefficients of the PDE alongside the derivative terms. This initial step creates Equation (5)
to be integrated later on in the PINN framework as a loss term to be minimized within the
overall loss function.

2.2.1. The PINN Architecture

The baseline PINN architecture consists of two-component networks, as shown in Figure 1,
the approximator network and the residual network. These two components are integrated
with a feedback mechanism to form PINN dynamics. The approximate network represented
in Equation (6) shows the neural network NN composed of L layers and (L− 1) hidden
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layers, withWl and bl representing weights and biases, respectively, in every layer l to
process x, which can be a single-or multidimensional variable. The input and output spaces
are Rdinput and Rdoutput with dimensions dinput and doutput, respectively. The input to the
PINN is a set of irregularly sampled domain points, and the output is the predicted result.

NN L(x;Wl , bl) : Rdinput → Rdoutput (6)

Figure 1. A PINN architecture. The "*" in the figure indicates the updated value of weights and biases.
The upper-left neural network represents the approximator network that estimates the solution,
û(x, t) of the PDE. The lower residual network forces the PDE, IC, and BC to compute the loss value.
The PDE model represents an equation composed of derivatives of different orders.

Inspired by the universal approximation theorem [44], which indicates that any func-
tion can be approximated using a perceptron with only one hidden layer and a finite
number of neurons, the approximator network was trained to predict the model result u at
the collocation point location x. This is because of the NN’s ability to approximate complex
functions in a compact manner. The approximator NN is composed of neurons and layers
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through which calculations are performed sequentially. This NN is either shallow, having a
single hidden layer, or deep, having two or more hidden layers. Further, this is discussed
in Section 3. Both types of NNs can produce an approximation for any continuous function,
whether linear or nonlinear [23]. Even with this ability, relying on this feature alone, it is
still a challenging task for the neural network to optimize its weights and biases to predict
an accurate solution to the PDE; thus, the integration of the second part of the PINNs,
the residual network, assists in this process.

The residual network applies the governing physics equation formula to the result of
the approximator NN as a part of the loss function. This embodies the characteristic features
of PINNs. The task of a residual network is to compute the residual (or loss). Therefore,
training is not required [40]. The computed loss is then resupplied to the approximator NN
in an iterative design to perform the training process. In the residual network, the deriva-
tives of the PDE were calculated using automatic differentiation (AD) [45]. For instance, if y
is an equation that can be represented by multiple basic functions such as A, B, and C, as in
Equation (7), AD works by applying the chain rule [28] to these basic arithmetic operations
to compute derivatives in a form similar to Equation (7).

y = A
(

B
(
C(x)

))
= A

(
B
(
z0
))

= A
(

z1

)
(7)

where
z0 = C(x)

z1 = B(z0)

y = A(z1).

AD can also be referred to as computational differentiation or algorithmic differ-
entiation, and it has already been implemented in machine learning libraries such as
TensorFlow [46] and PyTorch [47]. This is a key difference between PINN and conventional
methods such as FDM/FEM.

∂y
∂x

=
∂y
dz1

∂z1

dz0

∂z0

∂x
=

∂A(z1)

∂z1

∂B(z0)

∂z0

∂C(x)
∂x

As shown in Figure 1, the approximator NN tends to have two or more hidden layers
that draw an expression between neurons and activation functions (tanh, ReLU, sin, ..., etc.).
A commonly used approximator NN is the fully-connected Feed-forward Neural Network
(FNN) [28]. Other PINN variations may differ in the design of the approximator network
architecture [48–50]. For the wave equation, we utilized an FNN as the approximator NN
because it is sufficient to solve the majority of PDE problems. It is a general assumption that
the larger the NN architecture, the better is the approximation. However, particularly with a
limited dataset, a too-large NN may be difficult to train, and a too-small NN may not present
an accurate approximation. A different approximator NN setup is required according to
the type of problem attempted. This means that certain hyperparameters, such as layers,
neurons, learning rate, activation function, and epochs, can be more suitable for some
problems than others [23]. Examples of using different approximator NN hyperparameters
are discussed in Section 3. It is also possible for the approximator NN to be built from
multiple FNNs instead of a single one, as proposed in [51]. Multiple FNNs were proposed
in [52] inspired by a finite-basis approach for multiple subdomains.

2.2.2. The Loss Function

PINNs aim to minimize Equation (8), which comprises three main loss terms. The first
loss term in Equation (8) shown in Equation (9) represents the offset between any given
labeled data and the prediction of the NN. The loss in Equation (10) enforces the defined
physical function on the set of points sampled from the geometrical domain by penalizing
solutions that do not fit the PDE and, therefore, incorporate the physics of the system



Sensors 2023, 23, 2792 8 of 20

in the optimization cycle. The final loss term in Equation (8) shown in Equation (11)
represents the initial and boundary conditions that abide by the physics of the defined
system. In addition, the MSEb loss term can be a composite of multiple boundary terms,
such as the left and right boundaries. The number of collocation points sampled from the
domain is considered relatively small compared to the training data required for common
NNs. All loss terms utilized the Mean Square Error (MSE) formulation. Optimization
in PINNs is a training process that aims to minimize the residual error which, in turn,
controls the weights and biases θ = (w, b) of the approximator NN. Loss weights wu,
w f , and wb are used to control the importance of each loss term. The labeled data loss
(Equation (9)), PDE loss (Equation (10)), and initial condition and boundary condition loss
(Equation (11)) can have different weights. This might be implemented to shift the focus of
optimization to one loss term more than the other to fine-tune the accuracy of the PINN
prediction. For instance, setting the weight w f in Equation (8) to zero implies that the
physical loss is removed from the optimization process, and the PINN is trained without
any consideration of the underlying governing equation. Moreover, changing the loss
weights can be extended to an adaptive process such as the approach proposed in [53].

MSE = wu MSEu + w f MSE f + wb MSEb (8)

MSEu =
1

Nu

Nu

∑
i=1
|| û(xi

u, ti
u)− ui ||2 (9)

MSE f =
1

N f

N f

∑
i=1
|| f (û(xi

u, ti
u))− f (xi

u, ti
u) ||2 (10)

MSEb =
1

Nb

Nb

∑
j=1
|| fb(û(xj

u, tj
u)− fb(xj

u, tj
u)) ||2 (11)

In classical PINNs, loss functions can be optimized using an Adam optimizer fol-
lowed by a Broyden–Fletcher–Goldfarb–Shanno (BFGS) optimizer [54], which is a quasi-
Newtonian, full-batch, gradient-based optimization algorithm [55]. This sequence is a
common utilization of both optimizers, as shown in [23], benefiting from their advantages
in performance speed and locating the local and global minima. Finally, using the collo-
cation points N f , boundary points Nb, and optional labeled data points Nu contributes to
the data efficiency of PINNs as a modeling algorithm. We would like to highlight again
that when solving the forward problem of the linear wave equation (inference), PINN does
not require previous solution data as a training set but instead uses the locations of the
collocation points in the defined domain as training points.

The initial and boundary condition implementation, which is the focus of our work,
can be either hard or soft constraints. Regardless of the constraint status chosen to imple-
ment the ICs/BCs, the number of training points, distribution of data samples, and PINN
hyperparameters depend highly on the setup of the PDE problem. This is explored in
detail in Section 3. In each modeled problem, predefined ICs and BCs were specified before
initiating the PINN training process.

2.2.3. The Activation Functions

Activation functions also play a central role in approximator NNs. They have an
apparent effect on the training process. Some commonly used activation functions are the
hyperbolic tangent function (tanh), sinusoidal function (sin), sigmoid function, rectified
linear unit function (ReLU), and Swish, which is an extension of the Sigmoid-Weighted
Linear Unit function (SiLU) [56]. Other activation functions are also used. However,
the activation function needs to be smooth to obtain well-defined derivatives for the loss
terms, thereby increasing the chances of convergence. Therefore, exponential linear units
(ELU) and their scaled versions were avoided. Training speed can also be improved by
adding an extra parameter to each hidden layer to modify the slope of the activation
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function [57]. In the architectures implemented in our experiments, tanh and sin activation
functions were used interchangeably according to the status of the constraints tested in
that particular case. In the results of the first and last cases, a sin adaptive function is
used. The second and third cases utilized an adaptive tanh activation function. These two
activation functions were used in our work, as they have shown the most accurate results
in the space of our experiments.

2.2.4. The Dynamics of PINNs and the Optimization Process

The residual loss was optimized by changing the weights and biases of the approx-
imator NN to minimize the loss value. This process is the “training” of the network.
The resultant value of the loss function is fed back to the approximator NN, where the
weights and biases are shifted according to the learning rate, and the PINN undergoes a
new iteration of training.

The size of the input data, output data, number of hidden layers, and number of
neurons in each layer affect the number of trainable parameters in the FNN. Larger-sized
FNNs with larger inputs increase the number of trainable parameters. This large number
of trainable parameters requires longer training times to achieve convergence. This makes
finding the global minima an NP-hard problem [58].

In our case, training was performed by involving variants of Stochastic Gradient
Descent (SGD) methods for error minimization using Adam [59] and BFGS [60]. Training
started by applying the Adam optimizer to the constructed model. This training stage was
stopped according to the predefined number of training epochs. Subsequently, another
stage of training was applied using the L-BFGS-B optimization method. This setup of
the optimizer sequence compensates for the limited amount of training data by reducing
computational loss and hopefully achieving faster convergence [23,28]. It is also the
optimization sequence used to solve all the wave equation problems that were set up in
this paper with different combinations of IC and BC constraint statuses.

To combine all the components of PINNs, we summarize the PINN algorithm in
a few steps in Algorithm 1. It starts by defining the wave equation problem and its
specific ICs/BCs and ends with finding the best PINN parameters (θ) for approximating
the wavefield solution.

Algorithm 1 Physics-informed neural network for solving the wave PDE

1. Define the training set domain, governing physical formula, and initial/boundary conditions.
2. Initialize the parameters for the approximator network.
3. Compute approximate solution u(x, t).
4. Compute the residual loss by calculating the physical loss and initial and boundary condition losses.
5. Use the residual loss to train the approximator network and optimize its parameters θ (and η if it is also to

be inferred) by minimizing the residual loss value.
6. Repeat steps (3–5) until reaching a halt threshold.

2.3. Hard and Soft Constraints

The defined initial and boundary conditions for the PDE can be highly informative
for PINN training. They can be integrated into PINNs via one of two implementations:
soft or hard constraints. The use of soft constraints in PINNs creates the term MSEb in the
overall loss function of Equation (8). This tells the PINN to use collocation points located at
the borders of the spatial domain and the initial time (or final time if defined) (i.e., if D is
the domain of interest, then we choose points at x = min(D), max(D), and/or at t = 0).
Hence, it validates the initial and boundary conditions and penalizes the PINN predictions
that violate the conditions represented in the loss term. This type of implementation of
the initial and boundary conditions may not guarantee full satisfaction of these conditions,
and the assigned weight wb must have a value proportional to the other weights wu and
w f in Equation (8). An affirmative guiding theory for assigning the values of these weights
remains an open study [61].



Sensors 2023, 23, 2792 10 of 20

On the other hand, hard constraints can encode the initial or boundary conditions
into PINNs by enforcing the approximator NN to satisfy them. This is performed through
an output transform function, such as in Equations (13) and (14) via an additional layer
of PINNs. Using hard constraints, PINNs have fewer loss terms to optimize but more
parameters to train [28,62]. This PINN design can also be referred to as Physics-Constrained
Neural Networks (PCNNs) [63].

Modeling the wave equation with PINNs exhibits different performances and accura-
cies, as we explore the different constraint statuses for ICs and BCs. In Section 3, we focus
on the four main cases of implementing the wave equation model in PINNs. In each case,
a different constraint status combination is assigned to the ICs and BCs as follows:

• The wave model with hard initial and boundary constraints (hard–hard).
• The wave model with soft initial and boundary constraints (soft–soft).
• The wave model with a hard initial constraint and soft boundary constraints (hard–soft).
• The wave model with a soft initial constraint and hard boundary constraints (soft–hard).

We then present the leading results in performance and accuracy.

3. Results and Discussion

A series of PINN models were tested to observe the prediction behavior in multiple
PINN setups with different constraint statuses. The PINN models were designed to observe
the effect of implementing the initial and boundary conditions in different constraint sta-
tuses using either soft, hard, or both constraints interchangeably. While experimenting with
each PINN model, we monitored its influence on prediction accuracy. All modeling trials
were performed on a machine with an NVIDIA RTX 3090 GPU and Windows operating
system. All the designed PINNs were implemented using the Python library DeepXDE [28]
with a TensorFlow backend. DeepXDE is a well-known library used for implementing
PINNs. Several other tools and libraries can also be used to implement PINNs [64–66].
An overview of each library and the differences between them is beyond the scope of
this study.

Through the process of model testing, it was noticed that different model setups
require a set of different hyperparameters to obtain the best prediction results for that
particular model (i.e., the best hyperparameters for obtaining a good prediction while
using hard initial and boundary constraints are different from the best hyperparameters
to obtain a good prediction while using soft initial and boundary constraints). Therefore,
to ensure a fair comparison between the error values, we performed trials of the best-tested
hyperparameters of one constraint status combination in all other constraint combinations.
This allowed us to observe the prediction accuracy of the set of hyperparameters that
worked best for one of the four main cases in the remaining three constraint combinations.
The word “trial” here refers to a single run of fully training a PINN model and using it
for prediction. The error values reported in the tables in Section 3 are the average values
of 10 independent trials for the same randomization seed for each setup while discard-
ing outlier values (unreasonable values that can possibly occur due to initial parameter
randomization). The difference in results was noticed to occur even when using the same
randomization seed when utilizing the DeepXDE library; hence, the repetition of trials
with the same randomization seed was performed. This was performed to reduce the
reproducibility of the results when attempting to replicate the experiments in this work.

Each PINN model prediction was compared to an FDM solution obtained previously
and treated as the ground truth to measure the solution accuracy. The FDM solution has
the same geometry and PDE parameters as those applied to the PINN problem. When
performing our trials, we were looking for a model that produces the least an L2 relative
error value with an acceptable companion mean residual error (MRE) value, which in
turn reflects the PINN’s ability to predict the correct solution of the forward linear wave
problem in one dimension.
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In our first set of trials, we performed a series of model tests to determine the best
hyperparameters for implementing hard initial and boundary constraints (hard–hard).
The use of hard constraints for both the initial and boundary conditions removes the initial
and boundary loss terms from the overall loss in Equation (8). Because we do not have any
additional labeled data, the model loss equation depends solely on the physics loss term
(MSE f ). In other words, Dirichlet initial and boundary conditions are strictly imposed on
the prediction of the NN using the output transform function in Equation (12), which is
thought of as an additional layer added to the approximator NN.

û(x, t) = (1− x)(x)(t)NN (x, t) + (1− x)sin(4π f t) (12)

Setting up PINNs with hard constraints reduces the computational cost by reducing
the number of loss terms whose values must be minimized [67]. This impacts the process of
fine-tuning the hyperparameters of the PINN, and it requires more testing in a single model
trial to find better hyperparameters to enable more precise predictions. As shown in Table 1,
the PINN hyperparameters used for obtaining an MRE of 0.38 in the hard–hard constraints
setup can obtain lower MRE values using the other constraint statuses of ICs and BCs.
This value also hovers around a relatively large offset of 0.4 in comparison with other
cases using the same hyperparameters. However, the L2 relative error average value is the
lowest ≈ 0.39 when using this particular set of hyperparameters, yielding the closest
prediction to the FDM solution. As shown in Figure 2a,f, the PINN prediction is more
accurate than the middle-time instances. This shows the forcing effects of the output
transform function in Equation (12), where the prediction output NN (x, t) is enforced
to 0 when t = 0 or x = 1, while it changes the enforced value to sin(4π f t) whenever
x = 0. In the middle-time instances, the enforcement effect is affected by the outcome of
the approximator NN NN (x, t). To improve the approximator NN prediction outcome,
multiple repeated trials with different hyperparameters are required. Thus far, the results
shown are the best of our hyperparameter tests. The PINN model that achieved the
best prediction in this case (hard–hard constraints) contained five hidden layers with
100 neurons in each. The learning rate for training was 5× 10−4, and the activation function
was a non-adaptive sin. This PINN architecture was trained using 50,000 Adam epochs,
followed by 10,000 L-BFGS-B epochs. In every epoch, 1600 points were uniformly sampled
from the domain and 160 points from the boundary (very close to the boundaries).

Table 1. Error evaluation of using the best experimental hyperparameters for hard initial and
boundary constraints (hard–hard) model.

Constraint Status Mean Residual Error L2 Relative Error

Avg. Std. Dev. Avg. Std. Dev.

Hard IC Hard BC 0.3837269 0.4074091 0.3897162 0.0478062

Soft IC Soft BC 0.0162678 0.0102160 4.2226975 3.4472078

Hard IC Soft BC 0.0010502 0.0001981 0.7667636 0.1176193

Soft IC Hard BC 0.0090117 0.0009739 0.8214965 0.1732684
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(a) (b) (c)

(d) (e) (f)

Figure 2. The average solution prediction of the wave equation using a PINN with hard–hard ICs
and BCs. Plots (a–f) show the average of six trials in multiple time instances in the range [0, 1] after
removing the four outliers. All training points are sampled uniformly from the domain in all trials.

One of the simplest ways to implement IC and BC in PINNs is to treat them as
soft model constraints, usually represented by the loss term MSEb in the overall loss
function [67]. The use of soft–soft IC and BC constraints in modeling the wave equation
is reflected in the results shown in the second row of Table 2. After conducting a series
of experiments, the best-performing set of hyperparameters produced a prediction with
an MRE of 3.8× 10−4 and an L2 relative error of 0.14. These average error values were
consistent across the trials, as indicated by the average predicted solution in Figure 3. No
output transform function was used in these trials, which may have influenced the shape
of the curve in the initial time solution prediction. The prediction output in Figure 3a is
not rigidly enforced, as is the case with hard–hard IC and BC constraints, but is instead
approximated to best meet the soft IC, starting from the Glorot normal initialization [68]
to the NN trainable parameters in the approximator. During the testing trials, the set of
hyperparameters used to train a soft–soft constraint model performed well, despite minor
fluctuations in the solution prediction values at the initial time. Although the same set of
hyperparameters was used with other combinations of IC and BC constraints, as shown
in the rest of the rows of Table 2, their predictions were not as accurate. This confirms
that applying soft–soft constraints in modeling the wave equation with PINNs requires a
different set of hyperparameters than those needed to achieve the best prediction results
with other constraint statuses. Additionally, fine-tuning the loss weights in the loss function
was easier, given the clear impact of changes on the convergence of the training error.
The PINN architecture that achieved this accurate prediction with soft–soft constraints
consisted of six hidden NN layers, with the first two layers consisting of 128 neurons, and
the remaining four layers consisting of 64 neurons. The PINN was trained with a learning
rate of 1× 10−3, which decreased over 2000 iterations out of the total 10,000 Adam training
epochs. The activation function used was an adaptive tanh with a slope factor of five. This
was followed by 10,000 additional L-BFGS-B training epochs. The physics, initial, and left
boundary loss terms were assigned a higher weight in the loss function to ensure equal
minimization momentum across all loss terms contributing to the overall loss equation.
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Table 2. Error evaluation of using the best-tested hyperparameters for soft IC and BC constraints
(soft–soft) model.

Constraint Status Mean Residual Error L2 Relative Error

Avg. Std. Dev. Avg. Std. Dev.

Hard IC Hard BC 1.5917058 1.3165160 1.5262532 0.6745228

Soft IC Soft BC 0.0003816 5.5110× 10−5 0.1400467 2.3701× 10−5

Hard IC Soft BC 0.0041027 0.0008690 0.9136354 0.1429870

Soft IC Hard BC 0.0304965 0.0105405 1.3186286 0.3858241

We also conducted trials with different combinations of initial and boundary con-
ditions (ICs and BCs) in the same PINN model, using either hard ICs and soft BCs or
vice versa, as shown in Tables 3 and 4. In these two sets of trials, the output transformation
functions (Equations (13) and (14)) were applied to the NN predictions in the hard–soft and
soft–hard cases, respectively. Equation (13) was used to enforce a hard initial constraint in
the hard–soft model, while Equation (14) was applied to the soft–hard model to impose
hard boundary constraints. It is important to note that the main difference between Equa-
tions (12) and (14) is the presence of t in the first term of the equation. The presence of
t in Equations (12) and (13) is used to control the ICs. For example, when t equals zero,
the prediction is neglected and forced to zero as well.

û(x, t) = (t)NN (x, t) (13)

û(x, t) = (1− x)(x)NN (x, t) + (1− x)sin(4π f t) (14)

(a) (b) (c)

(d) (e) (f)

Figure 3. The average solution prediction of the wave equation using a PINN with soft IC and BC
constraints (soft–soft). Plots (a–f) show the average prediction values of 10 trials of multiple time
instances in the range [0, 1]. All training points are sampled uniformly from the domain in all trials.
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Table 3. Error evaluation of using the best-tested set of hyperparameters for a hard IC constraint and
soft BC constraint (hard–soft) model.

Constraint Status Mean Residual Error L2 Relative Error

Avg. Std. Dev. Avg. Std. Dev.

Hard IC Hard BC 6.3646400 7.0906469 1.4607935 0.3224401

Soft IC Soft BC 0.0036384 0.0069507 0.2422296 0.2472808

Hard IC Soft BC 0.0185242 0.0080893 0.2743762 0.1135189

Soft IC Hard BC 0.0612217 0.0153550 1.3467069 0.3455660

Table 4. Error evaluation of using the best-tested set of hyperparameters in a soft IC constraint and
hard BC constraint (soft–hard) model.

Constraint Status Mean Residual Error L2 Relative Error

Avg. Std. Dev. Avg. Std. Dev.

Hard IC Hard BC 3.9619709 0.6002788 0.7098207 0.0747314

Soft IC Soft BC 0.0279267 0.0181732 12.600045 5.6582992

Hard IC Soft BC 0.0017451 0.0003707 0.7805654 0.1108798

Soft IC Hard BC 0.0187903 0.0019859 0.8758570 0.0733874

In Table 3, the average error values of using the best-tested set of hyperparameters
in the hard IC constraint and soft BC (hard–soft) constraint model are shown. The trials
show a stable average MRE of 0.018 and L2 relative error of 0.27± 0.11. To acquire these
error values, the PINN model was constructed from seven hidden NN layers, where
the first two layers had 256 neurons, and the remaining five layers had 64 neurons each.
The learning rate was assigned to 1× 10−3, and an inverse time decay was applied over
the 10,000 Adam training epochs. The activation function used is an adaptive tanh with
a value of two for the slope factor. This is followed by 10,000 L-BFGS-B training epochs.
The training was performed over 1600 domain points and 160 boundary points uniformly
sampled. We observed that assigning higher weights for the physics (MSE f ) and left
boundary conditions in the total loss equation produced better prediction values. We
assume a potential reason for this occurrence is that learning a function requires more
emphasis than learning a constant value in PINNs. The same set of hyperparameters
performed very poorly in terms of the MRE for the hard–hard constraints model, as shown
in the first row in Table 3. While these are the best-tested hyperparameters for this case,
applying them to the soft–soft constraints model reflects lower error values that translate
to better performance. The solution prediction results for this trial set are summarized
in Figure 4. Using hard constraints for the initial time in Figure 4a enforces a zero value
to all prediction values at that time instance. However, the prediction results in the rest
of the time instances in Figure 4b–f become less accurate than in the soft–soft case. This
occurrence is possibly the result of omitting the initial condition loss term from the loss
function and instead relying on enforcing it through the output transform function. This
leaves the approximator NN training process dependent on minimizing the physics (MSE f )
and BC loss (MSEb) values alone instead of considering the IC loss value as well.
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(a) (b) (c)

(d) (e) (f)

Figure 4. The average predicted solution of the wave equation using PINN with hard IC constraints
and soft BCs constraints (hard–soft). Plots (a–f) show the average prediction values of the four most
accurate trials in multiple time instances in the range [0, 1]. The six remaining trials that showed an
L2 relative error ≈>1.0 were excluded. All training points are sampled uniformly from the domain
in all trials.

In Table 4, a trial set is executed to identify the performance accuracy of the soft–hard
IC and BC constraint PINN model using the best-tested hyperparameters for the case.
As computed in the fourth row of Table 4, the best-tested hyperparameters for this case
reflected an average MRE value of 0.018, and an L2 relative error of 0.87± 0.07 over the per-
formed training and prediction trials. The PINN setup used for this case is composed of five
hidden NN layers containing 64 neurons each. The learning rate used is 4× 10−4, and the
activation function was a non-adaptive sin. The PINN was trained through 12,000 Adam
epochs followed by 10,000 L-BFGS-B epochs. Maintaining the same set of hyperparameters
and changing the IC and BC constraint status shows the error results summarized in Table 4.
Despite showing reasonable results for modeling the wave equation with soft–hard IC and
BC constraints, these PINN hyperparameters performed with a degraded MRE value for
hard IC and BC constraints. They also show a poor L2 relative error value when apply-
ing them to a soft–soft IC and BC constraint model setup. Nevertheless, the best-tested
hyperparameters for the soft–hard constraints perform better when switching status to
hard–soft constraints. The plots in Figure 5 display the average prediction results for the
soft–hard constraints model relative to the FDM solution. The enforcing effect of applying
hard BC constraints is clearly visible in the last time instance in Figure 5f. The small-valued
disruptions shown in Figure 5a reflect the PINN prediction of the soft IC in the initial time
instance. The average solution prediction of the middle time instances in Figure 5b–e is the
outcome of training PINNs with the best-tested set of hyperparameters for the soft–hard
constraints combination. At its best-tested performance, this case does not show a better
average prediction than the soft–soft constraints model.
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(a) (b) (c)

(d) (e) (f)

Figure 5. The average predicted solution of the wave equation using a PINN with soft initial
constraints and hard boundary constraints (soft–hard). Plots (a–f) show the average prediction values
of the five most accurate trials of multiple time instances in the range [0, 1]. The rest of the trials that
reflected an L2 relative error >1.0 were excluded. All training points are sampled uniformly from the
domain in all trials.

The highlights of the thoroughly studied four cases for IC and BC constraints in this
work reveal important behaviors when attempting to model the one-dimensional wave
forward problem. Using soft constraints allows for flexibility in composing the governing
ICs and BCs in the domain of interest while still enabling control over loss weights as each
of the physics, initial, and boundary loss terms are defined independently in the total loss
equation. The trial sets show that a soft–soft constraints model achieved the lowest L2
relative error value. Choosing the optimal hyperparameters for PINNs is highly dependent
on the problem design and the available computational resources. The problem design here
includes the choice of constraint status chosen to implement the IC and BCs of the system.

As for the time performance of each of the constraint statuses, Table 5 shows the
training and prediction times for a single PINN model trial of each of the four studied
constraint combinations with their most appropriate set of hyperparameters. Regardless of
the status of the constraints chosen during training the PINN, the prediction times remain
consistent at approximately 0.4 s. However, the training time consumed for a PINN model
with hard–soft constraints is the greatest, while the least is in the training of a PINN model
with soft–hard constraints. This can be explained by the approximator NN size along with
its suitable set of hyperparameters that are used to achieve the results reported in Section 3.
The training times do not necessarily reflect a better performance of one over another
because of factors like the size of the PINN. The number of neurons and layers alone can
play a main role in increasing or decreasing the training time. Considering the difference of
the most suitable set of hyperparameters adds to the reason for the training time difference
among the studied cases of this work. For solving the 1D wave equation problem, Table 5
puts on view the FDM solution time of 0.01 s, which ranks the fastest among the prediction
times. This is particular to the 1D case. However, it is expected in higher dimensional
problems that the FDM consumes more time exponentially given its meshed-based origin.
This is not the case in PINN models. The increase in dimensions is not reported to suffer
from such an increase in prediction time [31].
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Table 5. Execution times for each of the constraint statuses with their best-tested set of hyperparameters.

Constraint Status Training Time Prediction Time

Hard IC Hard BC 65.04 min 0.42 s

Hard IC Soft BC 84.47 min 0.48 s

Soft IC Hard BC 33.61 min 0.45 s

Soft IC Soft BC 41.31 min 0.49 s

FDM - 0.01 s

4. Conclusions

In this work, we implemented ICs and BCs with a focus on the wave equation problem
with a time-dependent source term in four possible combinations of soft and hard con-
straints. By staging these findings, we show that a continuous time-dependent source point
can be accurately modeled using a combination of soft–soft constraints for implementing
IC and BC, demonstrating an L2 relative error of 0.14. This prediction error value is approx-
imately 63%, 48%, and 83% lower than those of other hard–hard, hard–soft, and soft–hard
combinations, respectively, with their best-explored hyperparameters. In addition, we
demonstrated that the flexibility of using soft constraint combinations in PINNs permits
the addition of the required physical relations as additional terms in the loss equation with
appropriate loss weights. The study of constraint modeling cases performed in our work is
a step toward the easier adoption of PINNs as a mesh-free efficient modeling method in
ultrasound therapeutics and safe noninvasive surgery.

In a future study, we aim to explore other architectures of PINNs such as the Spatio-
Temporal Multi-scale Fourier Neural Networks (STMsFNNs), which target problems with
a higher frequency solution tendency or multi-scale parameters. We also aim to extend
the research on using multi-point time-dependent source functions in multi-dimensional
wavefields in homogeneous and inhomogeneous media.
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