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Abstract: Stable grasps are essential for robots handling objects. This is especially true for “robotized”
large industrial machines as heavy and bulky objects that are unintentionally dropped by the machine
can lead to substantial damages and pose a significant safety risk. Consequently, adding a proximity
and tactile sensing to such large industrial machinery can help to mitigate this problem. In this paper,
we present a sensing system for proximity/tactile sensing in gripper claws of a forestry crane. In
order to avoid difficulties with respect to the installation of cables (in particular in retrofitting of
existing machinery), the sensors are truly wireless and can be powered using energy harvesting,
leading to autarkic, i.e., self-contained, sensors. The sensing elements are connected to a measurement
system which transmits the measurement data to the crane automation computer via Bluetooth low
energy (BLE) compliant to IEEE 1451.0 (TEDs) specification for eased logical system integration. We
demonstrate that the sensor system can be fully integrated in the grasper and that it can withstand the
challenging environmental conditions. We present experimental evaluation of detection in various
grasping scenarios such as grasping at an angle, corner grasping, improper closure of the gripper and
proper grasp for logs of three different sizes. Results indicate the ability to detect and differentiate
between good and poor grasping configurations.

Keywords: grasp detection; capacitive sensing; IEEE 1451.0; forestry gripper

1. Introduction

The new industrial revolution (Industry 4.0) is characterized by automation of tradi-
tional industrial processes, using modern technologies and communication networks. This
is enabled by the use of smart sensors, edge computing, Artificial Intelligence (AI), and
approaches for energy conservation and harvesting; leading to improved automation, self
monitoring, failure prevention, and safer human–machine interaction [1,2].

Industrial robots are designed to automatically execute dangerous, exhausting and
monotonous tasks and their successful automation mainly relies on the integration of
advanced control and smart sensor systems. Sensors are responsible for providing the per-
ception capabilities that robotic systems need to accomplish their tasks in an autonomous
way, enabling a safe human–robot cooperation in the work environment. Visual, prox-
imity and force sensors are commonly used in industrial robotics and especially in high
throughput agroforestry applications [3–6]. Vision-based sensing combined with advanced
control algorithms have been widely used in mobile applications for localization, mapping,
obstacle avoidance, object recognition and manipulation [7,8]. Nevertheless, vision alone is
a limited capability when the line of sight is obstructed or the illumination is inadequate,
especially in mobile robotic systems with unforeseen surrounding conditions [9]. In par-
ticular, the grasping problem requires tactile sensing in addition to vision, as well as the
integration of different sensing capabilities, as proposed in [10]. Visual–tactile information
has been fused to achieve a stable grasping by improving the grasp prediction [11] and slip
detection [12] methods using AI.
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Previous research activities have focused on giving robots a human sense of touch,
which is why they are usually equipped with tactile sensors [13,14] that provide robotic de-
vices with learning and manipulation capabilities through highly sensitive fingers [15,16] or
electronic skin [17,18]. As stated in [19], tactile intelligence is the future of robotic grasping
and capacitive sensors have shown great advantages in this context, since they can be em-
ployed for both proximity and touch perception [20]. In [21], a multimodal capacitive sensor
for typical manipulation tasks is presented. Static and dynamic sensing are integrated in
the same layer of the capacitive sensor, which enhances sensitivity through direct written
microstructured dielectric. A vision-based optical tactile sensor that measures geometry
with high spatial resolution is addressed in [22], while an optoelectronics based tactile
sensor capable of measuring force and torsional moment is presented in [23]. The classical
robotic gripper with parallel fingers has been studied in [21–23]. However, the structural
design requirements of a forestry crane gripper does not allow the direct application of the
mentioned tactile sensing solutions. Logs are heavy objects and require curved grasping
end-effectors to support the heavy weight. Moreover, the end-effector sensing capabilities
of robotic arm grippers are improved with capacitive proximity sensors for contactless
material detection and contour following assignments in [24] and [25], respectively. The
capacitive sensing principle has also emerged as a promising technology for safety oriented
applications. To guarantee a reliable Human Robot Interaction (HRI) in a safe working
place, a Time-of-Flight (ToF) and self-capacitance sensors for human cooperative robots are
combined in [26], while a capacitive skin is used for obstacle avoidance in [27].

1.1. Motivation and Related Work

Forestry cranes used for log manipulation present several challenges to automation as
they are typically operated in uncontrolled outdoor environment. The constantly changing
lighting conditions due to time of the day; change in weather conditions such as rain and
snow; texture of the environment; and variation in the texture, size and shape of logs leads
to difficulty in the use of camera based sensors. The presence of nearby unfelled trees,
loading trucks and other equipment often restrict the workspace and limit the trajectories
that the arms of the crane can take.

As a result, the use of a forestry crane still relies heavily on highly skilled human
operators for complete operation. Manual control of cranes is both mentally and physically
exhausting task, where the operator needs to spend several hours performing complex
coordination while being subjected to harmful whole body vibrations [28]. Typically, crane
operators spend about 80% of their time on controlling the crane [29] and on average are
capable of only using 20% of the maximum velocity [28].

The potential economic benefits, as well as the alleviation of the human operator’s
workload are some of the advantages that the automation of heavy-duty robots bring to
the forestry industry [30]. Complete or partial automation of the crane can improve the
efficiency and can reduce cognitive load on the human leading to easier operation and
lesser training requirements, thereby bringing cost savings.

Hydraulic manipulators, similar to the one targeted in this work, have been recently
investigated in [31–33]. In [28], the authors have equipped each joint of a commercial
forestry machine with quadrature encoders to gather real time motion data that can be used
to analyze crane motion patterns during manual control tasks driven by forestry operators.
Additionally, a trajectory planning and motion control methods for a forestry harvesting
crane have been presented in [34], where the control loop includes the data from encoders
and pressure sensors installed on the piston joints and cylinders, respectively. Automatic
log recognition approaches for forestry robots have been investigated in [35,36], both based
solely on vision.

Research in the space of forestry crane automation has primarily focused on motion
planning of the crane’s links and their positioning [37], and very little attention has been
given to the automation of the end effector (gripper).
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The system targeted in this work is a 5-Degrees-of-Freedom (DoF) hydraulically
actuated crane, shown in Figure 1. It is intended to manipulate logs in forestry sawmills,
e.g., in automatic placement of unordered (dumped) logs on conveyor belts for further
processing. The investigations leading to our results have been performed on a 1:5 scaled
version of the real crane [38], displayed in Figure 1b. The crane model is equipped with
Inertial Measurement Units (IMUs), draw wire sensors, monochrome cameras, hydraulic
pressure sensors and angular position sensors [39]. In addition, the workspace of the crane
model is captured by depth and OptiTrack cameras installed inside the protecting cage.
Nevertheless, none of those sensors is suited for being installed into the gripper, either due
to an inadequate sensing principle or the inability to withstand strong impacts.

(a) Real crane (b) Scaled crane model

Figure 1. Hydraulic forestry crane for autonomous log manipulation. (a) Real crane, picture of a
mobile forestry crane at a sawmill delivery and (b) scaled crane model, the 1:5 scaled model with
hydraulics designed to match the scale and manual control equal to the real version. The scaled crane
model has an arm length of 2.5 m and it is surrounded by a protective cage, providing a workspace
volume of approximately 20 m3.

Despite the amount of studies that have focused on the automation of industrial robots,
the advantages offered by capacitive sensors for improving grasping in forestry robots have
not been sufficiently exploited. Capacitive sensors can overcome the difficulty of including
other sensors into the end-effector claw. Preliminary results have been presented in [40]
with the design of 3D- and inkjet-printed capacitive sensors intended to be included into the
grippers of the hydraulic forestry crane under investigation. The sensors were integrated
into a gripper prototype and evaluated in an experimental setup, showing sensitivity
values in the fF order. However, the integration into the scaled crane model introduces
new challenges, as higher noise levels and rough claw motions, and consequently a higher
sensitivity is required. This is why a novel design of the sensing system is presented in this
work to fulfill the conditions imposed by the hydraulic crane model. The proposed Smart
Transducer Interface Module (STIM) not only offers a new design of the sensing elements,
with different geometry, materials and fabrication procedure compared to the solution
in [40], but also an upgraded measurement hardware, capable to establish communication
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with the crane controller computer in compliance with the Transducer Electronic Datasheet
(TED) standard.

1.2. Contribution

In this paper, we design and develop a capacitive smart transducer for crane’s gripper,
which can be used to safely automate the grasping mechanism of felled logs. The designed
sensing system is suitable for retrofitting into existing industrial cranes with minimum
modification. It consists of single ended electrodes placed on the claws of the grippers and
the capacitance of the electrodes are measured using STIM. The STIM consists Capacitance
to Digital Converter (CDC) connected to a microcontroller and energy harvesting circuit
all contained in a compact Printed Circuit Board (PCB), which can be mounted within
the gripper.

The STIM is especially designed for, but not restricted to, the gripper of the industrial
forestry robot shown in Figure 1, in which the gripper is exposed to harsh environmental
conditions, such as strong friction forces, mechanical impacts, dirt, changing climate charac-
teristics and wide temperature ranges. In addition to its endurance to a hostile environment,
capacitive sensors benefit from their simplicity, easy implementation, fast and inexpensive
manufacturing process, as well as multi-modality and low latency data processing.

The proposed smart transducer provides robust information that can support the
grasping process and improve the log processing speed. The aim is to employ tactile
sensing that complements the vision based and pressure sensors, supplying additional
information about the quality of the grasp. Our smart transducer is powered by an energy
harvesting system using solar cells and batteries and can be safely placed within a housing
cavity in gripper claws. The STIM transmits the measured sensor capacitances to the crane
controller according to IEEE 1451.0 TEDs specification via Bluetooth Low Energy (BLE).

The system is evaluated in terms of the change in capacitance experienced in different
grasping scenarios. The grasping behavior is characterized with logs of three different
sizes during several grasping experiments performed using the manual control of the
scaled crane model. The experimental results show that the STIM can be applied to a
hydraulic forestry robot, providing useful data about the quality of the grasp during the log
manipulation process. The capacitive sensing principle allows taking one step more toward
the full automation of hydraulic forestry cranes operating in tough industrial scenarios.

2. System Description

Forestry cranes are commonly used in sawmills to handle logs for further processing,
but also as truck mounted systems for portable applications. Usually, the cranes are
manually controlled by a human operator. To automate the grasping operation, accurate
feedback of the grasping process is needed by the automation controller. Optimal placement
of sensors and data acquisition electronics within the gripper can provide the necessary
information about the grasp status.

2.1. Sensing Principle

The proposed sensing mechanism consists of multiple single-ended capacitive sensors.
In the single-ended principle an excitation source is connected to the electrode (transmitter)
generating an electric field as illustrated in Figure 2. To measure single-ended capacitance,
the electrode is excited and the displacement current is measured. When an object, in
this case a log, comes close to the electrode it causes an electric field distortion, which is
proportional to the change in the displacement current and consequently a change in the
capacitance. The single-ended principle could also be seen as a virtual capacitor, which is
formed when the object comes close to the sensor, with the electrode acting as one plate and
the object acting as the other plate of the virtual capacitor. To guarantee a correct sensor
operation, active shielding is used. It helps to eliminate offset capacitance introduced by
the measurement cables.
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LOG

Electrode under Measurement

Electric

Field

Figure 2. Single ended capacitance measurement sensing principle. The capacitance between the
transmitter electrode and the environment is affected in presence of nearby materials and their
dielectric properties.

In single-ended configuration, the capacitance between the excited electrode and the
open environment or distant ground is measured, hence it is commonly used for proximity
and touch perception, needed for the target gripper. The capacitance of the electrode is
affected by the presence of nearby objects, their dielectric properties and distance from the
sensor. The sensors are also susceptible to changes in ambient environmental parameters
such as pressure, humidity, temperature, etc. (capacitance drift). However, in the proposed
application, the change in capacitance due to log position is much faster than the capacitance
drift, hence the effects of drift can be ignored and the drift can be regularly compensated
with calibration measurements.

2.2. Gripper Design and Sensor Placement

The gripper consists of two parts (claws) that rotate in opposite directions when
closing. Each claw comprises two fingers connected together by mid-plates as shown
in Figure 3. The gripper is designed in such a way that the inner claw moves within the
clearance between the fingers of the outer claw during the closing motion of the gripper.
The claws are designed with a cavity that can hold a PCB inside them for housing the
sensor electronics.
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Figure 3. Design of gripper claw and sensors’ Placement. A sensors array consists of three transmitter
electrodes (top, middle and bottom) as illustrated in the expanded view. The electrodes are placed
over an active shield layer separated by an insulating layer. The electrode/shield layers are then
fully enclosed in an insulating enclosure. The sensor arrays are placed each on both the left and right
fingers of the the outer gripper claw.

Two sensor arrays are placed each on the left and right finger of the outer claw. An
expanded view of the sensor array is shown in Figure 3. The sensor array consists of three
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single ended capacitance electrodes (top, middle and bottom). The electrodes are placed on
a layer of active shield separated by an insulation layer. The sensors and active shield layer
are fully encapsulated by insulation layers and placed firmly on the fingers as illustrated
in Figure 3. The active shield layer and the sensing electrodes are constructed using copper
strips, while the insulation layers are performed with polyvinyl chloride strips, commonly
known as isolation tape. The length of bottom and middle electrode strips are 6 cm and the
length of the top electrode is 5 cm. The arc length of the fingers in the outer claw is roughly
17 cm and during grasping, the bottom and middle electrodes are more in direct contact
with the log than the top electrodes due to the physical structure of the gripper, which is
why they are slightly longer. All electrodes had a width of 1 cm, thickness of 0.06 mm and
a separation of 2 mm is maintained between consecutive electrodes. The sensor electrodes
are connected to the measurement circuit using coaxial cables whose outer conductor are
connected to active shield. The electrodes’ capacitance on the left finger are denoted as CTL,
CML and CBL (top, middle and bottom). Similarly, for the electrodes on the right finger the
capacitances are denoted as CTR, CMR and CBR. The electrodes’ assembly, connection to
the measurement hardware and installation in the gripper have been performed manually;
therefore, they are easy to reproduce and their fabrication process is fairly low cost.

2.3. System Overview

A simplified block diagram of the complete system is shown in Figure 4. The crane
hardware includes integrated sensors, actuators and an embedded controller.

Crane

Grasp Sensing STIM

Sensors
Force,Temperature,
Angle,Position, etc,

Embedded Controller

Hydraulic Actuators

NCAP Framework

Grasp Detection
Algorithm

High Level
Crane

Controller

R
O

S
Robot Control Unit

Figure 4. High level data acquisition and processing framework. The crane consists of various sensors
for monitoring and hydraulic system for actuating the position control. It also has an embedded
controller for controlling the crane based on external from the high level controller. The designed
grasp sensing system (STIM) is mounted on the crane in a protective cavity. The STIM communicates
to the Network Capable Application Processor (NCAP) framework in the host computer via BLE; the
obtained data is then used for further processing and passed to a program using Robot Operating
System (ROS).

The algorithm for controlling the crane position and grasping (crane controller) is
implemented in PC. This high level controller can operate the crane in automatic [41] or
manual (joystick) control mode. The controller computes the required forward kinematic
parameters for the desired joint states and generates the suitable control commands for
the crane’s embedded controller. The gripper’s hydraulic system has a pressure sensor
whose output is used by the crane controller to prevent over-actuation of the gripper
hydraulics. During grasping, the high level crane controller continuously monitors the
hydraulic pressure sensor output. When the log is firmly grasped, the output of the force
sensor increases when the hydraulics are actuated. If this output exceeds a predefined
threshold, the high level crane controller ignores further commands from the control
hardware (joystick) to prevent damage to the logs.
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2.3.1. Design and Realization of STIM

The STIM for grasp sensing is placed in the cavity of the gripper finger and connected
to the sensors using shielded cables. The sensing system consists of six single-ended
capacitance electrodes placed in the claw of the crane, as detailed in Section 2.2. The
electrode capacitances are measured by AD7147 [42] CDC. The CDC is configured to
measure each electrode in a time division multiplexed manner in six stages. The CDC is
connected to a NRF52832 [43] micro-controller via I2C interface. The micro-controller and
CDC are powered by an energy harvesting system using solar panels and a battery backup.
For energy harvesting and battery management, BQ25570 [44] energy harvesting IC is used
and configured to provide 3.0 V output. Figure 5a illustrates the complete sensing system.
The entire circuit is deigned and fabricated on PCB of a suitable form factor that can fit in
the cavity of the crane’s claw, as shown in Figure 5b.

Active Shield

NRF52

AD7147

CDC

Energy

Harvesting

and

Power

Measurement

CTL

CML

CBL

CTR

CMR

CBR

I2C

Power Supply

Power Measurement Data

BLE

CREF

(a) Design of Smart Transducer Module

Battery Connector

Sensor ConnectorsSolar Cell Connectors

NRF52 Microcontroller

BLE Antenna

CDC
Energy Harvesting IC

(b) Smart Transducer Interface Module

Figure 5. Sensor data acquisition system. Design of STIM is shown in (a). The power management
harvests energy using solar panels and uses a coin cell as battery backup. NRF52 is used to configure
and acquire data from the CDC, which is then transmitted via BLE in compliance with IEEE 1451.0
specifications to the crane controller. (b) The fully assembled PCB of the STIM and highlights
the various important components related to capacitance measurement, energy harvesting and
wireless transmission.

2.3.2. Wireless Network

The NCAP framework is a program that is capable of communicating with IEEE 1451.0
compliant smart transducers [45]. The framework can communicate with the devices using
different communication interfaces such as BLE, Near-field Communication (NFC), ROS,
etc. The framework initializes the data acquisition by first reading the TEDs from the STIM
in a one-time setup process for the logical sensor integration and calibration into the system.
After optional encryption of the communication, the measurements are streamed to the
NCAP base station. During measurement, the framework continuously receives data from
the STIM and decodes the received data according to the TEDs specifications, where the
values for each sensor are checked to verify if they are within the specified bounds. The
decoded data is then published to corresponding ROS topics as required and additionally
saved to a measurement log file for future use. The system, addressed in [46], helps to
speed up the logical integration of new devices and handles the communication between
the sensor and the crane control computer. Moreover, additional software modules and
drivers are not required, reducing the risk of errors and incompatibilities.

The minimum latency of the BLE link could be configured through the connection
interval to be even higher in order to decrease the power consumption of the wireless link.
For the proposed application and considering the speeds of the gripper hydraulics, this
latency is acceptable.
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2.3.3. Grasp Detection Algorithm

To demonstrate proof of concept a simple grasp detection logic based on capacitance
threshold crossing is implemented. The goal of the grasp detection algorithm is to identify
a good grasp based on the information provided by the capacitive sensors. The output
is set to logic high when a proper firm grasp is detected, otherwise the output will be
logic low. During the initial calibration phase, the sensor parameters such as offset and
maximum value were experimentally determined. For the grasp prediction, the measured
electrode capacitance are corrected for offset and normalized. The normalized values of
each electrodes are compared to the set threshold limit to obtain grasp detection for each
electrode. For each electrode pair, the grasp is classified as good, poor or not detected. If
grasp is detected in both left and right electrodes of an electrode-pair, this is indicative of a
good grasp. Similarly, if a grasp is detected in only one of the electrodes in an electrode
pair, this is indicative of a poor grasp. In the final step, the output is computed based on
the grasp detection classification of each electrode pair. The output is logic low when all
electrode pairs classify grasp as not detected, and when poor grasp is detected by any of the
electrode pairs the output is logic low. The output is logic high otherwise. A pseudocode
for the algorithm is given in Algorithm 1.

Algorithm 1 Grasp Detection Algorithm
/* For the variables below, the following convention is used in the subscripts.

{L, R} denotes the {Left and Right} sensor arrays, respectively.
{T, M, B} denotes the electrode positions {Top, Middle and Bottom}, respectively.
The maximum, offset and threshold values are obtained experimentally during calibration. */

Inputs: CiLT , CiLM, CiLB,CiRT , CiRM, CiRB // Measured Capacitances
Parameters: CMLT , CMLM, CMLB,CMRT , CMRM, CMRB // Maximum Capacitances
Parameters: COLT , COLM, COLB,CORT , CORM, CORB // Offset Capacitances
Parameter: Threshold // Detection Threshold
/* Obtain normalized sensor values and check for threshold crossing detection. */
for x in {L, R} do

for y in {T, M, B} do
Mxy =

Cixy−COxy
CMxy

// Obtain normalized sensor values
if |Mxy| > Threshold then

Detxy = True // Threshold crossing detection
/* Check if log is detected by both left and right electrodes. */
for y in {T, M, B} do

if (DetRy AND DetLy) = True then
Dety = Good

else if (DetRy OR DetLy) = False then
Dety = Not Detected

else
Dety = Poor

/* Compute grasp detection output */
if All of {DetT , DetM, DetB} = Not Detected then // No log detected by any electrode pair

Det = False
else if Any of {DetT , DetM, DetB} = Poor then // Poor grasp detected in some electrode pair

Det = False
else // Log detected and no poor grasp detected

Det = True
Output: Det

3. Experimental Results

In order to evaluate the proposed approach, a prototype of the STIM is developed and
installed on the scaled down model of an industrial crane. Figure 6 shows the construction
and placement of the sensors and the smart transducer interface. The sensors were installed
on the outer claw of the crane on both the left and right fingers.
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The STIM is designed and fabricated on PCB in a shape suitable to fit in the housing
cavity provided within the finger body. The PCB is 1.6 mm thick and has four layers. A
picture of the fully assembled PCB has been shown in Figure 5b. The PCB was mounted
within the housing cavity on an insulating layer and connected to the electrodes, battery
and solar cells. The energy harvesting system in the PCB harvests from ambient light using
solar cells and a coin cell battery for energy storage.

Using a source measurement unit [47], the power consumption of the PCB was mea-
sured with the solar cell disconnected. The NRF52 microcontroller and the CDC are operat-
ing in full power mode and maximum transmission rate. The PCB consumes on average
about 12 mW of power during the operation. This power consumption can be further
reduced by operating the NRF52 microcontroller and the CDC in low power mode and by
reducing the measurement and BLE transmission rate.

Cavity for Housing STIM

STIM installed in cavity

Active Shield Layers

(a) Picture of Active Shield Layer

Middle
Electrodes

Top Electrodes

Bottom Electrodes

(b) Picture of Sensor Electrodes

Figure 6. Experimental setup. (a) The placement of active shield layer on the gripper’s claw is shown.
One of the cavities for holding the STIM is shown clearly on the gripper’s inner claw. The STIM is
placed in a cavity on the right finger of the outer gripper. (b) The construction of the sensor electrodes.

3.1. Grasping Experiments

To measure the performance of the sensors under various grasping scenarios, experi-
ments were performed on logs of three different dimensions and under different grasping
conditions, using the crane’s manual control mode. The diameter of the logs were 13.5 cm
(big log), 7.5 cm (medium log) and 2.5 cm (small log). Figure 7 shows the logs that were
used in the grasping experiments.
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Figure 7. Logs of different diameters used in the grasping experiments. Big log (top) has a diameter
of 13.5 cm, medium log (middle) has a diameter of 7.5 cm and small log (bottom) has a diameter of
2.5 cm.

Sensor capacitance was measured under the following grasping conditions.

1. Proper grasp: The log is firmly grasped by the claws, the grippers are fully closed and
the sensors are under tight contact with the log. When the crane is moving, the log
does not experience any shift in its grasped position.

2. Corner grasp: The log is held by the claws near its end, and is only partially held by
the claw.

3. Incomplete grasp: The claws are not closed to the maximum possible extent, hence
the log is not held firmly by the claw.

3.2. Grasp Detection Results

Initially, the grasp sensing was tested for big logs under different grasping
scenarios. Figure 8 shows the results obtained. First, proper firm grasp of the log was tested
repeatedly at various speeds. The observed variation in electrode capacitance is shown
in Figure 8a, here we can see that the capacitance of electrodes in both the left and right
claws increase significantly and the change in capacitance is consistent over repeated grasp-
ing motions. The profile of the capacitance change depends on the speed of grasp/release
as well as the duration of the grasp.

Subsequently, the performance of the sensor under corner grasping scenario (for big
log) was tested, the results of which are shown in Figure 8b. In this experiment, only the
right finger of the claw was in contact with the claw during the grasp. Here we can observe
that only the capacitance of the sensors in the right finger is affected during the grasp,
as was expected. Another variation of improper grasp that can often occur for big logs
is grasping at an angle. Such a grasp can occur when picking up a log that is on top of
another at an inclination. Experimental results obtained for grasping at an inclination are
shown in Figure 8c. During the grasp, the log was mostly held by the claw’s right finger
and touching the bottom electrode. Therefore, there can be seen a change in CBR during
the grasp.

The ability of the sensor to detect grasp firmness (for big logs) during crane movement
was tested next. Initially an incomplete grasp was performed on the log and the crane
was moved (including fast jerky motions) over the work space. The results are show
in Figure 8e. Initially (t < 150 s), we can see that the sensors’ capacitances are not stable
during the crane movement and often experience large change in value. At t = 150 s,
firm grasp is performed and the crane is moved again. Here we can see that the sensor
capacitance remains stable, indicating firm proper grasp.



Sensors 2023, 23, 2747 11 of 16

1

1.5

2

2.5

3

3.5

4

0 5 10 15 20 25

Se
ns

or
C

ap
ac

it
an

ce
(p

F)

Time (S)

CBR
CBL

CMR
CML

CTR
CTL

0

1

D
et

ec
ti

on
R

es
ul

t

(a) Proper Grasp

1

1.5

2

2.5

3

3.5

4

0 10 20 30 40 50 60 70

Se
ns

or
C

ap
ac

it
an

ce
(p

F)

Time (S)

CBR
CBL

CMR
CML

CTR
CTL

0

1

D
et

ec
ti

on
R

es
ul

t

(b) Corner Grasp
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(c) Grasp at an Angle (d) Grasping at an Angle
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(e) Incomplete Grasp (f) Fingertip Grasp

Figure 8. Experimental results for grasping big log (13.5 cm). The solid lines represent the electrodes
on the right claw and dashed lines represent the electrodes on the left claw. The result of detection
algorithm is plotted in red on top of each plot. (a) shows the output of the sensors during a proper
firm grasp, (b) shows the output of the sensors when grasping the log in the corner, (c) shows the
output of the sensors when grasping the log at an angle and a picture of angle grasping scenario
is shown in (d), (e) shows the output of the sensors when moving the log under incomplete grasp
and (f) shows the output of both the open and close hydraulic pressure sensors (right y-axis, yellow
background); and the capacitive sensors (left y-axis) during fingertip grasp.
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Fingertip grasping can occur in automated grasping relying on top down camera
images. In this scenario the log is grasped by the tips of the gripper fingers and not fully
supported by the claws. The gripper has two hydraulic actuators, one for closing and
the other for opening the gripper. The pressure of the hydraulic fluid in each actuator is
measured by two independent pressure sensors. Figure 8f shows the output of the crane’s
built in pressure sensors in the hydraulic system and the output of the proposed sensors.
During the grasp the hydraulics system senses an increase in pressure and signals grasp
completion. However, the proposed sensors did not detect the presence of a log within the
gripper and this information can be used to identify the fingertip grasp scenario.

The ability of the sensors in grasp detection of medium and small sized logs was
tested next, the results obtained are shown in Figure 8. Experimental validation of proper
grasp detection for medium log was performed first and the results are plotted in Figure 8a.
When compared to proper grasp of the big log, with the medium sized log the middle
electrodes are much more sensitive to the presence of the log. This is due to the geometry
of the crane claw and the difference in log sizes. When the big log is fully grasped, it is
mainly in contact with the bottom sensors. Similarly when the medium is grasped, the
middle sensors are in contact with the log.

The performance of the sensor in detecting corner grasp of the medium sized log was
tested next. In this experiment, the crane lifted the log only using the right fingers. As
expected, we can see in Figure 8b that only sensors in the right finger are responsive to
grasp, while the left finger sensors are unaffected.

Afterwards, the performance of the sensor in detecting incomplete grasp was tested.
In this experiment, initially a near complete grasp was performed (5 s < t < 45 s). The crane
was moved around over the work-space and as we can see in Figure 8c, the sensor output
experiences instability during the motion. Then, the crane was fully closed to perform
a proper grasp (45 s < t < 115 s). Under this scenario, the sensor output was stable even
during jerky motions of the crane, indicating a proper grasp. After this, the claws were
partially opened to perform a loose grasp (115 s < t < 180 s). Under this condition the sensor
output is much more prone to variation due to the crane movement.

Finally, the ability of the sensor to detect grasp of the small log was tested. The results
are shown in Figure 8e. As the grasp progresses, the log first comes in contact with the
bottom sensors (t = 2.5 s), and the sensors’ capacitances increase. As the log rolls over
from the bottom sensors to the middle sensors (t = 5.5 s), the middle sensors increase in
capacitance and the output of the bottom sensors decreases. Finally the log rolls over to the
top sensors (t = 9.5 s), and the capacitance of the top sensors increase. In this configuration,
the claws are fully closed, and the grasp is complete. At (t = 16 s), the claw is opened slowly
and the log is released.
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(c) Incomplete Grasp (d) Picture of incomplete grasping
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(e) Corner Grasp

Figure 8. Experimental results for grasping medium (7.5 cm) log. The solid lines represent the
electrodes on the right claw and dashed lines represent the electrodes on the left claw. The result of
detection algorithm is plotted in red on top of each plot. (a) shows the output of the sensors during a
proper firm grasp, (b) shows the output of the sensors when grasping the log in the corner and (c)
shows the output of the sensors when moving the log under incomplete grasp, (d) shows a picture of
incomplete grasping procedure and (e) shows the results of grasp detection for small log.

4. Conclusions

In this paper, we present a capacitive smart transducer for grasp detection application
in a forestry crane robot. The sensing system consists of six single-ended electrodes
placed on the fingers of a gripper claw, whose capacitance are measured using IEEE 1451.0
compliant STIM. The STIM is a low power unit that can be powered using solar energy
harvesting system with battery backup. Experimental evaluation of the grasp detection
capability was performed on logs of three different dimensions and under different grasping
scenarios on a scaled down replica of an industrial crane. Results indicate the suitability of
the proposed design to detect successful firm grasp for different sized logs.
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