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Abstract: Today’s critical goals in sensor network research are extending the lifetime of wireless sensor
networks (WSNs) and lowering power consumption. A WSN necessitates the use of energy-efficient
communication networks. Clustering, storage, communication capacity, high configuration complex-
ity, low communication speed, and limited computation are also some of the energy limitations of
WSNs. Moreover, cluster head selection remains problematic for WSN energy minimization. Sensor
nodes (SNs) are clustered in this work using the Adaptive Sailfish Optimization (ASFO) algorithm
with K-medoids. The primary purpose of research is to optimize the selection of cluster heads through
energy stabilization, distance reduction, and latency minimization between nodes. Because of these
constraints, achieving optimal energy resource utilization is an essential problem in WSNs. An
energy-efficient cross-layer-based expedient routing protocol (E-CERP) is used to determine the short-
est route, dynamically minimizing network overhead. The proposed method is used to evaluate the
packet delivery ratio (PDR), packet delay, throughput, power consumption, network lifetime, packet
loss rate, and error estimation, and the results were superior to existing methods. PDR (100%), packet
delay (0.05 s), throughput (0.99 Mbps), power consumption (1.97 mJ), network lifespan (5908 rounds),
and PLR (0.5%) for 100 nodes are the performance results for quality-of-service parameters.

Keywords: wireless sensor network; sensor nodes; clustering; cross-layer routing; adaptive sailfish optimization

1. Introduction

A wireless sensor network (WSN) contains affordable, tiny sensor nodes. WSNs
have proven to be one of the most suitable strategies for transferring data from remote
locations to a central data processing station. These sensors self-organize and form a multi-
hop network capable of adapting and transmitting compressed data to a base station [1].
Multimedia WSNs support transmitting multimedia data, such as images or videos, and can
collect more data in military monitoring, agricultural and industrial monitoring, affordable
healthcare, and intelligent buildings. Multimedia data is typically more extensive, and
larger sensor nodes can use more resources. Some researchers have attempted to investigate
and solve this issue [2]. Energy conservation is one of the most significant aspects for sensor
nodes in wireless sensor networks to extend their lifespan. Sending and receiving packets
consume the majority of the energy.
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Sensor nodes in WSNs frequently use batteries. Because of the network of devices,
charging the battery is complex, and the battery’s capacity emerges as the most precious
resource for WSNs. As a result, energy conservation becomes a critical issue in WSNs. A
new optimization algorithm must be developed to maximize energy efficiency and network
lifespan. Clustering is one of the power management functions of WSNs, which splits the
network into multiple clusters, with one node in each cluster designated as the cluster
head (CH) [3]. By combining the data received from each node and sending it to the base
station (BS), the CH reduces the BS’s overhead. Because the BS accepts data from fewer
nodes, the WSN saves power in resource-constrained situations. Clustering algorithms aid
in reducing power consumption in WSNs [4].

The clustering algorithm works in rounds, each consisting of two phases: formation
and stabilization. Nodes are organized into distinct collections, or clusters. Each group has
a designated CH. The sensed data is transmitted to the receiver by the CH, which collects
data from sensor nodes. In the form of important information, several data aggregation
algorithms are employed to cluster algorithms, gather this data, and send it to the BS.
A CH is critical for maintaining the energy savings of clustering techniques. The K-
Means algorithm chooses a specific number of clusters (k), signified by their centroids, and
computes the Euclidean distance between any node and all clusters [5,6].

The K-medoids algorithm was developed to enhance the selection of the cluster’s
primary nodes and set up a more appropriate network architecture to minimize the sensi-
tivity of outliers [7]. A hybrid energy-efficient distributed clustering algorithm (HEED) is
suggested to increase network lifetime. The primary CH nodes in HEED are chosen based
on their available power probability, and the sensor nodes (SNs) are selected based on their
actual power clusters [8,9]. Efficient data transfer is based on the elephant herding opti-
mization algorithm. This work reduces latency while increasing throughput. Total power
consumption is higher; as a result, the network’s life may be shortened. The main limita-
tions of previous systems were performance, network lifetime, latency, packet delivery rate
(PDR), power efficiency, and packet loss rate. Furthermore, the limited communication and
computing power of wireless sensor networks adds to the complexity of data collection [10].

The primary contribution made by the suggested work is to conserve energy and
achieve the maximum lifetime of WSNs. The K-medoids approach is used for clustering
nodes with similar data. Each cluster node has a CH chosen using the ASFO algorithm.
Furthermore, computation time and CH energy consumption have been minimized because
of the shorter transmission range.

2. Related Works

A hybrid cross-layer routing protocol was inspired by WSN-assisted energy conserva-
tion in the Internet of Things (IoT). Routing is processed at three layers in the cross-layer
routing strategy: the physical layer, the data link layer, and the transport layer. The pro-
tocol for Bionic Cross-Layer Routing (BiHCLR) is proposed in this paper for efficient and
energy-efficient routing in WSN-IoT. Then, to conserve energy in BiHCLR, a fuzzy logic
method is used to select a CH for each grid cell [11]. The routing path is then chosen using
a hybrid bionic algorithm. The proposed BiHCLR’s performance is assessed using a quality
of service (QoS) analysis. Latency-aware heterogeneous cluster-based data acquisition
(DA-HCDA) in the IoT was proposed [12]. A DA-HCDA algorithm is presented to ensure
maximum coverage. As a result of the introduced DA-HCDA and quartile aggregation
mechanisms, end-to-end latency and network lifetime are improved.

A new Energy-Aware Adaptive Fuzzy Neural Clustering (EAANFC-MR) algorithm
was implemented. The EAANFC-based clustering method chooses CHs based on residual
energy (RE), node distance, and degree [13]. The QOBFO algorithm is used as a multihop
routing technique to select the best route to the destination. The proposed EAANFC-MR
algorithm has been simulated using MATLAB. Numerous tests demonstrate the advantages
of the suggested algorithm when it is examined with various QoS parameters. The Multi-
Objective Fuzzy Inference System (moFIS) and Bacterial Feeding Optimization (BFO) are
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effective algorithms for determining attributes such as degree difference, overall distance
to neighbors, remaining energy, and distance to the BS for wireless sensor networks. The
demonstrated outcomes revealed that the moFIS-BFO algorithm outperforms and extends
network life.

A new Natural Inspired Cross-Layer Clustering (NICC) protocol is investigated along
with Bacterial Feeding Optimization (BFO) with an optimum fitness function that simulates
the trade-off between data throughput and energy usage. A BFO algorithm selects optimal
sensor nodes for routing and clustering issues based on cross-layer parameter fitness
value calculations. In various WSN scenarios, demonstrated results revealed that the
NICC protocol outperformed state-of-the-art clustering techniques [14]. The Naive Bayes,
KNN, and Support Vector Machine (SVM) classifiers are used for classification and image
processing applications. The conventional algorithm has less accuracy when compared
with the proposed methodology [15].

A new algorithm is proposed for determining the best CH in an IoT-WSN. The Im-
proved Sunflower Optimization (ISFO) algorithm is the name given to this novel algorithm.
The proposed algorithm’s results show that it consumes less power than other algorithms
and has a higher number of still-alive nodes than others. As a result, the ISFO algorithm
demonstrates its superiority in terms of power consumption and network lifespan [16]. An
optimal cross-layer-based CH selection is recommended to resolve the energy conservation
issue in WSNs. The suggested algorithm with novel probabilistic decision rules is used as a
fitness function to find the best path for data transfer. Compared to other methods, CH-IoT
minimized power consumption, end-to-end latency, and communication overhead while
optimizing network performance. Various performance parameters, such as the number
of active nodes, temperature, load, remaining power, and cost function, have been used
to select the best CH in an IoT network cluster. The proposed method is compared with
several conventional optimization algorithms, including the artificial bee colony, the whale
optimization algorithm (WOA), the genetic algorithm, and the adaptive gravity search
algorithm [17].

3. System Model

WSNs constantly monitor the physical conditions of their surroundings. The WSN
infrastructure is composed of a base station (BS) and several SNs.

3.1. Network Model

WSN clustering aims to minimize energy usage by dividing sensors into clusters.
Common nodes frequently monitor the environment and transmit sensory data to the
cluster head. The CH node is always chosen among the common nodes. The significant
role of the CH is to accumulate data from each cluster node and send it to the BS. The
process of grouping aids in avoiding direct communication between receivers and sensors.
The WSN system model is depicted in Figure 1.
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3.2. Energy Model

The energy of a node is directly proportional to propagation distance ‘n’ when the
threshold distance (n0) exceeds the value of ‘n’. The following expression represents the
total energy used by each node to transmit the ‘M’-bit data packet.

Etx(M, n) = Eelec ×M + εam ×M (1)

εam =

{
ε f × n2, when n ≤ n0
εp × n, when n > n0

(2)

where Etx is the total energy required for data transfer, Eelec is the dissipation of energy per
bit, ε f is the energy used for amplification in the free space model, M is the number of bits,
and n0 is the threshold transmission distance.

The receiver’s energy consumption is given by

Erx(M) = Eelec ×M (3)

Esum = Erx + Etx (4)

where Erx is the total energy required for received data and Esum represents the total energy
loss for a WSN.

3.3. K-Medoids with an Adaptive Sailfish Optimization (ASFO) Algorithm for CH Selection

The sensor nodes are organized into clusters using the clustering technique, and a CH
is chosen for each cluster in the wireless sensor network. The primary responsibility of the
CH is to gather data from specific cluster nodes and send it to the BS. This research suggests
a K-medoids algorithm for clustering in WSNs. The K-medoids algorithm splits all sensor
nodes into k clusters. Each cluster is associated with a single object in the K-medoids
method. The identified object is called a medoid and corresponds to the cluster’s most
central point. The K-medoids group is the shortest distance between clusters because the
K-medoids related to the cluster node find the optimal center. It improves communication
between sensor nodes, reduces energy consumption, and detects more accurate cluster
centers, resulting in shorter packet delays. The K-medoids algorithm is efficient and has
a fixed number of convergence steps [18]. The K-medoids clustering algorithm has the
following steps:

Step 1: Randomly select k points from the input data (where k represents the number
of clusters to form).

Step 2: Each data point is assigned to the cluster that contains the closest center point.
Step 3: For each data point in cluster ‘i’, calculate and add the distance from all other

data points. Specify the point of the i cluster that reduces the total calculated distance from
other points as the center point of the cluster.

Step 4: Repeat steps 1 and 3 until convergence is reached, that is, until the center point
stops moving.

The clustering method involves grouping sensor nodes and selecting CHs for all
groups in the WSN. The CH’s primary function is to collect information from a specific
node in the cluster and transmit it to the BS. Because of its ability to find exact central
clusters, or centroids, cluster formation is accomplished using the K-medoids algorithm,
resulting in low power consumption, low packet latency, and better sensor nodes. The
process involves estimating the number of clusters and calculating the first CH node using
Equation (5):

c =
√

n
2

(5)
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where n denotes the number of nodes. These algorithms determine the initial mean point
and center location (L) for all the nodes derived.

L =
∑N

n=1 xn

n
(6)

where xn represents the coordinate of the sensor. The average separation between the SN
and L is represented as D in the following formula:

D =
∑N

n=1|xn − L|
n

(7)

The separation between the sensor nodes (SN) and center location (L) can be used
to calculate the centroid, and clustering is obtained using Equation (7) until a proper CH
is selected. The procedure for formation of clustering using K-medoids with a Sailfish
Optimizer is described in Algorithm 1.

Algorithm 1: Algorithm for clustering using K-medoids with a Sailfish Optimizer

Network Initialization
Step 1: Initialization of the WSN
Step 2: Locate BS at coordinates (50, 180)
Step 3: Place all the SNs arbitrarily
Formation of clusters using K-medoids and selection of CH using ASFO
Step 4: Number of nodes N divided into several clusters
Step 5: Every cluster has N nodes, and each node is related to its nearest CH
Step 6: Randomly select the first CH by selecting the first random medoid from N in the cluster
Step 7: Three-dimensional coordinates (x, y, z) are generated by every normal node to CH
Step 8: K-means distance calculation is performed by the CH
Step 9: ASFO algorithm is used to select the new CH and center the cluster node
Step 10: Repeat step 7 to 9 until the node in the absolute center is found
End

The specific coordinate values used in the algorithm, such as (50, 180), have significance
beyond being randomly generated coordinates within the range of 0 to 200. As a result, the
best solution was obtained by employing the ASFO algorithm process. The CH is chosen
from the solution, and then it uses a cross-layered expedient routing protocol to find the
best traversal path to send the collected data from the transmitter to the receiver.

3.4. E-CERP Routing Algorithm for a WSN

The energy-efficient cross-layer-based expedient routing protocol (E-CERP) transfers
data over the shortest paths in an energy-efficient and scalable manner. It increases com-
munication link reliability while reducing packet delays. The existing cross-layer-based
opportunistic routing protocol (CORP) algorithm has several drawbacks:

• High data transmission complexity occurs when the number of constraints increases
due to the limited computing power of the WSNs.

• They are challenging to integrate.
• They have a high power consumption, packet loss, delivery rate, and communica-

tion delay.

The proposed E-CERP technology solves the problems of conventional routing proto-
cols, and the goal is to maximize the nodes’ transmission power by utilizing the network’s
remaining energy.

(i) Local broadcast
Each node sends a HELLO message that includes its ID, the number of hops to the

BS, and the path cost. The base station path cost can change from round to round if it is
initially 0 and each node is infinite. Each node organizes its list of neighbors based on the
HELLO messages it receives. Signal strength is calculated using the received signal strength
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indicator (RSSI) of incoming messages. The average RSSI calculates the link reliability
metric L(n, m), expressed in Equation (8).

Ln,m = Tmtp − Tarp (8)

The Lagrange multiplier is used to estimate the link cost as follows:

cos(n, m) = Xcir + Xarp +
In I

v
.

1
hnm

(9)

(ii) Routing algorithm
A parent Par(n) has to be chosen for a specified sensor node n to act as the next hop

sensor node to send data from node n to the BS. The mathematical equation can be written
as follows:

Par(n) = argm∈Ni(n) min[cost(m) + cost(n, m)] (10)

Using the cost function and the parent route selection shown in Equation (10), a
cost-based route is created. In each round, the parent preferences are updated.

(iii) Transmission Power Control (TPC)
The ideal transmit power can be determined using hop count, as represented in

Equation (11):

Ttx(n) =
1
hn

[
ln I + ln

(
hn

H

∑
n=1

1
hn

)]
(11)

For the transmitted execution, reasonable simplification is carried out, and the upper
bound can be calculated using Equation (12):(

H

∑
n=1

1
hn

)
ln I ≤

H

∑
n=1

Xtx(n) ≤
(

H

∑
n=1

1
hn

)
(ln I + ln H) (12)

Thus, for the given sensor node, the upper bound is estimated using Equation (13).

Xtx(n) =
1

hnm
[ln I + ln H(n)] (13)

where “I” is the target end-to-end success probability and “H” represents the hop count. The
ideal path for sending and receiving data has been determined after evaluating the transmit-
ting power. It has negligible packet loss and delays, as well as minimal energy conservation.

4. Experimental Results and Discussion

The simulation is based on data transfer, node availability, and sensing range. The
dataset used in this work is the energy efficiency detection dataset. In one dataset, there
are a total of 780 data samples, which are used to conduct experiments on the proposed
technique. The parameters considered for simulation setup are given in Table 1.

Table 1. Parameters for simulation setup.

Parameters Value

Number of nodes 500
Deployment area 500 × 500

Total Clusters 6
Packet size 512 bytes

Packet sending rate 1 packet/s
Initial energy 0.5 J
Data samples 55
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4.1. Performance Analysis of Clustering and Routing

There are multiple sensor nodes in a WSN that can be alive or dead. The proposed
clustering technique identifies distances between nodes by regularly monitoring the nodes
and forming clusters based on distances. The K-medoids algorithm is used to group nearby
nodes into clusters, and the selection of the cluster head is based on the SN’s energy usage.
As CH, the energy-efficient SN is chosen, which can be changed anytime. Figure 2 depicts
the transmission of data from a sensor node to the cluster head. According to the diagram,
six cluster heads manage all the SNs in a cluster.
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Figure 2. Data path from the source node CH1 to the destination node CH5.

Compared to existing methods, the K-medoids algorithm and E-CERP suffer from
high packet loss, delivery delays, and a lack of stable power when using existing processes
to transmit data. The proposed K-medoids clustering approach is compared with the
K-means [18] and Fuzzy C-means approaches, which include particle swarm optimization
and krill herd optimization algorithms [19–22]. The introduced ASFO method is compared
with two existing optimization approaches: the krill swarm optimization algorithm [23]
and the whale optimization algorithm (WOA) [24]. The proposed results were compared
with cross-layer-based adaptive thresholding (CLAT) and cross-layer fuzzy logic (CLFL).

4.2. Performance Analysis of Clustering

Clustering is an essential method for ensuring efficient data transmission. The pro-
posed work used the K-medoids approach to cluster similar data into one group based on
the average energy consumption of each node [25,26].

Figure 3 and Table 2 represent the comparison graph for the average energy consump-
tion by the proposed approach and the existing methods, K-means and Fuzzy C-means
clustering. Therefore, the hybrid approach consumed 0.0196 J on average for cluster size 2,
whereas the K-means method consumed 0.0245 J and the Fuzzy C-means logic approach
consumed 0.0294 J.
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Table 2. Comparison of the average energy consumption of the proposed ASFO algorithm.

Approaches
Average Energy Consumed (J) vs. Cluster Size

2 3 4 5 6 7 8 9 10

K-means 0.024 0.029 0.0343 0.038 0.041 0.045 0.049 0.059 0.0638

Fuzzy C-means 0.029 0.039 0.041 0.046 0.052 0.056 0.061 0.069 0.074

Proposed 0.019 0.023 0.028 0.029 0.033 0.035 0.037 0.039 0.0423

Table 3 and Figure 4 show the comparison of CH selection by the proposed ASFO
method with two conventional methods, the krill herd algorithm and the WOA. The CH
selection in 250 rounds by the proposed method based on the average residual energy
is 39.2337 J, whereas the existing methods, the krill herd algorithm and the WOA, have
34.3295 J and 29.4253 J, respectively.

Table 3. Average residual energy consumption of the proposed ASFO algorithm.

Approaches
Average Energy Consumed (J) vs. Rounds

0 250 500 750 1000 1250 1500 1750 2000 2250 2500

Krill herd 49.04 34.33 29.43 24.52 17.66 7.85 2.94 0.49 0 0 0

WOA 47.08 29.43 24.52 19.62 9.81 4.9 0.98 0.02 0 0 0

Proposed 49.04 39.23 34.33 29.43 19.62 9.81 4.9 0.98 0 0 0
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Figures 4 and 5 show that the proposed ASFO algorithm is more effective than the
conventional algorithm for clustering and CH selection. Thus, the proposed method
efficiently formed the cluster and chose the CH for the corresponding cluster.

4.3. Energy Consumption

The energy consumption of the introduced algorithm is shown in Figure 5, along
with two conventional algorithms: a cross-layer-based adaptive threshold technique and a
cross-layer fuzzy logic approach.

From the experimental results, the proposed CERP consumed less energy (1.97 mJ),
whereas the existing cross-layer-based adaptive threshold technique consumed 7.75 mJ
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and the cross-layer fuzzy logic approach consumed 8.43 mJ. For 200 nodes, the E-CERP
approach consumed 1.10 mJ of energy, and the existing techniques, cross-layer-based
adaptive threshold and cross-layer fuzzy logic, consumed 5.51 mJ and 10.36 mJ of energy,
respectively. For 300 nodes, the proposed technique consumed 5.13 mJ of energy, the cross-
layer-based adaptive threshold technique consumed 7.91 mJ of energy, and the cross-layer
fuzzy logic approach consumed 9.53 mJ. For 400 nodes, the introduced E-CERP approach
consumed 4.8 mJ, whereas the cross-layer-based adaptive threshold technique and cross-
layer fuzzy logic approach consumed 7.45 mJ and 11.23 mJ, respectively. For 500 nodes, the
introduced approach consumed 4.19 mJ of energy, whereas the existing cross-layer-based
adaptive threshold technique and the cross-layer fuzzy logic approach consumed 7.55 mJ
and 10.37 mJ of energy, respectively. So, the proposed method is shown to be very effective
in data transmission.
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4.4. Network Lifetime

The proposed CERP’s network lifetime is compared with the conventional algorithms
in Figure 6. This method attained a higher network lifetime than the remaining methods.
Table 4 shows the network lifespan and energy consumption of the proposed E-CERP and
conventional approaches.
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Table 4. Energy consumption and network lifespan.

Techniques Average Energy Consumed Network Lifespan

Number of Nodes 100 200 300 400 500 100 200 300 400 500

Proposed CERP 1.97 1.10 5.13 4.80 4.19 5908 5711 5514 5218 5022

CLAT 7.75 5.51 7.91 7.45 7.55 5395 5100 4904 4708 4610

CLFL 8.43 10.36 9.53 11.23 10.37 4904 4708 4610 4218 4021

From the simulation results, it is evident that the network lifetime is extended by the
proposed method for 100 nodes (5908 rounds). In contrast, the lifetimes of an existing
cross-layer-based adaptive threshold technique and cross-layer fuzzy logic approaches
are 5395 and 4904 rounds, respectively. Moreover, as the number of nodes increases, the
network lifetime decreases. Hence, data transmission efficiency is based on the increased
network lifetime.

4.5. Throughput

The suggested technique is compared with a cross-layer-based adaptive threshold and
cross-layer fuzzy logic techniques in Table 5.

Table 5. Throughput and the end-to-end delay comparison.

Methods Throughput End-to-End Delay

Number of Nodes 100 200 300 400 500 100 200 300 400 500

Proposed CERP 0.99 0.98 0.96 0.95 0.94 0.0492 0.0689 1.9692 3.9384 5.9076

CLAT 0.96 0.93 0.93 0.93 0.91 1.9617 3.6785 4.1686 5.1494 6.1302

CLFL 0.95 0.91 0.90 0.90 0.88 2.9425 4.9042 5.8851 7.3563 8.8276

Figures 7 and 8, and Table 5, show the evaluation of the proposed technique and
the conventional algorithms with respect to end-to-end delay and throughput. The
E-CERP approach’s throughput was high (0.99 Mbps) in 100 nodes compared to the
conventional algorithms.
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From Table 5, it is seen that the number of nodes increases as the throughput decreases.
The throughputs obtained by the conventional cross-layer-based adaptive threshold tech-
nique and cross-layer fuzzy logic approach are 0.99 Mbps and 0.96 Mbps, respectively, for
100 nodes.

4.6. End-to-End Delay

The comparison of the end-to-end delays of the proposed CERP and existing ap-
proaches is represented in Figure 9 and Table 5. This method attained a lower delay in
100 nodes (0.05 s), and the time delay increased as the number of nodes increased in the
WSN. For 100 nodes, the time delays of the two existing methods, the cross-layer-based
adaptive threshold technique and cross-layer fuzzy logic, are 1.97 s and 2.94 s, respectively.
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4.7. Packet Delivery Ratio (PDR)

Table 6 compares packet delivery and packet loss ratios to the number of nodes.
Figures 9 and 10 show that the PDR decreased when the number of nodes increased. The
PDRs obtained using different algorithms for 100 nodes were 97% for the cross-layer-
based adaptive threshold technique and 95% for the cross-layer fuzzy logic method. If the
PDR value is high, all data from the base station will be received without any data loss.
Therefore, the proposed approach achieves high performance efficiency when compared to
other algorithms.

Table 6. Comparison of PDR and PLR.

Techniques PDR PLR

Number of Nodes 100 200 300 400 500 100 200 300 400 500

Proposed CERP 100 100 98 96 96 0 0 2.03 3.51 4

CLAT 97 96 96 95 94 2.57 3.87 4.44 5.26 5.83

CLFL 95 91 90 90 88 4.53 8.78 9.76 10.42 11.60

Sensors 2023, 23, x FOR PEER REVIEW 13 of 16 
 

 

4.7. Packet Delivery Ratio (PDR) 
Table 6 compares packet delivery and packet loss ratios to the number of nodes. 

Figures 9 and 10 show that the PDR decreased when the number of nodes increased. The 
PDRs obtained using different algorithms for 100 nodes were 97% for the cross-layer-
based adaptive threshold technique and 95% for the cross-layer fuzzy logic method. If the 
PDR value is high, all data from the base station will be received without any data loss. 
Therefore, the proposed approach achieves high performance efficiency when compared 
to other algorithms. 

 
Figure 10. Comparison of the packet loss ratio. 

Table 6. Comparison of PDR and PLR. 

Techniques PDR PLR 
Number of nodes 100 200 300 400 500 100 200 300 400 500 
Proposed CERP 100 100 98 96 96 0 0 2.03 3.51 4 

CLAT 97 96 96 95 94 2.57 3.87 4.44 5.26 5.83 
CLFL 95 91 90 90 88 4.53 8.78 9.76 10.42 11.60 

4.8. Packet Loss Ratio (PLR) 
The packet loss ratio (PLR) of the proposed method and other existing methods are 

shown in Figure 10. For 100 nodes, the proposed CERP obtained 0% PLR (i.e., there was 
no loss), and the existing methods, cross-layer-based adaptive threshold and cross-layer 
fuzzy logic approaches, achieved high PLR values of 2.58% and 4.54%, respectively. It 
shows that the proposed CERP is more effective for data transmission. The PLR increases 
when the number of nodes increases. The graph indicated that the introduced method 
significantly decreased packet loss compared to other energy-efficient algorithms. 

4.9. Jitter 
The comparison of jitter for the proposed technique and existing approaches is 

shown in Figure 11. The E-CERP algorithm obtained a low jitter value of 0.15 ms for 100 
nodes. In contrast, the conventional algorithms, cross-layer-based adaptive threshold and 
cross-layer fuzzy logic approach, attained 0.25 ms and 0.39 ms, respectively. For 200 
nodes, the jitter value of the proposed method was 0.12 ms; however, the conventional 
algorithms attained 0.20 ms and 0.34 ms, respectively. 

Figure 10. Comparison of the packet loss ratio.

4.8. Packet Loss Ratio (PLR)

The packet loss ratio (PLR) of the proposed method and other existing methods are
shown in Figure 10. For 100 nodes, the proposed CERP obtained 0% PLR (i.e., there was no
loss), and the existing methods, cross-layer-based adaptive threshold and cross-layer fuzzy
logic approaches, achieved high PLR values of 2.58% and 4.54%, respectively. It shows that
the proposed CERP is more effective for data transmission. The PLR increases when the
number of nodes increases. The graph indicated that the introduced method significantly
decreased packet loss compared to other energy-efficient algorithms.

4.9. Jitter

The comparison of jitter for the proposed technique and existing approaches is shown
in Figure 11. The E-CERP algorithm obtained a low jitter value of 0.15 ms for 100 nodes. In
contrast, the conventional algorithms, cross-layer-based adaptive threshold and cross-layer
fuzzy logic approach, attained 0.25 ms and 0.39 ms, respectively. For 200 nodes, the jitter
value of the proposed method was 0.12 ms; however, the conventional algorithms attained
0.20 ms and 0.34 ms, respectively.
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For 300 nodes, the jitter value obtained by the E-CERP algorithm was 0.10 ms, and
the conventional algorithms attained 0.17 ms and 0.24 ms, respectively. For 500 nodes,
the jitter value of the suggested approach was 0.05 ms. However, the existing approaches,
cross-layer-based adaptive threshold and cross-layer fuzzy logic technique, attained 0.10 ms
and 0.15 ms, respectively. As a result, by evaluating the performance of cross-layer-based
adaptive threshold, cross-layer fuzzy logic, K-means, and Fuzzy C-means approaches, the
introduced E-CERP algorithm performances are resolved based on the analysis of QoS
parameters. Based on the simulation results, the power consumed by the network is low
and the network lifetime is high for the proposed method.

4.10. Evaluation of the Proposed ASFO and E-CERP Approach with Conventional Techniques

The particle swarm optimization is utilized for the optimization problem based on
fuzzy clustering. Still, it has some disadvantages, such as that it is easy to fall into local
optima and the convergence rate is slow, while the HHO algorithm is simple, flexible, easy
to implement, and has a high convergence rate. In fuzzy and artificial bee colony-based
implementations of MAC, the clustering, routing, and data delivery (FABC-MACRD)-
based cross-layered method was used for the clustering and data transmission, in which the
energy consumption was high, including the energy consumed for 500 nodes. In contrast,
the proposed CERP method consumed less energy (4.19 J), and the packet delivery ratio of
FABC-MACRD was 79%, while the proposed CERP was 96%. Compared to FABC-MACRD,
the proposed method extended the network’s lifespan, and the proposed K-medoids
with ASFO and E-CERP improve the reliability of the communication link and reduce
packet delay.

5. Conclusions

This research develops cluster head selection using K-medoids with ASFO and clus-
tering and multihop routing protocol (CMRP) algorithms for efficient routing in WSNs.
For optimal CH selection from suitable nodes, the K-ASFO approach can be used. The
outcomes were compared using three standard metrics: throughput, residual power, and
first dead node. Finally, the CMRP algorithm routing protocol is used for efficient data
transfer. The routing process is permitted on recognized node-to-node paths. The simula-
tion results demonstrate that the proposed system outperforms other existing algorithms.



Sensors 2023, 23, 2788 14 of 15

The performance of the proposed methodology is compared to that of existing optimization-
based routing algorithms. CMRP chooses the best path from the cluster head to the sink
node. The proposed method is used to evaluate PDR, packet delay, throughput, power
consumption, network lifetime, packet loss rate, and error estimation, and the results were
superior to existing methods. PDR (100%), packet delay (0.05 s), throughput (0.99 Mbps),
power consumption (1.97 mJ), network lifespan (5908 rounds), and PLR (0.5%) for 100
nodes are the performance results for QoS parameters. The proposed method has an overall
accuracy of 93.19%. As a result, the proposed approach outperforms existing strategies in
terms of overall performance. The proposed method produced better results in all scenarios
and metrics. The proposed work was idealized, implemented, and tested against a static
sensor node WSN. This research can be expanded to mobile sensor nodes or networks with
sensors that can change position in real-time.
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Abbreviations

Acronym Abbreviation
ASFO Adaptive Sailfish Optimization
HEED Hybrid Energy-Efficient Distributed clustering algorithm
HCDA Heterogeneous Cluster-based Data Acquisition
EAANFC Energy-Aware Adaptive Fuzzy Neural Clustering
moFIS Multi-Objective Fuzzy Inference System
BFO Bacterial Foraging Optimization
NICC Natural Inspired Cross-Layer Clustering
SVM Support Vector Machine
ISFO Improved Sunflower Optimization
E-CERP Energy efficient Cross-layer-based Expedient Routing Protocol
CORP Cross-layer-based Opportunistic Routing Protocol
RSSI Received Signal Strength Indicator
CLAT Cross-Layer-Based Adaptive Thresholding
WOA Whale Optimization Algorithm
CLFL Cross-Layer Fuzzy Logic
FABC-MACRD Fuzzy and Artificial Bee Colony-based implementation of MAC,

Clustering, Routing, and Data delivery
CMRP Clustering and Multihop Routing Protocol
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