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Abstract: In this paper, two of the most common calibration methods of synchronous TDCs, which
are the bin-by-bin calibration and the average-bin-width calibration, are first presented and compared.
Then, an innovative new robust calibration method for asynchronous TDCs is proposed and evaluated.
Simulation results showed that: (i) For a synchronous TDC, the bin-by-bin calibration, applied to a
histogram, does not improve the TDC’s differential non-linearity (DNL); nevertheless, it improves
its Integral Non-Linearity (INL), whereas the average-bin-width calibration significantly improves
both the DNL and the INL. (ii) For an asynchronous TDC, the DNL can be improved up to 10 times
by applying the bin–by-bin calibration, whereas the proposed method is almost independent of the
non-linearity of the TDC and can improve the DNL up to 100 times. The simulation results were
confirmed by experiments carried out using real TDCs implemented on a Cyclone V SoC-FPGA. For
an asynchronous TDC, the proposed calibration method is 10 times better than the bin-by-bin method
in terms of the DNL improvement.

Keywords: asynchronous TDC; average-bin-width calibration; bin-by-bin calibration; calibration
techniques; differential non-linearity (DNL); integral non-linearity (INL); matrix calibration; synchronous
TDC; time-to-digital converter (TDC)

1. Introduction

The role of a TDC is to measure precise time intervals between two events represented
by two signals (reference and measured signals) [1–4], which is the keystone of many
applications such as LIDAR applications [5], time-resolved fluorescence measurement [6],
fluorescence lifetime imaging [7], 3-D active imaging and time-correlated photon count-
ing [8]. In general, high-resolution TDCs can be built as Application-Specific Integrated
Circuits (ASICs) [9]. However, for many applications, it can be better to implement the TDC
on field-programmable gate arrays (FPGAs) due to the flexibility and reconfigurability, as
well as the short development time of these circuits [10–12]. Moreover, the integration of
hard processor systems in System-on-Chip FPGA (SoC-FPGA) kits allows performing an
on-chip downstream processing such as a post-calibration process [11].

The Coarse–Fine architecture is extensively used to build FPGA-based TDCs to pro-
vide a high resolution and a large dynamic range [13–15]. The coarse TDC defines the
TDC’s dynamic range; it is generally a classical counter clocked by the global system’s
clock, whereas the fine TDC, which defines the resolution, is commonly based on the time
interpolation technique [16]. The most common structure to build an FPGA-based fine TDC
is the Tapped Delay Line (TDL) [14,17]. TDCs can be classified into two main categories:
synchronous and asynchronous TDCs. In the synchronous TDC, the reference signal is
synchronous with the system clock, and this type of TDCs consists of a coarse and a fine
TDC. In contrast, in asynchronous TDCs, both the reference and the measured signals
are asynchronous with the clock; thus, these TDCs include a coarse and two fine TDCs,
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for example, double-TDL. Generally, TDL-based TDCs implemented in FPGA suffer from
a large non-linearity due to the large variations in the delay of the TDL cells [18]. This
crucial drawback imposes calibrating the TDC to improve the linearity. The most prevailing
calibration methods are the average-bin-width and the bin-by-bin methods [1,19,20]. In
recent years, many studies have addressed these two methods, especially the bin-by-bin
calibration. Nevertheless, most of these works have used this method for the calibration of
individual time interval measurement, such as single-shot measurement and averaged mea-
surement, without covering the calibration of histograms, which is an essential procedure
for many TDC-based applications. In previous works [21–23], time measurement standard
deviations of about 18 ps (0.4 LSB), 12.2 ps (1.07 LSB) and 9 ps (0.34 LSB) were achieved,
respectively, through bin-by-bin calibration. However, these works did not apply this
calibration method to histogram measurements. Furthermore, most of the studies about
TDC calibration have predominantly focused on synchronous TDCs [24,25], and very few
of them have discussed asynchronous TDCs. The aim of this paper is twofold: (i) to present
the methodology and to compare the performance of the aforementioned methods when
applied to histograms in the case of synchronous TDCs, and (ii) to propose an innovative
robust calibration method for asynchronous TDCs named the “Matrix calibration”. This
method, previously presented in [26], is performed as a post-processing of raw data for
either ASIC- or FPGA-based TDCs. For its evaluation, this method is compared to the
bin-by-bin method which is usually adopted for the calibration of asynchronous TDCs [27].

This paper starts with an introduction about Coarse–Fine TDCs. Section 2 covers the
general functional principle of a Coarse–Fine synchronous TDC as well as its most used
calibration methods. Section 3 firstly introduces the operating principal and calibration
methods of asynchronous TDCs, then presents our proposed calibration method named the
“Matrix calibration” in depth. The simulation and experimental results for the calibration
of synchronous and asynchronous TDCs are, respectively, presented in Sections 4 and 5.
Lastly, Section 6 provides a brief conclusion of this work.

2. Synchronous TDCs Calibration

This section introduces the operating principle of synchronous TDCs. Then, it dis-
cusses the two reference methods of calibration of this type of TDCs, which are the bin-by-
bin and the average-bin-width calibration methods.

2.1. Operating Principle of Synchronous TDCs

A TDC is an essential device for the measurement of precise time intervals between
two events represented by two signals called “Start” and “Stop”. For synchronous Coarse–
Fine TDCs, the Start signal is synchronized to the TDC system clock. Thus, the measured
time interval Tm can be measured as a subtraction of two components: Tcoarse, which is
the number of system clock cycles between the Start signal and the first clock’s rising edge
after the Stop signal multiplied by the clock period, and Tfine, which is the interval from the
Stop rising edge to the next clock rising edge, as illustrated in Equation (1) and Figure 1.

Tm = Tcoarse − Tfine (1)

Hence, a synchronous Coarse–Fine TDC should contain two parts: a counter running
at the system clock to measure Tcoarse and a fine block, which is usually a time interpolation
structure, to measure Tfine.

2.2. Calibration Methods for Synchronous TDCs

The most popular calibration methods for synchronous TDCs are the bin-by-bin and
the average-bin-width calibration methods. These methods require determining the raw
bins’ widths by performing a code density test. The code density histogram integrates
a sufficient number of counts in a way that the Stop signal arrives with random delays
that cover the full range of the TDC. Thus, in the resulting histogram, each bin contains
a number of counts proportional to its width. To illustrate the purpose, let us consider a
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five-bin TDC with a total delay of T. Figure 2 presents a code density histogram of this
simple TDC. The mentioned methods are discussed as follows:
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Figure 1. Synchronous Coarse–Fine TDC principle. Tm can be measured as a subtraction of two
components, Tcoarse and Tfine.
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Figure 2. Code density histogram of a simple synchronous TDC with five bins.

2.2.1. Bin-by-Bin Calibration

This method readdresses the TDC raw bins to calibrated times or calibrated bins by
means of a lookup table (LUT). A code density test is performed to determine the time
distribution along the fine TDC bins. Then, the calibrated time that corresponds to the
center of the bin is calculated for each bin from Equation (2).

ti =
[

Ni

2
+ ∑i−1

k=0 Nk

]
· T
N

(2)

where ti is the calibrated time of bin i, N is the total number of counts in the code density
histogram, T is the delay of the fine TDC and Ni is the number of counts in the ith bin. It
has been shown in a previous study [28,29] that the RMS errors are minimized when the
bins are calibrated to the centers. In fact, the RMS error σ of the bth bin, when calibrated to
a time tc, can be calculated from (3).

σ2 =
1

tmax − tmin

∫ tmax

tmin

(t − tc)
2 dt =

(tmax − tc)
3 − (tmin − tc)

3

3(tmax − tmin)
(3)

where tmin and tmax are, respectively, the lower and upper time limits of this bin and tc is
the calibrated time of this bin (tmin < tc < tmax).

Considering that tmin = 0 and tmax = Tb (Tb is the bin width), Equation (3) can be
written as:

σ2 =
(Tb − tc)

3 + t3

3Tb
= Tbtc

2 − Tb
2tc +

Tb
3

3
(4)
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The minimum RMS error is obtained when tc =
Tb
2 = (tmax−tmin)

2 , and the minimum
RMS error is calculated from Equation (5).

σ2 =
(tmax − tmin)

2

12
(5)

The calibrated times of the raw bins calculated from Equation (2) are stored in a bin-to-
time LUT that will be used later for the correction of the TDC’s non-linearity. Furthermore,
the FSR of the TDC can be divided into calibrated bins with identical size. The calibrated
time of the raw bins are then projected on the calibrated bins to determine which raw bin
corresponds to which calibrated bin, as illustrated in Figure 3a. Thereafter, another LUT,
namely the bin-to-calibrated_bin LUT, can be built to be used for the calibration of the
measurement histogram or to convert the raw bin into a calibrated one in real-time, as
presented in Figure 3b.
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Figure 3. Bin-by-bin calibration: (a) Calculating the calibrated times and calibrated bins of the raw
bins; (b) Bin-by-bin calibration lookup table.

Figure 3a demonstrates that there are still large variations in the width of the calibrated
bins. In this example, the third calibrated bin (C_Bin3) is a dead bin because the TDC has a
large raw bin (Bin2). In addition, both the small raw bins (Bin3 and Bin4) are included in
one corrected bin (C_Bin4).

2.2.2. Average-Bin-Width Calibration Method

This method aims to divide the fine TDC into calibrated bins with identical widths. As
for the bin-by-bin calibration, this method requires performing a code density. From this
test, the delay of the time width of the bth raw bin (Tb) can be calculated from Equation (6),
where N is the number of counts of the code density histogram, Nb is the number of counts
in the bth bin and T is the fine TDC’s delay:

Tb=
Nb
N

(6)

The idea of this calibration is to divide the fine TDC into M calibrated bins with
identical time widths Tc. Since T is the total delay of the fine TDC, Tc is calculated from
Equation (7).

Tc =
T
M

(7)

Furthermore, since the calibrated bins have a uniform time width, these bins should
contain the same number of counts Nc, calculated from Equation (8), when performing a
code density test:

Nc =
N
M

(8)

Considering the code density histogram presented in Figure 2 that has five non-
identical raw bins, in order to have five calibrated bins identical in size, the counts of the
raw bins are successively redistributed on the calibrated bins starting from the first bin. For
each calibrated bin, the percentage shares of the raw bins are calculated as demonstrated in
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Figure 4 and stored in a special table, named the calibration table, as presented in Figure 5.
This table will be used later for the calibration of the measurement raw histogram.

Sensors 2023, 22, x FOR PEER REVIEW 5 of 20 
 

 

Furthermore, since the calibrated bins have a uniform time width, these bins should 

contain the same number of counts Nc, calculated from Equation (8), when performing a 

code density test: 

Nc = 
N

M
 (8) 

Considering the code density histogram presented in Figure 2 that has five non-iden-

tical raw bins, in order to have five calibrated bins identical in size, the counts of the raw 

bins are successively redistributed on the calibrated bins starting from the first bin. For 

each calibrated bin, the percentage shares of the raw bins are calculated as demonstrated 

in Figure 4 and stored in a special table, named the calibration table, as presented in Figure 

5. This table will be used later for the calibration of the measurement raw histogram. 

Figure 4 illustrates that the calibrated histogram using this method has calibrated 

bins with identical size. This histogram has no dead bins because the large raw bin (Bin2) 

is distributed to four corrected bins (C_Bin1, C_Bin2, C_Bin3 and C_Bin4) with different 

percentages. It can also be noticed that the fourth corrected bin (C_Bin4) contains counts 

from four different raw bins (C_Bin2, C_Bin3, C_Bin4 and C_Bin5) also at different per-

centages. 

Moreover, the TDC time resolution depends on the calibrated bin size; in other 

words, it depends on the number of calibrated bins. If the number of calibrated bins is L, 

the time resolution of the TDC after the calibration is calculated by Equation (9). 

Tc = 
T

L
 (9) 

 

Figure 4. Average-bin-width calibration, redistribution of the total counts on identical calibrated 

bins and creating the calibration table that defines the percentage share of raw bins in each calibrated 

one. 

 

Figure 5. Calibration table of the fine TDC. It describes the shares of the raw bins in the calibrated 

bins. 

Bin

N
u

m
b

e
r o

f C
o

u
n

ts

1      2       3      4    5

C_Bin1 C_Bin2 C_Bin3 C_Bin4 C_Bin5

100 % Bin1
11 % Bin2

40 % Bin2 40 % Bin2 9 % Bin2
100 % Bin3
100 % Bin4
15 % Bin5

85 % Bin5

1 2 3 4 5

C_ Bin Raw Bins’ Shares

1 Bin1 + 0,11 ×Bin2

2 0,4 ×Bin2

3 0,4 ×Bin2

4 0,09 ×Bin2 + Bin3 + Bin4 + 0,15 ×Bin5

5 0,85 ×Bin5

Figure 4. Average-bin-width calibration, redistribution of the total counts on identical calibrated bins
and creating the calibration table that defines the percentage share of raw bins in each calibrated one.

Sensors 2023, 22, x FOR PEER REVIEW 5 of 20 

Furthermore, since the calibrated bins have a uniform time width, these bins should 

contain the same number of counts Nc, calculated from Equation (8), when performing a 

code density test: 

Nc = 
N

M
(8) 

Considering the code density histogram presented in Figure 2 that has five non-iden-

tical raw bins, in order to have five calibrated bins identical in size, the counts of the raw 

bins are successively redistributed on the calibrated bins starting from the first bin. For 

each calibrated bin, the percentage shares of the raw bins are calculated as demonstrated 

in Figure 4 and stored in a special table, named the calibration table, as presented in Figure

5. This table will be used later for the calibration of the measurement raw histogram. 

Figure 4 illustrates that the calibrated histogram using this method has calibrated 

bins with identical size. This histogram has no dead bins because the large raw bin (Bin2) 

is distributed to four corrected bins (C_Bin1, C_Bin2, C_Bin3 and C_Bin4) with different 

percentages. It can also be noticed that the fourth corrected bin (C_Bin4) contains counts 

from four different raw bins (C_Bin2, C_Bin3, C_Bin4 and C_Bin5) also at different per-

centages.

Moreover, the TDC time resolution depends on the calibrated bin size; in other 

words, it depends on the number of calibrated bins. If the number of calibrated bins is L, 

the time resolution of the TDC after the calibration is calculated by Equation (9).

Tc = 
T

L
(9) 

Figure 4. Average-bin-width calibration, redistribution of the total counts on identical calibrated

bins and creating the calibration table that defines the percentage share of raw bins in each calibrated

one. 

Figure 5. Calibration table of the fine TDC. It describes the shares of the raw bins in the calibrated 

bins. 

Bin

N
u

m
b

e
ro

fC
o

u
n

ts

1 2  3 4 5

C_Bin1 C_Bin2 C_Bin3 C_Bin4 C_Bin5

100 % Bin1
11 % Bin2

40 % Bin2 40 % Bin2 9 % Bin2
100 % Bin3
100 % Bin4
15 % Bin5

85 % Bin5

1 2 3 4 5

C_ Bin Raw Bins’ Shares

1 Bin1 + 0.11 ×Bin2

2 0.4 ×Bin2

3 0.4 ×Bin2

4 0.09 ×Bin2 + Bin3 + Bin4 + 0.15 ×Bin5

5 0.85 ×Bin5

Figure 5. Calibration table of the fine TDC. It describes the shares of the raw bins in the calibrated bins.

Figure 4 illustrates that the calibrated histogram using this method has calibrated bins
with identical size. This histogram has no dead bins because the large raw bin (Bin2) is
distributed to four corrected bins (C_Bin1, C_Bin2, C_Bin3 and C_Bin4) with different per-
centages. It can also be noticed that the fourth corrected bin (C_Bin4) contains counts from
four different raw bins (C_Bin2, C_Bin3, C_Bin4 and C_Bin5) also at different percentages.

Moreover, the TDC time resolution depends on the calibrated bin size; in other words,
it depends on the number of calibrated bins. If the number of calibrated bins is L, the time
resolution of the TDC after the calibration is calculated by Equation (9).

Tc =
T
L

(9)

3. Asynchronous TDCs Calibration

This section first explains the functionality of asynchronous TDCs as well as the bin-
by-bin calibration for such TDCs. Then, it presents in detail our proposed methodology to
calibrate asynchronous TDCs.

3.1. Operating Principle of Asynchronous TDCs

In asynchronous TDCs, the Start signal is asynchronous with respect to the TDC clock,
as is the Stop signal. Therefore, the time interval between these signals, Tm, is calculated
using the following equations, as illustrated in Figure 6:

Tm = Tcoarse + Tfine1 − Tfine2 (10)
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Tm = Coarse × Tclk + Tfine1 − Tfine2 (11)

where Tfine1 is the interval between the Start signal and the first rising edge of the clock that
arrives after the Start signal, Tfine2 is the interval between the Stop signal and the first rising
edge of the clock after the Stop signal and Tcoarse is the number of clock cycles between the
mentioned clock rising edges multiplied by the clock period.
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Clock

Start

Stop

Tcoarse

Tfine1

Tfine2

Tm

Figure 6. Asynchronous TDC chronogram. The time interval between two asynchronous signals to
the system clock is calculated from three parts: two fine intervals and a coarse one.

Hence, an asynchronous Coarse–Fine TDC should contain a coarse counter that mea-
sures Tcoarse and two fine TDCs: one for the measurement of Tfine1 called the Start fine TDC,
and another one that measures Tfine2 named the Stop fine TDC.

It is evident from Equation (11) that, in asynchronous TDCs, each count can be repre-
sented by three values: Start fine bin number (fine1), Stop fine bin number (fine2) and the
coarse counter value (coarse). Therefore, the measured counts can be compiled in a 3-D
histogram. Again, to illustrate the purpose, let us consider a 3-D asynchronous TDC with
five bins for the Start and Stop fine TDCs and a clock period T. Figure 7 illustrates a 3-D
code density histogram of such a TDC.
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Figure 7. Three-dimension code density histogram of an asynchronous TDC with five-bin fine TDCs,
the Stop and Start fine bin numbers are respectively represented on x and y, whereas the Coarse value
is represented on z.
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3.2. Calibration Methods for Asynchronous TDCs
3.2.1. Bin-by-Bin Method

To calibrate an asynchronous TDC using the bin-by-bin method, firstly, a code density
test is performed to calculate the calibrated times of the raw bins and build the lookup
tables of the two fine TDCs, as explained for synchronous TDCs in II-B-1. Figure 8 shows
the built LUTs.
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Figure 8. Lookup tables of the two fine TDCs: (a) Start fine TDC LUT; (b) Stop fine TDL LUT.

Thereafter, the calibrated interval of each cell of the 3-D histogram can be calculated,
using the lookup tables built in the previous step, from the following equation:

t_cell = (Coarse × T) + t_start − t_stop (12)

where t_cell is the calibrated time of the cell, t_stop, t_start are the calibrated times of the
Stop and Start bins that represent the (x, y) coordinates of the cell, T is the system clock
period and Coarse is the cell coarse value.

The calibrated intervals of all the cells are then saved in a 3-D LUT that can be used for
the correction of the TDC’s non-linearity. Furthermore, the FSR of the TDC can be divided
into calibrated bins with identical size to determine to which calibrated bin, in the final
calibrated 1-D histogram, corresponds each cell of the 3-D raw histogram, according to its
calibrated interval. Finally, a cell-to-calibrated_bin 3-D LUT can be built to be used later for
the calibration of the measurement to convert its 3-D raw histogram to a 1-D calibrated one.

3.2.2. Matrix Calibration

Matrix calibration is based on the average-bin-width method and used for the calibra-
tion of asynchronous Coarse–Fine TDCs. It requires performing a code density test with
a sufficient number of counts for which the Start and the Stop signals arrive at different
delays, asynchronously to the system clock, in a way that they cover the FSR of the Start
and Stop fine TDCs. Considering the 3-D code density histogram, illustrated in Figure 7,
each cell stores the number of counts for which the Start and Stop signals arrive in the bins
that respectively correspond to the x and y coordinates of this cell and with a coarse value
equal to its z coordinate. For instance, the cell (4, 3, 1) saves the number of counts in which
the Start signal arrives in the fourth bin of the Start fine TDC, and the Stop signal arrives
in the third bin and with a coarse value equal to 1. In the case of ideal Start and Stop fine
TDCs with identical raw bins, all the cells of the code density histogram would have an
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identical size. In a real TDC, since the fine TDCs have non-uniform raw bins, the cells of
the 3-D code density histogram have different sizes. The size of each cell, represented by
its number of counts, depends on the width of its Start and Stop raw bins.

One way to calibrate the 3-D code density histogram is to make all the cells have a
uniform size. The matrix calibration consists in redistributing the code density counts
evenly on calibrated cells identical in size. This can be achieved in four steps:

1. Step 1: Individual calibration of the Start and Stop fine.

In fact, if the Stop fine and the coarse values of the 3-D code density histogram cells are
ignored, the columns will be merged in one column. This column is a 1-D histogram that
represents a code density histogram of the Start fine TDC. Likewise, merging all the rows,
by ignoring the Start fine and the coarse values, provides a 1-D code density histogram of
the Stop fine TDC. These histograms can be used to build the calibration table of the Start
and Stop fine TDCs, as described in II-B-2 for the average-bin-calibration of synchronous
TDCs. Figure 9 shows the built calibration tables.
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Figure 9. Individual calibration tables: (a) Start fine TDC calibration table; (b) Stop fine TDC
calibration table.

2. Step 2: Column calibration.

In practice, each column of the 3-D code density histogram can be considered a 1-D
code density histogram of the Start fine TDC, and thus can be calibrated using the Start
calibration table built in the previous step. The individual calibration of all the columns
of the 3-D histogram results in a semi-calibrated 3-D histogram in which all the cells have
the same row height while the columns still have non-uniform widths, as illustrated in
Figure 10.

3. Step 3: Row calibration.

The rows of the semi-calibrated histogram resulting from the previous step are prac-
tically 1-D code density histograms of the Stop fine TDC. Hence, they can be calibrated
using the calibration table of this TDC. The individual calibration of all the rows provides
the calibrated 3-D histogram where all the cells have identical size, as shown in Figure 11.
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Figure 10. Column calibration, the individual calibration of the columns using the average-bin-width
method gives a semi-calibrated histogram where all the rows have the same height.
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Figure 11. Row calibration; the average-bin-width calibration is applied to the rows, resulting in a
calibrated 3-D histogram with identical cell size.

4. Step 4: Building 1-D calibrated histogram.

The last step of the matrix calibration aims to convert the 3-D histogram resulted from
the previous step into a 1-D histogram. In fact, each cell of the 3-D calibrated histogram
should be added to its corresponding bin in the 1-D calibrated histogram. The number of
this bin is calculated by Equation (13).

Bin_number = (Coarse × M) + C_fine1 − C_fine2 (13)

where C_fine1, C_fine2, Coarse are, respectively, the x, y, z coordinates of the calibrated
cell, i.e., the numbers of its row, column and slice, and M is the total number of calibrated
bins in the Stop fine TDC, which equals 5 in our example. For instance, the counts of the
cell (3, 2, 4) is part of the 21st bin of the calibrated 1-D histogram, since M = 5 and, thus, the
number of the bin to which corresponds this cell is ((4 × 5) + 3 − 2 = 21).
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Consequently, in this step, all the cells of the 3-D calibrated histogram should be
scanned and added to their corresponding bins in the 1-D calibrated histogram.

4. Simulation Results

Different simulations were carried out using MATLAB to compare the studied calibra-
tion methods for synchronous and asynchronous TDCs. The simulated TDCs are based on
the Nutt method and consist of fine and coarse TDCs. The coarse TDC is a simple counter
and the fine TDC is a TDL with 256 delay elements. The total delay of the TDL is 5 ns
distributed on the delay elements with the same profile of the time distribution along a real
TDL implemented on a Cyclone V FPGA [11].

4.1. Synchronous TDCs

In the first simulation, 10 synchronous TDCs were simulated with different Root
Mean Square (RMS) differential non-linearity (DNL) that varied from 0 to 1 LSB. For
each simulated TDC, 107 random events were simulated to perform a code density. The
Stop signal for these events arrived with random delays uniformly distributed over the
total delay of the TDC’s TDL. The resulting code density histogram was used to build
the calibration tables of the average-bin-width calibration and the LUTs of the bin-by-bin
method. Thereafter, for the evaluation and comparison of these two methods, another code
density test, was performed with another 107 simulated random events. Then, the two
methods were applied to calibrate the resulting code density histogram. After repeating
these steps for each of the 10 simulated TDCs, the RMS DNL of the calibrated histograms
was calculated to evaluate the calibration method. Figure 12 illustrates the obtained results
and shows that the bin-by-bin method did not improve the DNL of the TDC, whereas the
average-bin-width calibration was independent to the noise of the TDC and significantly
improved the DNL.
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It should be pointed out that since the DNL of the first TDC in this simulation was
0 LSB, i.e., an ideal TDC, the DNL after applying the calibration should theoretically be
0 LSB. Nevertheless, the calibrated histogram had a DNL of about 0.005 LSB. This is because
code density tests are limited by the shot noise, which can be calculated from Equation (14).

Shot noise =

√
Number of Bins
Counts number

(14)
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In our case, the number of bins was 256 and the counts number was 107, and this
equation gives about 0.005 LSB.

The second simulation aimed to compare the DNL and the integral non-linearity
(INL) of the two calibration methods when applied to a simulated TDC that has the same
time distribution as a real one implemented on a Cyclone V SoC-FPGA [11]. As for the
first simulation, two code density tests, with 107 events each, were simulated. The first
test was to build the bin-by-bin LUT and the average-bin-width calibration table. The
second test was to apply the two calibration methods and to compare between them.
Figure 13 presents the DNL and INL values of the calibrated histograms obtained after
applying the two methods as well as those of the non-calibrated histogram, and Table 1
summarizes the data statistics of these values. The obtained results show that the bin-by-bin
calibration improved just the INL of the TDC without improving its DNL, whereas the
average-bin-width calibration significantly improved both the DNL and the INL.

Sensors 2023, 22, x FOR PEER REVIEW 11 of 20 
 

 

 

Figure 12. Simulation and experimental results for synchronous TDCs: the DNL after applying the 

calibration methods compared to the DNL of the raw TDC. 

The second simulation aimed to compare the DNL and the integral non-linearity 

(INL) of the two calibration methods when applied to a simulated TDC that has the same 

time distribution as a real one implemented on a Cyclone V SoC-FPGA [11]. As for the 

first simulation, two code density tests, with 107 events each, were simulated. The first test 

was to build the bin-by-bin LUT and the average-bin-width calibration table. The second 

test was to apply the two calibration methods and to compare between them. Figure 13 

presents the DNL and INL values of the calibrated histograms obtained after applying the 

two methods as well as those of the non-calibrated histogram, and Table 1 summarizes 

the data statistics of these values. The obtained results show that the bin-by-bin calibration 

improved just the INL of the TDC without improving its DNL, whereas the average-bin-

width calibration significantly improved both the DNL and the INL. 

  

(a) (b) 

Figure 13. DNL and INL values for a synchronous TDC, before and after applying the two calibra-

tion methods: (a) DNL values; (b) INL values. 

  

Figure 13. DNL and INL values for a synchronous TDC, before and after applying the two calibration
methods: (a) DNL values; (b) INL values.

Table 1. DNL and INL statistics for a synchronous TDC calculated for the non-calibrated histogram
and the calibrated histograms of the two methods.

Mean Median STD

DNL data statistics
Raw TDC 0 −0.1054 0.7362
Bin-by-bin 0 −0.07453 0.7798

Average-bin-width 0 −0.0003624 0.009665

INL data statistics
Raw TDC 0.2614 0.2038 1.676
Bin-by-bin 0.003083 0.007194 0.4816

Average-bin-width 0.0026 0.006688 0.03167

The third simulation demonstrates the advantage of the average-bin-width over the
bin-by-bin calibration applied to histograms. In this simulation, a Gaussian signal was
measured by a simulated TDC that had the time distribution of the real TDC, as in the
previous simulation. Ten million (107) events were simulated following a normal distribu-
tion with an arbitrary chosen average delay of 2.5 ns and standard deviation (sigma) of
0.3 ns. The two calibration methods were then applied to calibrate the recorded histogram.
Figure 14 shows the resulting calibrated histograms of the Gaussian signal. It is evident
that the average-bin-width calibration had much less noise than the bin-by-bin method.
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4.2. Asynchronous TDCs

In the first simulation, 10 asynchronous TDCs were simulated with RMS DNL values
that varied between 0 LSB and 1 LSB. These DNL values were measured after concatenating
the raw bins of the two fine TDCs of each asynchronous TDC. Thereafter, for each simulated
TDC, a code density test was simulated with 107 random events to build the bin-by-bin
LUTs and the calibration tables of the matrix calibration. Then, for the evaluation and the
comparison between the two methods, another code density test was simulated with
107 events. For these events, the Start signal arrived with random delays uniformly
distributed over the range of the Start fine TDC, and the Stop signal arrived after the
Start signal by time intervals that varied uniformly from 0 to 5 ns. From the arrival times of
these events, a 3-D raw histogram was built by calculating the coordinates of each event,
i.e., its Start fine bin, Stop fine bin and coarse value, and incrementing the corresponding
cell by one. Thereafter, the bin-by-bin and the matrix calibration methods were applied to
calibrate the 3-D raw histograms and deduce 1-D calibrated histograms. The RMS DNL
values of these calibrated histograms were measured to compare the calibration methods,
and the results are presented in Figure 15.

The results illustrated in Figure 15 show that the DNL values of the calibrated his-
tograms obtained by the bin-by-bin method were improved by a factor of 10 and linearly
increased with the DNL of the TDC. In contrast, the proposed matrix calibration method
was much less sensitive to the noise of the raw TDC with an almost flat response. The error
of the ideal TDC (noise 0 LSB) is also due to the shot noise, as discussed for the synchronous
TDC, and can be calculated by Equation (14) and equals 0.005 LSB.

In the next simulation, an asynchronous TDC was simulated with 256-delay-element
Start and Stop fine TDCs that had the same time distribution as an asynchronous TDC
implemented on a Cyclone V FPGA [11]. Firstly, a code density test was simulated to build
the LUTs and the calibration tables in the same way as in the previous simulation. Then, the
bin-by-bin and the matrix calibration methods were applied to calibrate the raw histogram
of another simulated code density test. Thereafter, for the evaluation of these two methods,
the obtained calibrated histograms were compared with the non-calibrated one in terms of
the DNL and INL values.

Figure 16 shows the DNL and INL values after applying the calibration methods as
well as those of the non-calibrated histogram. Table 2 summarizes the data statistics of
these values.
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Table 2. DNL and INL statistics for an asynchronous TDC calculated for the non-calibrated histogram
and the calibrated histograms of the two methods.

Mean Median STD

DNL data statistics

Non-calibrated
histogram ~0 −0.0049 0.056

Bin-by-bin
calibration ~0 −0.0036 0.058

Matrix calibration ~0 0.00033 0.0035

INL data statistics

Non-calibrated
histogram −0.034 −0.008 0.14

Bin-by-bin
calibration −0.0064 −0.004 0.045

Matrix calibration 0.0036 0.0048 0.023

The obtained results show that the bin-by-bin method improved the INL, compared
with the non-calibrated histogram, without improving the DNL. However, the matrix
calibration is more than 10 times better than the bin-by-bin method in terms of the DNL
and about 2 times better in terms of the INL. Nevertheless, comparing these results with
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those obtained for a synchronous TDC, presented above in Figure 13 and Table 1, it can be
noticed that the DNL and INL of the non-calibrated histogram of an asynchronous TDC
are about 10 times less accurate than their values for a synchronous TDC.

The last simulation compared the two methods applying each to a calibrated measure-
ment histogram of Gaussian signal. Using the simulated TDC of the previous simulation, a
Gaussian signal was simulated by 107 events. The time interval between the Start and Stop
signals of these events followed a normal distribution with arbitrary chosen average delay
and standard deviation of 2.5 ns and 0.5 ns, respectively. The obtained results depicted in
Figure 17 show that the average-bin-width calibration had less noise than the bin-by-bin
method. Furthermore, the center of gravity of the calibrated histogram was 2489.5 ps
(error = 10.5 ps) for the bin-by-bin method, whereas it was 2499.1 ps (error = 0.9 ps) for the
matrix calibration.
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5. Experimental Results

In this section, experiments were performed on real TDCs, implemented on a Cyclone
V FPGA, to confirm the simulation results for synchronous and asynchronous TDCs.

5.1. Synchronous TDCs

In this experiment, a synchronous TDC was implemented on the FPGA kit. The coarse
TDC was an 8-bit counter and the fine TDC was a Tapped Delay Line (TDL) of 256 delay
elements. The system clock period was 5 ns, i.e., the fine TDC range was 5 ns. The Start
signal was synchronized with the system clock, whereas the Stop signal was connected
to the output signal of a Single-Photon Avalanche Diode (SPAD) to build the LUT and
the calibration table of the bin-by-bin and the average-bin-width calibration methods,
respectively. A code density test with about 107 events was performed by exposing the
SPAD to the ambient light at a low detected photon rate of about 1 M photon/s. At
such a relatively low photon rate, the mean time between the arrival of two successive
photons is 1 µs, which is 200 times larger than the total delay of the fine TDC. Thus, the
Stop signal arrived with random delays that covered the FSR of the TDC. From the code
density histogram, the RMS DNL of the raw TDC was calculated and it was about 0.69 LSB.
Thereafter, another code density test was performed with the same number of events to
evaluate the calibration methods. The code density histogram was then calibrated using
the two methods and the RMS DNL was calculated for the resulting calibrated histograms.
For the bin-by-bin method, the RMS DNL was 0.74 LSB, whereas it was just 0.017 LSB for
the average-bin-width method. These experimental values confirm the simulation results,
as plotted in Figure 12.
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Moreover, the implemented system was used in real conditions to record the fluores-
cence signal of a piece of paper excited by a 405 nm laser pulse [30]. Figure 18 shows the
calibrated histogram of the recorded signal using the two calibration methods. It confirms
that the average-bin-width calibration had much less noise than the bin-by-bin method.
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5.2. Asynchronous TDCs

To experimentally verify our proposed method “the Matrix Calibration” and to confirm
the simulation results, an asynchronous TDC was implemented on the FPGA kit. This TDC
consisted of an 8-bit coarse counter, clocked at a system clock frequency of 200 MHz, and
two TDL-based fine TDCs with 256 delay elements each. In addition, a separate on-chip
PLL generated an asynchronous Start signal, whereas the Stop signal was connected to the
output signal of a SPAD. Firstly, a code density test was performed by exposing the SPAD
to the ambient light at a low detected photon rate of 1 M photon/s. Therefore, the arrival
time of the Start and Stop signals of the measured events can be considered uniformly
distributed over the range of the fine TDCs. From the code density histogram, the 3-D LUT
and the calibration tables were built for the bin-by-bin and the matrix calibration, and the
RMS DNL of the fine TDCs was calculated (0.71 LSB). Thereafter, another code density
test was performed and the resulting histogram was calibrated by the two calibration
methods. The RMS DNL of the resulting calibrated histograms were calculated and the
results are as following: (0.053 LSB) for the bin-by-bin method and only (0.005 LSB) for the
matrix calibration, as plotted on Figure 15. Indeed, in order to have experimental results
comparable with the simulation, the same number of events must be measured in the
experimental code density tests as in simulation, i.e., 107 events.

As for the synchronous TDC, in the last experiment, the implemented asynchronous
TDC was used in real conditions to record the fluorescence signal of a piece of paper.
Figure 19 shows the calibrated histogram of the recorded signal obtained after applying
the bin-by-bin and the matrix calibration methods. This figure shows that the matrix
calibration had less noise than the average-bin-width method. Nevertheless, the bin-by-bin
calibration, when applied to asynchronous TDCs, has much less noise than when it is
applied to synchronous ones.
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5.3. Processing Speed Comparison

The average-bin-width and the matrix calibration methods lead to better results in
terms of noise than the bin-by-bin method. The drawback is a more complex signal
processing which includes more multiplications and data access. As mentioned before, the
average-bin-width calibration and the matrix calibration are post-processing on the TDC
raw data. Moreover, the bin-by-bin method for asynchronous TDCs is very complicated to
implement for online calibration, and it is easier to be performed as post-processing. Thus,
all the studied calibration methods were implemented as post-processing. The SoC-FPGA
kit used in experiments integrates a hard processor system (HPS), namely the ARM Cortex
A9 processor, with a Cyclone V FPGA fabric and provides a high-speed interface for the
data transfer between these two parts. The TDC systems were implemented on the FPGA
and the data were transferred into the SDRAM of the HPS to be processed by performing
the different calibration techniques and other data processing. A set of experiments were
carried out to compare the speed of the different calibration methods on the implemented
TDCs, knowing that the number of raw bins in a fine TDC is 256 bins.

Table 3 compares the processing time between the bin-by-bin calibration for asyn-
chronous TDCs and the matrix calibration. It compares the time of applying the calibration
without considering the time of creating the LUTs and the calibration tables. This table
shows that the speed of the bin-by-bin calibration depends only on the maximum value
of Coarse (Coarse_max), because the size of the 3-D LUT is always equal to (the number
of raw bins in Start fine TDC × number of raw bins in Stop fine TDC × Coarse_max), as
illustrated in Figure 7, whereas the matrix calibration speed depends on the total number of
calibrated bins in the histogram, as shown in Figure 5. Furthermore, the ratio between the
speed of the two methods has almost a linear relationship with the number of calibrated
bins in the clock period; this ratio has a maximum value of about 8 when the number of
calibrated bins in a period is equal to the number of raw bins.
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Table 3. Calibration processing speed comparison between the bin-by-bin method for asynchronous
TDCs and the matrix calibration.

Total Number of
Bins in

Calibrated Histogram

Number of Calibrated
Bins in Clock Period

Maximum Value
of COARSE

Calibration Process Speed (CPU Tick) Ratio
(Matrix/Bin-by-Bin)Bin-by-Bin Calibration Matrix Calibration

4609 256 19 543,2528 42,229,555 7.77
1537 256 7 220,7046 18,058,416 8.18
513 256 3 1,197,789 9,453,249 7.89
385 256 2 952,921 7,493,491 7.86
301 200 2 959,247 5,279,525 5.5
226 150 2 936,000 3,681,132 3.93
151 100 2 938,161 2,501,956 2.67
76 50 2 930,375 1,467,180 1.58

The same experiments were performed on a synchronous TDC. The obtained results
show that the ratio between the speed of the average-bin-width has an almost linear
relationship with the number of calibrated bins in clock period; the maximum value of this
ratio is about 4 when the number of calibrated bins in a clock period is equal to the number
of raw bins of the fine TDC.

6. Conclusions

This paper covers in detail the methodology of the most commonly used calibration
methods for synchronous and asynchronous TDCs, which are the bin-by-bin and average-
bin-width methods. It also introduces a novel calibration method for asynchronous TDCs
called the “Matrix calibration”. Simulations and experiments were carried out to compare
these methods. The results show that, for synchronous TDCs, the average-bin-width
calibration is much better than the bin-by-bin method, which does not improve the DNL of
the raw TDC. The obtained results also affirm that the proposed method for asynchronous
TDCs is less sensitive to the DNL of the raw TDC and is up to 10 times better than the
bin-by-bin method applied for histogram measurements. This improvement occurs at the
expense of a longer calibration time due to the complexity of the signal processing that
includes more multiplication and memory access instructions. Furthermore, experimental
results obtained for real TDCs, implemented on Cyclone V FPGA, confirmed the simulation
results. However, it should be pointed out that the proposed calibration method does not
improve the TDC precision in the case of single-shot measurements.

The proposed method has been effectively applied in a Time-Correlated Single Photon
Counting (TCSPC) system including asynchronous TDCs. Another paper about this system
will be published in the future. Furthermore, this method can be extended to be applied for
the calibration of other systems dealing with multidimensional histograms involving more
than three dimensions.
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