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Abstract: This article deals with the cyber security of industrial control systems. Methods for
detecting and isolating process faults and cyber-attacks, consisting of elementary actions named
“cybernetic faults” that penetrate the control system and destructively affect its operation, are analysed.
FDI fault detection and isolation methods and the assessment of control loop performance methods
developed in the automation community are used to diagnose these anomalies. An integration
of both approaches is proposed, which consists of checking the correct functioning of the control
algorithm based on its model and tracking changes in the values of selected control loop performance
indicators to supervise the control circuit. A binary diagnostic matrix was used to isolate anomalies.
The presented approach requires only standard operating data (process variable (PV), setpoint (SP),
and control signal (CV). The proposed concept was tested using the example of a control system
for superheaters in a steam line of a power unit boiler. Cyber-attacks targeting other parts of the
process were also included in the study to test the proposed approach’s applicability, effectiveness,
and limitations and identify further research directions.

Keywords: cybersecurity; cyber-attack; fault detection; fault isolation; control loop performance;
neural networks; linear models

1. Introduction

Recently, apart from hazards related to equipment faults and human errors, there
are also new threats [1–3] related to destructive targeted activities, such as cyber-attacks
and sabotage actions. Both types of risks are particularly dangerous for critical infrastruc-
tures, such as the chemical industry, power plants, power grids, and water supply [1].
Despite various reasons, the effects of severe failures and attacks may be the same, e.g., fire,
explosion, environmental contamination, destruction of the installation, and process stop.

In the FDI methods of fault detection and isolation [4,5], which have been developed
for over 40 years, the analysed scope of diagnosis included process components, sensors,
and actuators. Faults of these elements are a hazard to the proper functioning of the control
systems. The correctness of the control algorithms in the FDI approach was not checked.
On the other hand, the faults of the control units implementing the control algorithms were
detected independently by the diagnostic software of these units using computer systems
diagnostic methods. Diagnostics methods in the FDI community are still dynamically
evolving, as indicated by review papers [6–9], and it is worth drawing inspiration from the
community achievements.

Independent of the FDI methods, another research direction was developed, which
can be described as the control loop performance assessment. In large-scale industrial
processes, operators and control engineers have an increasing number of control circuits
under supervision (from 30 to 2000, according to [10]). Therefore, automated methods for
evaluating the performance of the loops are needed.

Many indicators have been developed in the literature to diagnose the most common
problems in control circuits. Some of these indicators can also be a significant alarm
symptom in the event of cyber-attacks.
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The fundamental problem in assessing the operation of the controller is whether the
poor quality of regulation is the result of internal problems or the influence of external
disturbances. The initial work of [11] proposed comparing the operation of the regulator
with the operation of the minimum variance control.

The control loop performance assessment system should be able to work on data
from the system’s regular operation in a closed feedback loop. The currently existing
solutions include tuning quality assessment, detecting and isolating faults, and searching
for the source of plant-wide disturbances. The state-of-the-art has been described in review
articles [10,12] and monographs [13,14].

The following practical problem is essential: how to increase the security of industrial
control systems (ICS) in the case of threats related to faults of technical equipment, sensors,
and actuators, human errors, and destructive targeted actions, such as cyber-attacks and
sabotage actions. The current solutions are not satisfactory because they relate to specific
threats. There are no holistic solutions that would comprehensively address security
issues. One of the partial elements of this problem is finding effective methods of detecting
intrusions into the control system, consisting of malicious modifications of the control
algorithm or its parameters.

This paper is an extension of the conference paper [15]. The main contributions of this
paper are as follows:

• The concept for the use of control quality indicators in cyber-attack detection, un-
derstood as the detection of the cyber-attack itself or the detection of its components
(partial actions);

• a combination of control quality indicators with controller modelling;
• preprocessing and combining indicators to obtain interpretable diagnostic signals;
• experiments and analysis in distinguishability of the components (partial actions) of

cyber-attacks;
• publication of a dataset with cyber-attack scenarios for the superheater system avail-

able at https://doi.org/10.5281/zenodo.7612269.

The main idea of cyber-attack detection based on controller modelling and loop
performance indicators is illustrated in Figure 1.

Figure 1. Cyber-attack detection and isolation scheme based on controller modelling and loop
performance indices.

Cyber-attacks entering the control system through the protection rings may destruc-
tively distort the measurement and control signals, the control algorithm, or its parameters.
Potential attack vectors are illustrated in Figure 2. Each cyber-attack is carried out according
to a designed scenario—a specific method of attack. Such a scenario consists of elementary
impacts (partial actions) on individual system elements and signals in communication
channels called cybernetic faults. “Cybernetic faults” plays an analogous role as “process
faults” used by the FDI community. They represent a specific cause of the erroneous
operation (or falsification of values) introduced by the attacker as a single step of the attack.
The primary presented idea is to focus on the detection and isolation of cybernetic faults.
However, the detection of any of the cybernetic faults equals the detection of a cyber-attack.

https://doi.org/10.5281/zenodo.7612269
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Figure 2. Symbolic places of injection of attacks.

Therefore, real-time supervision of the control loops becomes necessary to detect
intrusions into the control system early. The diagnostic system should detect and isolate
both faults and attacks or its components.

This work aimed to develop and test algorithms to detect cyber-attacks and/or its
components, i.e., cyber-faults, aimed at control algorithms. The paper shows that attack-
detection methods based on controller models and control loop performance indicators
are effective in this task. The attacks may, for example, modify the algorithm’s parameters.
The change in the normal-reverse regulator operation mode leads to positive feedback.
Changes in the settings may also result in the loss of system stability, and the modification
of the setpoint value may result in the process entering the emergency area.

We also consider attacks directed at actuators, masking control values entering the
process and PV or SP values entering the controller. We demonstrate effective detection in
most cases and show further directions of research.

A case study was used as the research method. The possibilities of solving the formu-
lated research problems were analysed on the example of a superheater system.

The proposed approach differs from the existing solutions in the following aspects:

• The approach is directed at the industrial controller.
• Only data from regular plant operations are needed.
• There are no specific requirements regarding the controlled process.

The structure of the paper is as follows: Section 2 presents the state-of-the-art in cyber-
attack detection in control systems, Section 3.1 presents control loop performance indicators,
and Section 3.2 introduces proposed controller modelling approaches. Preprocessing and
merging of indicators are described in Section 3.3. Section 4 presents the case study,
Section 5 the results, Section 6 shows a discussion of the results, and Section 7 concludes
the paper.

2. Detection of Cyber-Attack on Control System

The protection of the control system against cyber-attacks is achieved primarily by us-
ing demilitarised zones, firewalls, data encryption, VPN (IPsec) networks, network segmen-
tation, identity verification, access authorisation, and password management. Cyber-attack
detection is carried out by monitoring network traffic that does not allow the detection of
all anomalies [16]. The solutions used in IT systems do not guarantee the lack of possibility
of an attack getting into the control system. Thus its destructive impact on the controlled
process [17]. Early detection of anomalies and their isolation is essential to effectively
respond to emerging hazards and threats.

The issues of cyber-attack detection in industrial control systems are developed very
intensively [17–21]. Intrusion detection techniques against cyber-attacks are mainly divided
into two categories: based on signatures and anomalies. Signature-based methods require
a model of the system’s functioning in the case of a given type of attack. Anomaly-based
attack detection techniques detect deviations from normal system behaviour. Similar
approaches are used in fault diagnosis by the FDI community.
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In terms of the detection of cyber-attacks in ICS, the following research directions can
be distinguished: detection based on network traffic exploration, the analysis of network
protocols, and the analysis of process data. ICS attacks often cause unusual network traffic
or violate network protocol specifications. The methods of detecting these anomalies are
derived from the methods used in IT systems. The above approaches are often used in
Intrusion Detection Systems (IDS) [22]. Article [23] presents classifications of cyber attacks
in network control systems and cyber-physical systems (CPS).

If the attacks penetrate the control system through the security measures applied, they
affect the functioning of the control systems. Therefore, they can be detected as a discrep-
ancy between the observed and reference activity, represented by models characterising
the normal state of the controlled process. The detection scheme presented in [24,25] is
identical to the fault detection scheme used for a long time in FDI methods.

There are passive and active approaches to detecting cyber-attacks. Passive methods
are based on operating signals. Active methods require introducing an appropriate input
signal and the analysis of its influence on the control systems. The active approach was
presented in [26–28]. Observers [29,30], Kalman filters [31,32], and machine learning
methods [33] were used as passive detection approaches. The use of neural models to
detect anomalies was the subject of works [34,35]. Paper [36] investigates the attack isolation
and attack location problems for a cyber-physical system based on the combination of the
H-infinity observer and the zonotope theory. For anomaly detection, quantitative and
qualitative models can be used. The works [2,37,38] present models in the form of rules
that detect faults and attacks that cause the reverse controller operation or the actuator
block. Developing benchmarks for testing and comparing cybersecurity solutions is also
an active research area [39,40].

Research on cyber-attack detection tends to focus on a specific type of attack. The most
significant amount of work is related to detecting false data injection attacks [34,41–46].
Fewer publications present studies of detection methods for replay attacks, covert attacks,
and zero dynamics attacks [47].

Research on attack isolation is also emerging. The Anomaly Isolation Scheme (Iterative
Observer Scheme) proposed in paper [48] is an extension of the well-known Generalised
Observer Scheme, which was used to isolate single-sensor faults. The Unknown Input
Observer is used to isolate cyber-attacks. In [49], a methodology based on the cyber-
physical systems two side filters and an Unknown Input Observer-based detector has been
proposed. A linear time-invariant (LTI) model was used, considering the impact of faults
and cyber-attacks.

Our proposed approach does not require knowledge of process models with the impact
of attacks and faults, nor does it assume a specific process form (such as LTI). All that is
required is standard archived control loop data in the form of PV, SP, and CV signals
and, for isolation, a binary diagnostic matrix, which is much simpler to obtain than the
whole model.

Recently, attack detection based on control loop performance indices was proposed [50].
This method uses the Harris index, which, in its base version, was designed to fixe SP
control systems. Additionally, the value of the Harris index is sensitive to the level of distur-
bances. Our goal is to propose a solution suitable for cascade control systems and includes
isolation analysis. Therefore, we decide to rely on a larger number of simpler indices.

The detection methods derived from the approaches known in IT networks have al-
ready reached a high level of advancement, measured by many publications and the offered
IDS systems using these techniques. The solutions derived from the approaches developed
in the automation community, including intrusion detection based on process data analysis
and control loop supervision, are more recent and less documented in publications. In the
opinion of the authors of this paper, these methods that control the integrity of process
data collected from measuring devices, actuators, and controllers may be of great practical
importance. Methods developed based on fault diagnostics and models linking process
variables can be used for this task.
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The introduction of diagnostic systems that recognise both faults and cyber-attacks
will constitute an additional layer of operational security (Layer of Protection) and another
Ring of Protection in ICS.

3. Methods
3.1. Loop Performance Indicators

Many different indices of control quality are used in the literature and industrial
software. Table 1 presents a list of indices, by category, that have been selected for initial
testing. The indicators used in the final solution are indicated by ∗. Indices in use are
described in this section. For information regarding other indices, the reader is referred to
the cited papers. During the preliminary tests, we found that the more complex indices
(Harris index, oscillation factors) perform adequately, but their values are more challenging
to interpret. In the application under consideration, we are mainly interested in the change
in control quality and system behaviour. For this purpose, using more straightforward
statistics for the control signal and control error is sufficient. These indicators are easy
to interpret and calculate and do not require parameter selection. In addition, a set of
dedicated indicators was also determined from the controller models.

Indicators determined based on the response to a step change in SP were excluded
due to the difficulty of application in the presence of significant disturbances and the inap-
plicability in fixed setpoint control systems or for auxiliary controllers in cascade control.

In the group of dedicated indicators, the estimation of the derivative time Td was
omitted due to numerical difficulties when pre-filtering the signals fed to the controller.

In Table 1 and the following equations, e indicates control error and is calculated as:

e = SP− PV (1)

Table 1. Considered loop performance indicators (∗ points to the indicators selected for use in the
final solution).

Category Label Index Description

Basic statistics e Mean control error
|e| Mean absolute control error ∗

e2 Mean squared control error ∗

σ2
CV Control signal variance ∗

|∆CV| Mean control signal difference ∗

CVosc Control signal oscillation count ∗

Controller benchmarking ηMV Harris index [11]

Response to a step change in SP Tset Settling time
α Overshoot

T∗set Normalised settling time [51]
IAEd Normalised integral absolute error [51]

Oscillation detection nI Regularity of large values of IAE [52]

r Regularity of sign changes of
autocorrelation function [53]

Nonlinearity detection sat Saturation index ∗

Controller modelling rlinear Linear model residual ∗

k̂p Proportional gain estimation ∗

T̂i Integral time estimation ∗

Td Derivative time estimation
rnn Neural model residual ∗

The selected indices are calculated as follows (N—number of samples in a window):
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• |e|Mean absolute control error

|e| = 1
N

ΣN
i=1|e(i)| (2)

• e2 Mean squared control error

e2 =
1
N

ΣN
i=1e2(i) (3)

• σ2
CV Control signal variance

σ2
CV =

1
N

ΣN
i=1(CV(i)− CV)2, (4)

where CV is the mean value of CV.
• |∆CV|Mean control signal difference between consecutive samples:

|∆CV| = 1
N − 1

ΣN−1
i=1 |CV(i + 1)− CV(i)| (5)

• CVosc Control signal oscillation (change in direction) count:

CVosc =
1

N − 1
ΣN−1

i=1 ||{i : ∆CV(i) ∗ ∆CV(i + 1) < 0, i = 1, . . . , N − 1}||, (6)

where ||x|| indicates the number of elements in x.
• Saturation index

sat =
ΣN

i=1tsat

N
, tsat =

{
0 for(CV ≥ 10%) ∧ (CV ≤ 90%)

1 for(CV < 10%) ∨ (CV > 90%)
, (7)

3.2. Controller Modelling

The indices described in this section are not control loop performance measures.
However, they have been proposed to detect changes in the controller algorithm that
may result from malicious actions. A more detailed description and modelling results for
different types of controllers can be found in [15].

In order to determine the indices for each control loop, two models are trained,
estimating the increment in the control signal ∆CV:

• The linear model is a linear regression model that takes the control error and lagged
error values as inputs. The coefficients of the linear model allow the calculation of
estimated PID controller settings. The model can only work for linear data—parts
with regulator saturation are excluded from learning and prediction.

• The neural model is a non-linear model that takes control error and lagged error values
and the control signal value as inputs. A model in the form of a multilayer perceptron
was used. This model does not allow for controller settings estimation but can be used
for controller types other than PID and data with controller saturation present.

Residuals of modelling errors are calculated as:

rlinear = ∆ĈV linear − ∆CV, (8)

where ∆ĈV linear is a linear model prediction and ∆CV is a real controller output.

rnn = ∆ĈVnn − ∆CV, (9)

where ∆ĈVnn is a neural model prediction.
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Controller Settings Estimation Form Linear Model

This section presents only equations for the PI controller used in the case study. Details
for other controller types can be found in [15].

The following equations were based on a linear model of the ideal PI controller in
incremental version:

∆CV(k) = kp

(
e(k)− e(k− 1) +

Ts

Ti
e(k− 1)

)
, (10)

where k—sample number, ∆CV(k) = CV(k) − CV(k − 1), e(k)—control error,
kp—proportional gain, and Ti—integral time Ts—sampling time.

The inputs of the controller model are e(k) and e(k − 1), and the model takes the
form of:

∆ĈV(k) = a1e(k) + a2e(k− 1) (11)

where ∆ĈV(k)—model output, and a1 and a2—model coefficients. The coefficients are
estimated using mean squared error minimisation.

The controller parameters can be calculated using the estimated linear model coefficients:

kp = a1, Ti =
Ts

a2
kp

+ 1
. (12)

3.3. Preprocessing

The signals considered are either a time series matched by sampling period to the
controller processing period (e.g., rlinear) or statistics or estimates determined for a specific
time window (e.g., |e| or T̂i). In addition, each indicator has a different range of values,
making it challenging to combine them and select alarm limits. Therefore, the following
preprocessing steps were used (Figure 3):

• Control loop performance indices are calculated in mowing windows (MW) and (if
applicable) as exponentially weighted moving average (EWMA):

– mowing windows are overlapping with an offset equal to half of the length of the
moving window size

– the exponentially weighted moving average of a time series {x(1), x(2), . . . , x(N)}
is calculated as:

xEWMA(k) = αEWMAxEWMA(k− 1) + (1− αEWMA)x(k), (13)

where αEWMA is the smoothing factor.

• The controller modelling residuals rlinear and rnn are squared (2) and averaged in
moving window with an offset equal to 1 (RW).

• The time series related to controller variability (σ2
CV , |∆CV|, CVosc) has non-normal

character. They are transformed using Box-Cox transformation:

xBox−Cox =
xλ − 1

λ
, (14)

where λ is an exponent coefficient.
• All of the signals are normalised using a standard scaler (subtracting mean and

dividing by standard deviation):

xN =
x− x

σx
, (15)

where x and σx denote the mean and standard deviation, respectively. Superscript N

denotes the normalised value.
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• To achieve higher robustness and interpretability, the signals are grouped into indices
according to the process feature that they describe:

– Control error increase eN = avg(|e|NMW , |e|NEWMA, e2N
MW , e2N

EWMA)

– Change in CV variability |CVvar|N = | avg((σ2
CV)

N , |∆CV|N , CVN
osc)|

– High CV saturation satN = avg(satN
MW , satN

EWMA)

– High controller model prediction error rN = avg(rN
liner, rN

nn)

– Change in kp estimation |k̂N
p |

– Change in Ti estimation |T̂N
i |

– High controller parameters estimation variability pN
var = avg(σ2

kp, σ2
Ti)

|e|

e2

σ2
CV

|∆CV |

CVosc

sat

rlinear

rnn

k̂p

T̂i

MW = 600
αEWMA = 0.998

MW = 600
αEWMA = 0.998

MW = 600

MW = 600

MW = 600

MW = 600
αEWMA = 0.998

2RW = 1000

2RW = 1000

MW = 1000

MW = 1000

Box-Cox
λ = 0.25

Box-Cox
λ = 0.5

Box-Cox
λ = 0.2

σ2

σ2

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

AV G

|AV G|

AV G

AV G

AV G

eN

|CV N
var|

satN

rN

pNvar

|abs| |k̂Np |

|abs| |T̂N
i |

Control error

CV variability

Controller
modelling

Figure 3. Preprocessing.

After the preprocessing, we obtain the final set of signals:

S = {rN , |k̂p|N , |T̂i|N , |CVvar|N , satN , eN , pN
var} (16)

These signals are thresholded to obtain the set of binarised alarm signals (diagnos-
tic signals):

S = {rA, |k̂p|A, |T̂i|A, |CVvar|A, satA, eA, pA
var} (17)

All of the preprocessing parameters (window sizes, smoothing factor αEWMA, expo-
nent λ for Box-Cox transformation, and alarm thresholds) are tuned using only the data
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from regular system operation (without any faults or cyber-faults). Controller models
(linear and neural) are also fitted to the data from the regular operation. The current values
of controller parameters’ estimates k̂p and T̂i are calculated from a linear model estimated in
a sliding window. However, the model used for calculating residual rlinear is not updated.

3.4. Isolation Method

Our cyber-attack detection and isolation method is based on standard techniques used
in the FDI community [4]. Fault detection and isolation are based on a set of diagnostic
tests. Each j-th diagnostic test outputs a diagnostic signal sj indicating the result of the
check. As a result of all the tests, we obtain the set of all diagnostic signals S:

S = {sj : j = 1, . . . , J}. (18)

To isolate the faults, it is necessary to know the relationship between the faults forming
the set:

F = { fk : k = 1, . . . , K} (19)

and the values of the diagnostic signals. Expert knowledge about the fault-symptom
relation can be described and archived in many different forms. A binary relation can be
represented by: logic functions, diagnostic trees, a binary diagnostic matrix, or a set of
rules [4]. In the case under consideration, these faults will be cyber-attack scenarios.

The most popular method of fault-symptom relation representation is a binary diag-
nostic matrix (Table 2). It is defined over the Cartesian product of S and F, so it specifies
the relation:

RFS ⊂ F× S. (20)

Table 2. Binary matrix of RXS relation.

S\F f1 f2 f3 f4

s1 1 0 1 0
s2 0 0 1 1
s3 0 1 0 1

The expression < fk, sj >∈ RFS means that diagnostic signal sj is sensitive to fault fk.
The occurrence of fk sets the value of sj to one, i.e., indicating a fault symptom. The matrix
of this relation is called a binary diagnostic matrix (see the small example in Table 2). Each
matrix entry is defined as follows:

vjk =

{
0 ⇔< fk, sj >/∈ RFS

1 ⇔< fk, sj >∈ RFS
. (21)

Matrix element vjk has a value of one if signal sj detects fault fk, and zero otherwise.
A fault signature is a column vector containing the values of the diagnostic signals for
this fault: 

v1k
v2k
. . .
vJk

, (22)

where vjk ∈ {0, 1}, ∀j = 1, . . . , J, k = 1, . . . , K.
Therefore, the columns of the binary diagnostic matrix (Table 2) correspond to fault

signatures.



Sensors 2023, 23, 2778 10 of 27

Given the binary diagnostic matrix and the actual values of diagnostic signals, we
calculate the diagnosis by searching for the column of the binary diagnostic matrix with
the maximal similarity to the values of diagnostic signals:

fk : k = argmaxi ΣJ
j=0(vji == sj). (23)

4. Case Study

The developed modelling approach was tested for a superheater system under mali-
cious interventions. The study used a model of superheaters of the third and fourth stages
of the steam line in the boiler of the power unit. The process schematic diagram with
available measured process variables is given in Figure 4.

Figure 4. A schematic process diagram with designated control loops and process variables.

The dynamic properties of the simulated process and its structure, including control
loops and its parameters, were modelled based on the actual installation of a steam draught
of the soda boiler in the paper company, which we collaborate with and which granted us
access to process description, real data, and controller parameters, which were used during
simulator elaboration. The simulator was implemented in the PExSim environment [54]. It
is a computational and simulation environment developed at the Institute of Automatic
Control and Robotics of the Warsaw University of Technology. It is visually similar to
Simulink but is definitely simplified compared to it. It allows cyclic processing of signals
according to the designed algorithm given in the form of a function block diagram. This is
one of the possible simulation environments to be used. Choosing a specific simulation
environment, i.e., its properties, do not have an impact on the conducted simulations
and, consequently, on the results of the presented tests.

The modelled part of the process consists of the third and fourth steam line sections.
In both, there are: attemperator, superheater, and cascade control systems—the main controller
controls the temperature of the steam behind the superheater. The auxiliary controller controls
the injection water valve and the temperature behind the cooler. The notation will be as
follows: 3.1, 3.2—the auxiliary and main control loops of the third stage, respectively, 4.1,
4.2—the auxiliary and main control loops of the fourth stage, respectively. The available
measurement variables directly related to the considered process with control loops, along
with the determination of the ranges of variation and the operating points to which the model
has been tuned based on data from the actual process, are characterised in Table 3.

The process was modelled in a simulation environment using a simplified linearised
(at an operating point) model, reflecting the fundamental relationships between physical
quantities. A specific variability of input quantities was assumed in the conducted experi-
ments (temperature and steam flow at the inlet to the third stage and the contractual value
of the fuel flow fed to the boiler) and cycles of the variability of setpoint (SP) values of the
main controllers of the third and fourth stages: related changes in SP3.2 and SP4.2.
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Table 3. Available process variables.

Section/Control Loop Variable Description Units Range Working Point

- B Fuel inflow to the boiler (contractual variable) % 0–100 85
- F2 Steam inflow to Section 3 kg/s 30–140 117.4
4 F4 Steam flow in superheater 4 (at boiler outlet) kg/s 30–140 120
3 G3 Position of the injection valve of attemperator 3 % 0–100 55.4
3 T2.1 Steam temperature at the inlet to the attemperator 3 ◦C 395–445 420

3/TC3.1 PV3.1
Steam temperature at the outlet from the

attemperator 3
◦C 385–435 410

3/TC3.1 SP3.1
Set point of the steam temperature at the outlet from

the attemperator 3
◦C - 410

3/TC3.1 CV3.1
Control signal of temperature controller at the outlet of

the attemperator 3 % 0–100 55.4

3/TC3.2 PV3.2 Steam temperature at the outlet of superheater 3 ◦C 465–515 492

3/TC3.2 SP3.2
Set point of the steam temperature at the outlet of

superheater 3
◦C - 492

3/TC3.2 CV3.2
Control signal of temperature controller at the outlet of

the superheater 3
◦C 0–100 41

4 G4 Position of the injection valve of attemperator 4 % 0–100 60.1

4/TC3.1 PV4.1
Steam temperature at the outlet from the

attemperator 4
◦C 455–505 479

4/TC3.1 SP4.1
Set point of the steam temperature at the outlet from

the attemperator 4
◦C - 479

4/TC3.1 CV4.1
Control signal of temperature controller at the outlet of

the attemperator 4 % 0–100 60.1

4/TC3.2 PV4.2 Steam temperature at the outlet of superheater 4 ◦C 515–565 540

4/TC3.2 SP4.2
Set point of the steam temperature at the outlet of

superheater 4
◦C - 540

4/TC3.2 CV4.2
Control signal of temperature controller at the outlet of

the superheater 4
◦C 0–100 52.69

According to the place of introduction (Figure 2), cybernetic faults have been divided
into the following types (marked with a superficial upper index):

• PV.P—PV modification at the process output (visible to the operator and controller),
• PV.C—PV modification at the controller input (visible only by the controller),
• SP.C—SP modification at the controller input (invisible to the operator),
• X.P—modification of the not-controlled process variable at the process output (visible

to the operator and controller),
• CV.C—modification of CV at the controller output (visible to everyone),
• CV.P—modification of CV at the actuator input (visible only by the actuator),
• CV.UI—modification of CV at the monitoring system input (visible to the operator),
• C.x—modification (detailed described by x) of the controller’s operation,
• A.x—modification (detailed described by x) of the operation of the actuator.

The lower index indicates the control loop or specific component affected by the attack.
In order to test different cyber-attack scenarios, the simulator includes the possibility of
simulating cybernetic faults presented in Notations. The symbolic place of introducing the
cybernetic faults performed during selected cyber-attacks is shown in Figure 5.

The number of possible attack scenarios is practically unlimited. The use of different
scenarios was considered in terms of the conducted research. They were divided into
groups depending on the attack component or group of signals. The particular groups can
be characterised as follows:

1. attack on the controller (change in operating mode, change in parameters),
2. modification in set points,
3. modification in control variables,
4. modification in controlled variables,
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5. attack on the actuator (blockage, modification in operation, changes in operating
parameters).

Figure 5. Places of influence on the process during the implementation of cyber-attacks (by the type
of cybernetic fault).

Originally, we evaluated 27 cyber-attack scenarios of 12 types with different detailed
parameters. However, we have decided to discuss, in this paper, only a subset of scenarios
strictly related to controllers and most interesting to investigate. The particular cyber-attack
scenarios selected for detailed research are presented in Table 4.

Table 4. The set of cyber-attack scenarios (CAS). Each attack starts at tCA
0 = 43, 200 (s).

Type Loop CAS Description Used Cybernetic Faults

1 4.2 CON−1
A.1

Change in the operation mode (to “manual”) of the main
controller 4.2 and setting a constant value of CV

(CV4.2 = 100%)
c f C.M

4.2 , c f CV.C
4.2

1 3.2, 4.2 CON−1
B.1

Change in the operation mode (to “manual”) of the main
controllers 3.2 and 4.2 to “manual” and setting a constant

values of CVs (CV3.2 = 100%, CV4.2 = 0%)
c f C.M

3.2 , c f CV.C
3.2 , c f C.M

4.2 , c f CV.C
4.2

1 3.2 CON−2
A.1

Change in the operation mode of the main controller 3.2 to
“reverse”—positive feedback c f C.R

3.2

1 3.1, 3.2 CON−3
A.1

Change in the settings of the main 3.2 (k3.2
p = 5k3.2

p ,
T3.2

i = 0.2T3.2
i ) and auxiliary 3.1 (k3.1

p = 5k3.1
p , T3.1

i = 0.2T3.1
i )

controllers to more aggressive
c f C.S

3.1 , c f C.S
3.2

1 3.1, 3.2 CON−3
B.1

Change in the settings (kp, Ti) of the main 3.2 (k3.2
p = 0.2k3.2

p ,
T3.2

i = 5T3.2
i ) and auxiliary 3.1 (k3.1

p = 0.2k3.1
p , T3.1

i = 5T3.1
i )

controllers to more passive
c f C.S

3.1 , c f C.S
3.2

2 3.2, 4.2 SP−1
A.1

Setting a constant value of setpoint for main controllers 3.2
(SP3.2(k) = SP3.2(tCA

0 )) and 4.2 (SP4.2(k) = SP4.2(tCA
0 )) c f SP.C

3.2 , c f SP.C
4.2

3 3.1, 4.1 CV−1
A.1

Providing the value of the control signal from auxiliary
controllers 3.1 and 4.1 to the process from the looped history

(length of the history window: 6 (h))
c f CV.P

3.1 , c f CV.P
4.1

4 3.1, 3.2, 4.1, 4.2 PV−1
A.1

Modification of the controlled process values PV for main
and auxiliary controllers of stages 3 (PV3.1 = PV3.1 − 5(◦C),

PV3.2 = PV3.2 − 5(◦C)) and 4 (PV4.1 = PV4.1 − 10(◦C),
PV4.2 = PV4.2 − 10(◦C))

c f PV.C
3.1 , c f PV.C

3.2 , c f PV.C
4.1 , c f PV.C

4.2

5 3.1 ACT−1
A.1

Taking control of the operation of the stage 3 actuator—lock
in fixed position (G3 = 10[%]) c f A.O

V3

5 3.1, 4.1 ACT−2
A.1

Reducing the degree of opening of the actuators of stages 3
(G3 = G3 − 20[%]) and 4 (G3 = G3 + 20[%]) c f A.O

V3
, c f A.O

V4
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A specific variability of input signals, B, F2, and T2.1, symbolising disturbance, was
assumed to generate learning and testing data. The value of each signal is the sum of
four sinusoidal signals (with different parameters) and two random signals (with normal
distribution but different gains), which are additionally processed by an inertial element to
eliminate violent, physically unrealisable changes. The variability of individual signals is
turned on or off at specified intervals every 6 h. Work scenarios for (a) constant SP values
and (b) variable SP values according to a given scenario were also considered.

The dataset containing signals for all the considered scenarios and normal process
operation is available at https://doi.org/10.5281/zenodo.7612269.

Binary Diagnostic Matrix for Considered Scenarios

Based on the knowledge of the nature of the scenarios, an initial version of the binary
diagnostic matrix presented in Table 5 was developed. It can be observed that some of the
columns of the diagnostic matrix are the same, which means that the proposed diagnostic
signals cannot isolate the given scenarios. Thus, to simplify, a reduced version of the binary
diagnostic matrix was prepared, where the indistinguishable scenarios were combined.
The reduced binary diagnostic matrix is presented in Table 6.

The linear model (and thus the controller parameter estimation) only works if the
controller is not saturated, hence the blanks in the table for the CON-1 scenario.

The columns of the reduced binary diagnostic matrix (Table 6) can be interpreted as
follows: cyber-attack CON-12 denotes an attack directed at the controller of a drastic nature
(switching to manual mode, changing from normal to reverse). In this case, we observe a
residuum of the controller model (rA) as well as a deterioration in the quality of system
operation (high control error).

Table 5. Initial binary diagnostic matrix.

CON-1 CON-2 CON-3 SP CV ACT PV Normal

rA 1 1 1 1 0 0 1 0
|k̂p|A 1 1 1 0 0 1 0
|T̂i|A 0 1 1 0 0 1 0
|CVvar|A 1 1 0 0 1 1 0 0

eA 1 1 0 1 1 1 1 0
satA 1 1 0 0 1 1 0 0

parA
var 0 0 1 0 0 1 0

Table 6. Reduced binary diagnostic matrix.

CON-12 CON-3 PVSP ACTCV Normal

rA 1 1 1 0 0
|k̂p|A 1 1 1 0 0
|T̂i|A 0 1 1 0 0
|CVvar|A 1 0 0 1 0

eA 1 0 1 1 0
satA 1 0 0 1 0

parA
var 0 0 1 0 0

The CON-3 scenario denotes changes in the controller (e.g., a change in the settings)
but of a nature that does not entirely prevent the system’s operation. We observe an error
in the controller model and changes in the settings estimation, but the control quality does
not deteriorate drastically. In the case of a PID controller, more accurate information about
changes can be obtained from the values of the estimated settings.

PVSP scenarios imply falsification of the values fed to the controller (PV or SP, respec-
tively). In this case, we receive alarms about the regulator’s model error and the change in
the settings estimate. However, in contrast to the CON-3 scenario, the settings estimates are

https://doi.org/10.5281/zenodo.7612269
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inconsistent and have a high variance. The control error increases, but we do not observe a
change in the character of the controller output (saturation or variance change) because the
controller is operating correctly but on different values, than are recorded by the operator.

ACTCV scenarios represent attacks directed at the actuator or falsification of the CV
value fed to the process, respectively. From the point of view of the controller models
and control quality indicators, this is visible as a process change. The controller works
correctly (the models show no deviation), but the regulation quality deteriorates (the control
error increases), and the controller can enter a saturation zone. Note that changes in the
process or actuator that the controller can compensate for will not be detectable, as will be
demonstrated in the example scenario ACT−2

A.1 .

5. Results

This section will discuss the results obtained for the test scenarios.
Table 7 shows the results obtained without cyber-attacks. The attack starts in the

middle of a given data file in each scenario. The data before the attacks were used to
evaluate the performance in the normal state. Table 7 shows the results averaged over all
scenarios. The columns show the subsequent control circuits. The rows show the averaged
values of the alarm signals. The row %correct indicates the percentage of correct diagnoses
(in this case, the correct diagnosis is always normal). The row %FPR presents the false
positive alarm rate, which equals 1−%correct. We can see that the percentage of false
alarms is low for individual diagnostic signals and resultant diagnoses, and the system
works correctly in cases without cyber-attacks.

Table 7. The values of diagnostic signals during normal operation (each column shows one con-
trol loop).

3.1 3.2 4.1 4.2
rA 0.02 0.00 0.01 0.00
|kp|A 0.00 0.02 0.00 0.01
|Ti|A 0.01 0.02 0.00 0.03
|CVvar|A 0.00 0.00 0.00 0.00

eA 0.00 0.00 0.00 0.00
satA 0.04 0.00 0.00 0.00
pA

var 0.02 0.01 0.00 0.03
%correct 99.58 99.32 99.90 99.29
%FPR 0.42 0.68 0.10 0.71

The actual (kp and Ti) and estimated (k̂p and T̂i) values of the controller settings are
shown in Table 8. The columns show the subsequent scenarios. Note that some of the
scenarios involve changing the settings. The estimates of the settings are close to the actual
values and provide valuable diagnostic information in the case of attacks. The errors of the
estimates are significant only for scenarios SP−1

A.1 and PV−1
A.1 , where spurious signal values are

fed into the controller. We can detect this situation based on the variance in the parameter
estimate pA

var.
The performance results during the attacks are presented by the control loop in

Tables 9–12. The columns show the subsequent scenarios. Note that each attack can affect
from one to all control loops. The names of the scenarios in which a particular loop is
affected have been bolded. When an attack does not affect a loop, the correct diagnosis
is normal. The rows show the average values of the diagnostic signals during the attack.
%correct denotes the percentage of correct diagnoses, detection denotes the percentage
of attack detections (diagnoses other than normal), and diagnosis is the most frequent
diagnosis. The tables are divided by a vertical line into a controller-directed attack part
(left part) and a process-directed attack part (right part). The left-hand part demonstrates
the proposed approach’s effectiveness in detecting and localising controller cyber-attacks.
The right-hand section presents tests for process-directed attacks. The purpose of this part
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is to test the applicability and deficits of the proposed approach and to provide directions
for further work.

Table 8. Settings estimation.

CON−1
A.1

CON−1
B.1

CON−2
A.1

CON−3
A.1

CON−3
B.1

SP−1
A.1

CV−1
A.1

ACT−1
A.1

ACT−2
A.1

PV−1
A.1 Normal

3.1 kp −4 −4 −4 −20 −1 −4 −4 −4 −4 −4 −4
k̂p −3.68 −3.71 −3.65 −13.02 −0.91 −3.64 −3.76 −3.98 −3.65 −4.51 −3.68
Ti 190 190 190 190 190 38 190 190 190 190 190
T̂i 177.31 178.28 173.30 39.34 993.61 175.06 176.51 192.97 172.98 312.39 177.01

3.2 kp 6 − −6 30 1.2 6 6 6 6 6 6
k̂p 5.89 5.52 −5.56 32.01 1.36 6.53 5.81 5.86 5.87 7.91 5.87
Ti 190 − 190 38 950 190 190 190 190 190 190
T̂i 188.13 180.56 184.30 50.41 718.89 225.20 180.90 183.99 186.93 6581.89 187.20

4.1 kp −5 −5 −5 −5 −5 −5 −5 −5 −5 −5 −5
k̂p −4.35 −5.02 −4.32 −4.51 −4.45 −4.41 −4.82 −4.58 −4.49 −5.28 −4.41
Ti 170 170 170 170 170 170 170 170 170 170 170
T̂i 148.97 181.00 148.67 160.45 152.14 151.58 163.05 150.76 154.25 −42996 151.83

4.2 kp 5 5 5 5 5 5 5 5 5 5 5
k̂p 4.74 4.65 4.82 4.76 4.89 4.89 4.83 4.93 4.89 5.37 4.81
Ti 90 90 90 90 90 90 90 90 90 90 90
T̂i 88.42 79.29 87.15 86.80 88.61 99.92 86.07 88.89 88.82 8995.09 87.25

Table 9. The values of diagnostic signals in loop 3.1 during attacks. Bolded column names indicate
scenarios affecting this loop.

CON−1
A.1

CON−1
B.1

CON−2
A.1

CON−3
A.1

CON−3
B.1

SP−1
A.1

CV−1
A.1

ACT−1
A.1

ACT−2
A.1

PV−1
A.1

rA 0.08 0.15 0.06 1.00 0.88 0.03 0.54 0.06 0.07 1.00
|kp|A 0.00 0.00 0.04 0.99 0.99 0.02 0.00 0.00 0.00 0.65
|Ti|A 0.04 0.10 0.13 0.99 0.99 0.04 0.14 0.00 0.10 0.74
|CVvar|A 0.00 0.00 0.00 0.65 0.00 0.00 0.17 0.74 0.00 0.00

eA 0.08 0.00 0.04 0.01 0.18 0.03 0.61 0.99 0.09 0.46
satA 0.07 0.17 0.11 0.19 0.00 0.04 0.78 0.93 0.23 0.26
pA

var 0.03 0.18 0.17 0.54 0.83 0.04 0.20 0.00 0.18 0.97
%correct 92.49 88.66 93.84 94.69 88.16 97.79 19.25 90.43 2.78 42.84
%detection 7.51 11.34 6.16 99.34 99.31 2.21 71.40 96.01 8.13 93.89
diagnosis normal normal normal CON-3 CON-3 normal CON-12 ACTCV normal CON-3

Table 10. The values of diagnostic signals in loop 3.2 during attacks. Bolded column names indicate
scenarios affecting this loop.

CON−1
A.1

CON−1
B.1

CON−2
A.1

CON−3
A.1

CON−3
B.1

SP−1
A.1

CV−1
A.1

ACT−1
A.1

ACT−2
A.1

PV−1
A.1

rA 0.08 0.99 0.99 0.99 0.70 0.62 0.31 0.25 0.10 1.00
|kp|A 0.00 NaN 0.85 1.00 0.99 0.20 0.12 0.00 0.03 0.80
|Ti|A 0.01 NaN 0.28 1.00 0.98 0.52 0.16 0.19 0.03 0.75
|CVvar|A 0.00 0.98 0.81 0.56 0.00 0.00 0.12 0.78 0.00 0.00

eA 0.09 0.95 0.65 0.00 0.21 0.28 0.39 0.98 0.12 0.59
satA 0.02 0.99 0.92 0.66 0.00 0.00 0.42 0.88 0.02 0.01

paramsA
var 0.00 NaN 0.48 0.25 0.73 0.46 0.23 0.22 0.02 0.99

%correct 91.52 97.92 85.88 68.97 85.23 23.03 56.10 71.43 1.54 58.53
%detection 8.48 98.95 99.31 99.03 98.15 57.89 43.90 96.76 11.11 99.25
diagnosis normal CON-12 CON-12 CON-3 CON-3 normal normal ACTCV normal PVSP
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Table 11. The values of diagnostic signals in loop 4.1 during attacks. Bolded column names indicate
scenarios affecting this loop.

CON−1
A.1

CON−1
B.1

CON−2
A.1

CON−3
A.1

CON−3
B.1

SP−1
A.1

CV−1
A.1

ACT−1
A.1

ACT−2
A.1

PV−1
A.1

rA 0.00 1.00 0.11 0.00 0.19 0.02 0.92 0.89 0.12 1.00
|kp|A 0.02 0.15 0.01 0.00 0.01 0.00 0.67 0.12 0.00 0.70
|Ti|A 0.02 0.15 0.01 0.00 0.02 0.01 0.23 0.12 0.00 0.72
|CVvar|A 0.00 0.85 0.09 0.00 0.00 0.00 0.33 0.72 0.00 0.01

eA 0.00 0.93 0.17 0.00 0.19 0.03 0.97 0.98 0.16 0.99
satA 0.02 0.98 0.20 0.00 0.15 0.01 0.92 0.91 0.04 0.29

paramsA
var 0.06 0.00 0.02 0.00 0.02 0.00 0.15 0.31 0.01 1.00

%correct 97.69 0.69 82.94 100.00 83.50 98.33 7.17 3.06 1.12 77.14
%detection 2.31 99.31 17.06 0.00 16.50 1.67 98.60 96.94 7.58 99.69
diagnosis normal CON-12 normal normal normal normal CON-12 CON-12 normal PVSP

Table 12. The values of diagnostic signals in loop 4.2 during attacks. Bolded column names indicate
scenarios affecting this loop.

CON−1
A.1

CON−1
B.1

CON−2
A.1

CON−3
A.1

CON−3
B.1

SP−1
A.1

CV−1
A.1

ACT−1
A.1

ACT−2
A.1

PV−1
A.1

rA 1.00 0.74 0.06 0.00 0.11 0.39 0.68 0.19 0.08 1.00
|kp|A 0.00 0.00 0.00 0.00 0.00 0.16 0.03 0.04 0.00 0.89
|Ti|A 0.00 0.00 0.02 0.00 0.00 0.28 0.12 0.09 0.00 0.67
|CVvar|A 0.98 0.98 0.03 0.00 0.01 0.00 0.27 0.55 0.00 0.00

eA 0.99 0.31 0.08 0.00 0.12 0.26 0.82 0.88 0.10 0.99
satA 0.99 0.99 0.16 0.00 0.16 0.00 0.88 0.93 0.12 0.19

paramsA
var 0.00 0.00 0.03 0.03 0.03 0.32 0.26 0.14 0.04 1.00

%correct 98.61 73.00 89.32 100.00 87.92 22.38 13.96 9.67 1.59 87.29
%detection 99.52 99.09 10.68 0.00 12.08 36.53 86.04 90.33 7.55 99.88
diagnosis CON-12 CON-12 normal normal normal normal CON-12 ACTCV normal PVSP

For the scenarios considered, the fault isolation process involves two issues. One is
to decide which control circuit is affected by the attack and what attack it is. It should be
noted that an attack on one of the control circuits can change the operating conditions of
the entire process, so it significantly increases the risk of false alarms in the other loops.
However, it is most important to identify the loop that needs to be addressed first.

The results of the cyber-attack isolation are shown in Tables 13 and 14. Table 15
indicates which attacks affect which loop. This provides a template for the correct locations
regarding control loop selection. Table 13 shows the results obtained regarding control loop
isolation. A value of 1 indicates that the diagnosis differed from the normal state in the
respective loop over 50% of the time. Incorrect values are marked in red. We can observe
that scenario ACT−2

A.1 was not detected in any control loop—the case of this scenario will
be analysed in detail in the plots. All other scenarios were detected. For the controller
scenarios, the isolation in terms of the control circuit is precise (one false alarm for loop 4.1).
False alarms for the scenarios CV−1

A.1 and ACT−1
A.1 appear on the left-hand side of the table.

These are due to the significant impact of the deterioration in the main circuit on the
auxiliary circuit (CV−1

A.1 ) and the impact of the deterioration in stage 3 on the operation of
stage 4 (ACT−1

A.1 ).

Table 13. Attack detection results for each loop. Red color indicates incorrect values.

CON−1
A.1

CON−1
B.1

CON−2
A.1

CON−3
A.1

CON−3
B.1

SP−1
A.1

CV−1
A.1

ACT−1
A.1

ACT−2
A.1

PV−1
A.1

3.1 0 0 0 1 1 0 1 1 0 1
3.2 0 1 1 1 1 1 0 1 0 1
4.1 0 1 0 0 0 0 1 1 0 1
4.2 1 1 0 0 0 1 1 1 1 0 1

1 Taking into account the time containing the SP changes.
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The results of the isolation in terms of the scenario are shown in Table 14. Again,
attacks targeting the controller operation were correctly identified (one false alarm for
loop 4.1). Scenario SP−1

A.1 involves substituting the value of SP for a fixed value and can
only be correctly detected and recognised when the actual value of SP differs from the
provided fixed value. This is explained in more detail in the graphs in (Figures 6 and 7).
The two attacked loops indicate the correct diagnosis for scenario ACT−1

A.1 . Scenario CV−1
A.1

was correctly detected but is mistaken for a CON-12 diagnosis.

Table 14. Most common diagnosis for each loop and each scenario. Red color indicates incorrect
values.

CON−1
A.1

CON−1
B.1

CON−2
A.1

CON−3
A.1

CON−3
B.1

SP−1
A.1

CV−1
A.1

ACT−1
A.1

ACT−2
A.1

PV−1
A.1

3.1 normal normal normal CON-3 CON-3 normal CON-12 ACTCV normal CON-3
3.2 normal CON-12 CON-12 CON-3 CON-3 normal normal ACTCV normal PVSP
4.1 normal CON-12 normal normal normal normal CON-12 CON-12 normal PVSP
4.2 CON-12 CON-12 normal normal normal PVSP 1 CON-12 ACTCV normal PVSP

1 Taking into account the time containing the SP changes.

Table 15. Affected loops in each scenario.

CON−1
A.1

CON−1
B.1

CON−2
A.1

CON−3
A.1

CON−3
B.1

SP−1
A.1

CV−1
A.1

ACT−1
A.1

ACT−2
A.1

PV−1
A.1

3.1 0 0 0 1 1 0 1 1 1 1
3.2 0 1 1 1 1 1 0 1 1 1
4.1 0 0 0 0 0 0 1 0 1 1
4.2 1 1 0 0 0 1 0 0 1 1

Figure 6. Scenario SP−1
A.1 , loop 4.2, values of PV, SP, e, and CV. The lowest plot shows the presence of

the correct diagnosis SPPV. Red vertical line indicates the beginning of cyber-attack.
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Figure 7. Scenario SP−1
A.1 , loop 4.2, values of normalised signals (left), and binarised diagnostic signals

(right). Red vertical line indicates the beginning of cyber-attack.

Figures 8–10 show the runs for scenario CON−3
B.1 and control loop 3.1. This scenario

involves changing the controller settings to less aggressive. Figure 8 shows PV, SP, e,
and CV, respectively. The red vertical line indicates the moment of attack. Figure 9 shows
the estimated and actual parameter values. We can see that the estimates are close to
the actual values. The values of the diagnostic signals are shown in Figure 10. These
signals behave as predicted—we observe alarms for the model error and the controller
parameter estimates. Intermittent alarms indicate an increase in the control deviation,
which is consistent with the actual state.
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Figure 8. Scenario CON−3
B.1 , loop 3.1, values of PV, SP, e, and CV. Red vertical line indicates the

beginning of cyber-attack.

Figure 9. Scenario CON−3
B.1 , loop 3.1, and controller settings estimates (blue—estimates, green—actual

values).

Figures 6 and 7 show the runs for scenario SP−1
A.1 and control loop 4.2. Figure 6 shows

the values of the variables and, in the lower plot, the presence of the correct diagnosis
SPPV. This scenario consists of substituting the SP value fed to the controller. Symptoms
of this attack can only be observed when the actual SP value deviates from the falsified
one, which is observed from about 260,000 s. The same dependence can be observed for
the diagnostic signals (Figure 7).
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Figure 10. Scenario CON−3
B.1 , loop 3.1, values of normalised signals (left), and binarised diagnostic

signals (right). Red vertical line indicates the beginning of cyber-attack.

Figures 11 and 12 show the values of the process and alarm signals, respectively,
for scenario ACT−2

A.1 and loop 3.1. In this scenario, the control valve is attacked (its closure
ratio is changed by 20 %). We can observe, in Figure 11, that this causes a change in
the average value of CV. However, the control system can compensate for the attack,
and we do not observe a deterioration in the quality of the control. This can also be seen
in the diagnostic signals (Figure 12)—only a slight increase in the saturation index satA is
visible. Since the controller is working correctly and there is no evident deterioration of the
control quality, this scenario is impossible to detect in the proposed solution. In the authors’
opinion, this problem should be solved by introducing process models into the system in
further development.
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Figure 11. Scenario ACT−2
A.1 , loop 3.1, values of PV, SP, e, and CV. Red vertical line indicates the

beginning of cyber-attack.

Figure 12. Scenario ACT−2
A.1 , loop 3.1, values of normalised signals (left), and binarised diagnostic

signals (right). Red vertical line indicates the beginning of cyber-attack.
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Sensitivity Analysis

As part of the sensitivity analysis, the robustness of the proposed method to process
changes and changes in the nature of cyber-faults was tested. For this purpose, a baseline
scenario CON−3

A.1 containing two cyber-faults, c f C.S
3.1 and c f C.S

3.2 , involving a change in con-
troller settings to a more aggressive one was modified. Modifications of 25%, 50%, and
150% of the baseline change were applied. The specific values of the controller settings are
given in Table 16. The effect of varying the amplitude of the disturbance was also tested.
The disturbance was taking 50% and 150% of the baseline value (50%dist and 150%dist
scenarios, respectively).

Table 16. Settings estimation for scenario CON−3
A.1 under different disturbances and cyber-fault sizes.

25%c f C.S 50%c f C.S 150%c f C.S 50%dist 150%dist
3.1 kp −5 −10 −30 −20 −20

k̂p −4.66 −8.01 −19.93 −12.88 −13.13
Ti 152 76 25 38 38
T̂i 144.81 66.59 39.19 34.66 36.44

3.2 kp 7.5 15 45 30 30
k̂p 7.24 15.05 48.79 31.20 31.27
Ti 152 76 25 38 38
T̂i 147.46 81.54 41.18 45.28 50.23

4.1 kp −5 −5 −5 −5 −5
k̂p −4.54 −4.50 −4.52 −4.54 −4.51
Ti 170 170 170 170 170
T̂i 155.51 159.82 160.03 163.00 158.09

4.2 kp 5 5 5 5 5
k̂p 4.91 4.88 4.71 4.66 4.83
Ti 90 90 90 90 90
T̂i 89.12 89.32 85.44 85.01 87.75

No modifications were made to the method or parameters. The same neural networks
and linear models were used in the tests as in the earlier experiments. The models were
trained with a baseline level of noise. The data normalisation factors and alarm thresholds
were not changed.

The results are presented in Table 17. For each scenario, the percentage of detection,
%detection, and percentage of correct diagnoses, %correct, are shown. The results are shown
for each loop. In this scenario, loops 3.1 and 3.2 are attacked, and these column names
have been bolded. We can see that the isolation within the control loop continues to be
very precise. Missed detections can be observed for small settings changes (25%). For sig-
nificant disturbances, few false alarms appear for the 4.1 and 4.2 loops. For substantial
settings changes (150%), the cyber-attack type isolation starts to indicate the CON − 12 sce-
nario. This scenario means drastic changes in the controller preventing effective regulation,
and this classification for significant settings changes can be considered correct.

The results of estimating the controller settings under different conditions are shown in
Table 16. The settings are estimated correctly with an accuracy close to the baseline scenarios.

From the tests, it can be concluded that the proposed method has some robustness.
Of course, detecting small changes in the presence of significant disturbances will be
difficult. Further, a change in the system’s operating conditions (change in the nature of the
inputs, severity of the disturbances) may lead to the need for retraining the models and
re-tuning the normalisation factors and alarm limits. Both of these processes can be carried
out automatically once new, representative data have been acquired.
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Table 17. Detection and isolation for scenario CON−3
A.1 under different disturbances and cyber-

fault sizes.

Scenario 3.1 3.2 4.1 4.2
25%c f C.S

3.1 , 25%c f C.S
3.2 %detection 46.49 71.31 1.74 0.69

%correct 36.38 65.39 98.26 99.31
50%c f C.S

3.1 , 50%c f C.S
3.2 %detection 99.31 99.31 0.0 0.0

%correct 81.09 95.05 100.0 100.0
150%c f C.S

3.1 , 150%c f C.S
3.2 %detection 99.45 98.40 0.0 0.0

%correct 36.00 42.33 100.0 100.0
50%dist %detection 99.35 99.49 0.0 6.24

%correct 76.38 63.29 100.0 93.76
150%dist %detection 99.38 98.37 0.0 4.64

%correct 47.63 68.38 100.0 95.36

6. Discussion

This work presents controller modelling and control loop performance indicators as
tools for detecting and isolating cyber-attacks. Controller models allow the detection of
changes in controller performance and settings (in the case of PID controllers). Control
quality indicators allow an overall assessment of the performance of control circuits and
the detection of deterioration in control quality.

The selection of suitable control quality indices and the preprocessing and combining
of signals to obtain a set of interpretable indices are presented.

The operation of the concept was tested on a superheater system. The system’s
overall performance should be considered a valuable indication for the process operator.
In regular operation, the percentage of false alarms is low at 0.48%. All attacks except
ACT−2
A.1 were detected (the issue of not being able to detect attack ACT−2

A.1 is further detailed
in Figures 11 and 12).

The system performs very well in attacks directly targeting the controller’s operation.
All attacks were correctly detected. The detection percentage in the attacked loops is 99.09%
(attacks relating to a given loop are indicated in bold in Tables 9–12). The isolation of the
control loop is accurate (one false alarm for loop 4.1 in scenario CON−1

B.1 ). The isolation in
terms of scenarios is also accurate (the same false alarm for loop 4.1 in scenario CON−1

B.1 ),
and interpretable diagnostic signals allow the nature of the attack (such as the nature of the
setting change) to be identified more accurately. The system’s overall accuracy (percentage
of correct diagnoses) is 85.05%.

In terms of other attacks, the system provides valuable indications of system changes—all
attacks except ACT−2

A.1 have been detected. The attacked circuits are mainly indicated as
the source of the problem (84.99% percentage of detection for an attack except for ACT−2

A.1 ).
However, the change in operating conditions also increases the occurrence of alarms in the
remaining control loops, even if they are not directly affected by the attack. Scenario ACT−2

A.1
shows that process models are needed to detect attacks that the controller action can mask.

It should be noted that indicators calculated in a sliding window (such as PID controller
parameter estimates) inevitably introduce fault detection and isolation delays. Using
process models is a way to obtain indicators that react faster to anomalies.

7. Conclusions

In advanced diagnostics of industrial control systems (ICS) performed automatically,
faults and cyber-attacks should be detected and isolated. Compared to the classic FDI
approach, the area of diagnostic activities is, therefore, extended and should include
not only process apparatus, measurements, and actuators but also units implementing
control algorithms. Controller models and control loop performance indicators can be used
effectively to detect cyber-attacks and faults that manifest in changes to control systems’
operation. The isolation of controller faults and cyber-attacks can be performed using
inference methods based on the binary diagnostic matrix. The case study showed that
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correct identification of malfunctioning control loops and introduced cyber-attack scenarios
could be achieved. Experimental verification should be carried out on a process simulator
allowing the introduction of both faults and cyber-attacks.

It is planned to test additional scenarios in this way. The conduct of industrial tests
is much more problematic due to limitations on the possibility of introducing faults and
cyber-attacks. In addition, consent for such experiments will not be given by company
management due to the risks of such research. In this situation, industrial verification can
take place after thorough simulation verification during a pilot implementation on a real
installation.

The direction of further work is to develop an integrated approach for fault and cyber-
attack detection and isolation in ICS, which should additionally include detection based on
process and actuator models and the isolation of cyber-attacks and faults based not only on
binary residual evaluation but also on trivalent evaluation.
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Abbreviations
The following abbreviations are used in this manuscript:

PV Process Variable
SP Set Point
CV Control Signal
ICS Industrial Control Systems
IDS Intrusion Detection Systems
CPS Cyber-Physical Systems
FDI Fault Detection and Isolation
IAE Integral Absolute Error
MW Moving Window
EWMA Exponentially Weighted Moving Average
RW Rolling Window

Notations
List of simulated cybernetic faults.

c f C.M
3.2 , c f C.M

4.2 Changing the operating mode (to “manual”) of the indicated control loop

c f CV.C
3.2 , c f CV.C

4.2 Modification (type C) of the control value CV of the indicated loop

c f C.R
3.1 , c f C.R

3.2 Changing the operating mode (to “reverse”) of the indicated control loop

c f C.S
3.1 , c f C.S

3.2 Changing the settings (kp, Ti) of the indicated control loop

c f SP.C
3.2 , c f SP.C

4.2 Modification (type C) of the setpoint SP of the indicated loop

c f CV.P
3.1 , c f CV.P

4.1 Modification (type P) of the control value CV of the indicated loop
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c f PV.C
3.1 , c f PV.C

3.2 ,
Modification (type C) of the process value PV of the indicated loop

c f PV.C
4.1 , c f PV.C

4.2

c f PV.P
3.1 , c f PV.P

3.2 ,
Modification (type P) of the process value PV of the indicated loop

c f PV.P
4.1 , c f PV.P

4.2

c f A.O
V3

, c f A.O
V4

Taking control of the operation of the indicated actuator

c f A.S
V4

Changing the operating parameters (dead band) of the indicated actuator
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38. Syfert, M.; Ordys, A.; Kościelny, J.M.; Wnuk, P.; Możaryn, J.; Kukiełka, K. Integrated Approach to Diagnostics of Failures and
Cyber-Attacks in Industrial Control Systems. Energies 2022, 15, 6212. [CrossRef]
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R., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 441–448.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACC.1999.786240
http://dx.doi.org/10.1016/0967-0661(95)00164-P
http://dx.doi.org/10.1016/S0959-1524(02)00007-0

	Introduction
	Detection of Cyber-Attack on Control System
	Methods
	Loop Performance Indicators
	Controller Modelling
	Preprocessing
	Isolation Method

	Case Study
	Results
	Discussion
	Conclusions
	References

